1
|
Ivatt L, Paul M, Miguelez-Crespo A, Hadoke PWF, Bailey MA, Morgan RA, Nixon M. Obesity-induced mesenteric PVAT remodelling is sexually dimorphic, but not driven by ovarian hormones : Short title: Obesity induces sex-specific responses in mesenteric PVAT. Cardiovasc Diabetol 2025; 24:39. [PMID: 39856754 PMCID: PMC11762466 DOI: 10.1186/s12933-025-02596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Obesity, a major risk factor for cardiovascular disease (CVD), is associated with hypertension and vascular dysfunction. Perivascular adipose tissue (PVAT), a metabolically active tissue surrounding blood vessels, plays a key role in regulating vascular tone. In obesity, PVAT becomes dysregulated which may contribute to vascular dysfunction; how sex impacts the remodelling of PVAT and thus the altered vascular contractility during obesity is unclear. OBJECTIVE To investigate sex-specific PVAT dysregulation in the setting of obesity as a potential driver of sex differences in vascular pathologies and CVD risk. METHODS Adult male and female C57Bl/6J mice were fed an obesogenic high-fat diet (HFD) or regular chow for 16 weeks. Mesenteric PVAT (mPVAT) was isolated for RNA-sequencing and histological analysis, and mesenteric arteries were isolated for assessment of vascular function by wire myography. In a separate study, female mice were subjected to bilateral ovariectomy prior to dietary intervention to determine the contribution of ovarian hormones to PVAT dysregulation. RESULTS Transcriptomic analysis of mPVAT revealed sexually dimorphic responses to HFD, with upregulation of extracellular matrix (ECM) remodelling pathways in male but not female mice. Histological and RT-qPCR approaches demonstrated increased collagen deposition and ECM remodelling in mPVAT from obese male compared with obese female mice. Assessment of vascular function in mesenteric arteries -/+ PVAT revealed that in obesity, mPVAT impaired endothelium-mediated vasodilation in male but not female mice. Ovariectomy of female mice prior to HFD administration did not alter ECM transcript expression or collagen deposition in mPVAT compared to sham-operated female mice. CONCLUSIONS Obesity induces sex-specific molecular remodelling in mPVAT, with male mice exhibiting unique upregulation of ECM pathways and increased collagen deposition compared to females. Moreover, the relative protection of female mice from obesity-induced mPVAT dysregulation is not mediated by ovarian hormones. These data highlight a potential sex-specific mechanistic link between mPVAT and mesenteric artery dysfunction in obesity, and provides crucial insights for future development of treatment strategies that consider the unique cardiovascular risks in men and women.
Collapse
Affiliation(s)
- Lisa Ivatt
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mhairi Paul
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Patrick W F Hadoke
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Matthew A Bailey
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Mark Nixon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
2
|
Lemke J, Gollasch M, Tsvetkov D, Schulig L. Advances in the design and development of chemical modulators of the voltage-gated potassium channels K V7.4 and K V7.5. Expert Opin Drug Discov 2025; 20:47-62. [PMID: 39627683 DOI: 10.1080/17460441.2024.2438226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Hypertension remains a major public health concern, with significant morbidity and mortality worldwide. Despite the availability of various antihypertensive medications, blood pressure control remains suboptimal in many individuals. During the last decades, KV7.4 and KV7.5, which were already known from the view of neuronal regulation, emerged as possible important players in the regulation of vascular tone and blood pressure. AREAS COVERED This review covers physiological functions and current advancements in the development of KV7.4 and KV7.5 channel modulators. The authors highlight the structural elements likely to be important for the future design of KV7 subtype-selective modulators, underscoring their potential as an innovative hypertension treatment. EXPERT OPINION Extensive research has been focused on targeting neuronal KV7.2 and KV7.3 channels, while KV7.4 and KV7.5 attracted less attention. Many of the developed compounds represent derivatives of flupirtine or retigabine, whereby subtype channel selectivity has only been demonstrated for a handful of individual compounds. Novel substances address additional sites within the binding pocket by incorporating new functional groups. A comprehensive and systematic evaluation of a compound set with significant subtype selectivity should be performed. The discovery of new highly active, less toxic, and selective compounds, therefore, remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Jana Lemke
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine, Greifswald, Germany
| | - Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Cruz-López EO, Tan L, Stolk DG, van den Bogaerdt AJ, Verdonk K, Danser AHJ. Endothelin-1- and acetylcholine-mediated effects in human and rat vessels: impact of perivascular adipose tissue, diabetes, angiotensin II, and chemerin. Blood Press 2024; 33:2414072. [PMID: 39387176 DOI: 10.1080/08037051.2024.2414072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE To study the role of perivascular adipose tissue (PVAT) in the reactivity of rat and human vessels. METHODS Iliac and mesenteric arteries were obtained from normotensive Sprague-Dawley rats, hypertensive transgenic (mRen2)27 rats overexpressing mouse renin, and (mRen2)27 rats made diabetic with streptozotocin. Human coronary arteries were obtained from donors. Concentration-response curves were constructed to endothelin-1 and acetylcholine with and without PVAT. The contribution of NO and endothelium-dependent hyperpolarization (EDH) were determined making use of the NO synthase inhibitor L-NAME and the EDH inhibitors apamin + TRAM-34. The endothelin type A and type B (ETA, ETB) receptor blockers BQ123 and BQ788, the chemerin inhibitors α-NETA and pravastatin, and the angiotensin receptor blocker losartan were also used. RESULTS In rat iliac arteries, PVAT diminished endothelin-induced constriction, while the opposite was true in human coronaries. Coronary effects were unaltered by α-NETA, pravastatin, or losartan. ETB receptor-mediated relaxation in iliac arteries occurred only with PVAT, and BQ123 blocked endothelin-1-induced constriction. Diabetes upregulated the anticontractile effects of PVAT. In rat mesenteric arteries, acetylcholine-induced relaxation with PVAT relied on NO, and on NO + EDH without PVAT. Diabetes upregulated the EDH component exclusively with PVAT. CONCLUSION PVAT modulates ET-1-induced constriction in a vessel type-dependent manner. Its enhancing effects in coronaries involved neither chemerin nor angiotensin II. Its anticontractile effects in rat iliac arteries involved ETB receptor-mediated relaxation. Diabetes upregulated PVAT's anticontractile effects. In mesenteric arteries, PVAT counterbalanced the EDH component of the relaxant effect of acetylcholine. Diabetes reversed this effect by upregulating the EDH component.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lunbo Tan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniël G Stolk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Koen Verdonk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Rachwalik M, Sareło P, Obremska M, Matusiewicz M, Sett KS, Czapla M, Jasiński M, Hurkacz M. Resistin concentrations in perivascular adipose tissue as a highly sensitive marker of smoking status in patients with advanced coronary artery disease requiring coronary artery bypass grafting. Front Public Health 2024; 12:1484195. [PMID: 39635208 PMCID: PMC11614759 DOI: 10.3389/fpubh.2024.1484195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Smoking is a significant risk factor for numerous diseases, including coronary artery disease (CAD). Chronic inflammation from smoking affects endothelial function and may alter adipokine secretion, particularly resistin, in perivascular adipose tissue (PVAT). This study investigated the association between resistin concentrations in PVAT and smoking status in CAD patients undergoing coronary artery bypass grafting (CABG). Methods The study included 110 patients with advanced CAD scheduled for CABG. Patients were categorized into never-smokers and ever-smokers, with the latter further divided into current and past smokers. Resistin concentrations in PVAT and plasma, along with plasma interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) concentrations, were measured using ELISA. Result Significant differences in PVAT resistin concentrations were observed between never-smokers and ever-smokers (p < 0.0001), as well as between never-smokers and both current (p < 0.0001) and past smokers (p < 0.0001). PVAT resistin concentrations correlated positively with the number of pack-years (p < 0.0001) and plasma resistin (p < 0.0001) and IL-6 concentrations (p < 0.0001). Plasma resistin, IL-6, and hs-CRP concentrations were higher in ever-smokers compared with never-smokers. Multiple regression analysis indicated that smoking is significantly correlated with higher PVAT resistin concentrations, with increased pack-years (p = 0.0002), higher plasma resistin concentrations (p < 0.0001), and IL-6 concentrations (p < 0.0001), all contributing to elevated PVAT resistin. Conclusion Smoking status in advanced CAD patients requiring CABG is positively associated with PVAT resistin concentrations, with a clear demonstration of dose-dependency.
Collapse
Affiliation(s)
- Maciej Rachwalik
- Department of Cardiac Surgery and Heart Transplantation, Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Przemysław Sareło
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
- Pre-clinical Research Center, Wrocław Medical University, Wrocław, Poland
| | - Marta Obremska
- Department of Cardiovascular Imaging, Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Matusiewicz
- Division of Medical Biochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Kaung Sithu Sett
- Student, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Michał Czapla
- Division of Scientific Research and Innovation in Emergency Medical Service, Department of Emergency Medical Service, Faculty of Nursing and Midwifery, Wroclaw Medical University, Wrocław, Poland
- Group of Research in Care (GRUPAC), Faculty of Health Sciences, University of La Rioja, Logroño, Spain
| | - Marek Jasiński
- Department of Cardiac Surgery and Heart Transplantation, Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Magdalena Hurkacz
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
5
|
Shen Q, Cintron SA, Pierce JD. Platelet and Leukocyte Mitochondrial Function With Cardiac Function and Self-Reported Health Status Among Obese Patients With Heart Failure. Nurs Res 2024; 73:294-303. [PMID: 38905622 DOI: 10.1097/nnr.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
BACKGROUND Mitochondrial dysfunction plays a key role in the development of heart failure (HF), including HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Impaired mitochondrial function negatively affects cardiac function and, subsequently, the health status of patients. However, measuring mitochondrial function in human myocytes is difficult because of the high risk associated with myocardial biopsy. Platelets and leukocytes have functional mitochondria and can potentially serve as a surrogate for myocardial mitochondria. Roles of platelet and leukocyte mitochondrial function in HF have not yet been fully explored. OBJECTIVE We aimed to explore the relationships of platelet and leukocyte mitochondrial function with cardiac function and self-reported health status among obese patients with HF and examine if the relationships vary between HFrEF and HFpEF. METHODS Forty-five obese patients with HF were recruited. Maximal enzymatic activities (Vmax) of platelet cytochrome c oxidase (COX) and citrate synthase (CS) were assessed. Leukocyte mitochondrial mass, membrane potential, superoxide production, and apoptosis were measured in a subset of the sample. Data on cardiac function were retrieved from electronic health records. Self-reported health status was assessed using the Kansas City Cardiomyopathy Questionnaire (KCCQ). Pearson correlations were performed. RESULTS Platelet COX Vmax was negatively correlated with left ventricular end-systolic diameter. Positive correlations of leukocyte mitochondrial mass and superoxide production with left ventricular mass and mass index were observed, respectively. Leukocyte mitochondrial mass and superoxide production also negatively correlated with KCCQ summary scores. These relationships varied between HFrEF and HFpEF. DISCUSSION Platelet and leukocyte mitochondrial function was found to significantly correlate with some echocardiographic parameters and KCCQ scores. These findings provided preliminary data to support future research to further explore the potential of using platelets and leukocytes as surrogate biomarkers. Identifying easy-accessible mitochondrial biomarkers will be useful for assessing mitochondrial function to assist with early diagnosis and monitoring the effectiveness of mitochondrial-targeted therapy in HF patients.
Collapse
|
6
|
Tsvetkov D, Schleifenbaum J, Wang Y, Kassmann M, Polovitskaya MM, Ali M, Schütze S, Rothe M, Luft FC, Jentsch TJ, Gollasch M. KCNQ5 Controls Perivascular Adipose Tissue-Mediated Vasodilation. Hypertension 2024; 81:561-571. [PMID: 38354270 DOI: 10.1161/hypertensionaha.123.21834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany (J.S.)
| | - Yibin Wang
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany (Y.W., F.C.L.)
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Maya M Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
| | - Mohamed Ali
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Sebastian Schütze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany (Y.W., F.C.L.)
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany (T.J.J.)
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| |
Collapse
|
7
|
Tu YB, Gu M, Zhou SQ, Xie G, Liu LL, Deng FB, Li K. Pericoronary adipose tissue attenuation in patients with acute aortic dissection based on coronary computed tomography angiography. Quant Imaging Med Surg 2024; 14:31-42. [PMID: 38223036 PMCID: PMC10784082 DOI: 10.21037/qims-23-253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/11/2023] [Indexed: 01/16/2024]
Abstract
Background Periaortic fat is associated with coronary disease. Thus, it was hypothesized that the inflammation associated with acute aortic dissection (AAD) spreads to pericoronary adipose tissue (PCAT) via thoracic periaortic fat. Pericoronary adipose tissue attenuation (PCATa) serves as a marker for inflammation of perivascular adipose tissue (PVAT). This study sought to examine PCATa in individuals diagnosed with AAD. Methods Consecutive patients with chest pain from May 2020 to September 2022 were prospectively enrolled in this study and underwent coronary computed tomography angiography (CCTA) and/or aorta computed tomography angiography (CTA). Based on the results of the CTA, the patients were divided into the following two groups: (I) the AAD group; and (II) the non-AAD group. PCATa of the right coronary angiography (RCA), left anterior descending (LAD), and left circumflex (LCx) was quantified for each patient using semi-automated software. The PCATa values were compared between the AAD and non-AAD patients according to the atherosclerosis of the coronary arteries. Similarly, the PCATa values of the AAD patients were compared between the preoperative and postoperative steady states. Results A total of 136 patients (42 female, 94 male; mean age: 63.3±11.9 years) were divided into the two groups according to the presence of aortic dissection on CTA. The RCAPCATa, LADPCATa, and LCxPCATa values were significantly higher in the AAD subjects than the non-AAD subjects, regardless of the presence or absence of atherosclerosis in the coronary arteries [-85.1±9.3 vs. -92.9±10.0 Hounsfield unit (HU); -83.2±7.4 vs. -89.9±9.1 HU; -77.5±8.4 vs. -85.6±7.9 HU, all P<0.001). The preoperative RCAPCATa, LADPCATa, and LCxPCATa values were higher in the AAD patients than the postoperative steady-state patients (-82.9±8.7 vs. -97.6±8.8 HU; -79.8±7.6 vs. -92.8±6.8 HU; -74.6±7.1 vs. -87.7±6.9 HU, all P<0.001). According to the multivariable logistic regression analysis, high RCAPCATa and LADPCATa values were associated with AAD regardless of the degree of stenosis [odds ratio (OR) =0.014; 95% confidence interval (CI): 0.001-0.177; P=0.001 and OR =0.010; 95% CI: 0.001-0.189; P=0.002]. Conclusions PCATa on computed tomography was increased in patients with AAD regardless of the presence or absence of coronary artery disease (CAD). This suggests that vascular inflammation is present in AAD independent of CAD. Further research should be conducted to investigate the potential of this imaging biomarker to predict AAD and monitor patients' responses to therapies for AAD.
Collapse
Affiliation(s)
- Yong-Bo Tu
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Min Gu
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Shao-Quan Zhou
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Gang Xie
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Li-Li Liu
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Feng-Bin Deng
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Kang Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
8
|
Agabiti-Rosei C, Saxton SN, De Ciuceis C, Lorenza Muiesan M, Rizzoni D, Agabiti Rosei E, Heagerty AM. Influence of Perivascular Adipose Tissue on Microcirculation: A Link Between Hypertension and Obesity. Hypertension 2024; 81:24-33. [PMID: 37937425 DOI: 10.1161/hypertensionaha.123.19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Alterations in microcirculation play a crucial role in the pathogenesis of cardiovascular and metabolic disorders such as obesity and hypertension. The small resistance arteries of these patients show a typical remodeling, as indicated by an increase of media or total wall thickness to lumen diameter ratio that impairs organ flow reserve. The majority of blood vessels are surrounded by a fat depot which is termed perivascular adipose tissue (PVAT). In recent years, data from several studies have indicated that PVAT is an endocrine organ that can produce a variety of adipokines and cytokines, which may participate in the regulation of vascular tone, and the secretory profile varies with adipocyte phenotype and disease status. The PVAT of lean humans largely secretes the vasodilator adiponectin, which will act in a paracrine fashion to reduce peripheral resistance and improve nutrient uptake into tissues, thereby protecting against the development of hypertension and diabetes. In obesity, PVAT becomes enlarged and inflamed, and the bioavailability of adiponectin is reduced. The inevitable consequence is a rise in peripheral resistance with higher blood pressure. The interrelationship between obesity and hypertension could be explained, at least in part, by a cross-talk between microcirculation and PVAT. In this article, we propose an integrated pathophysiological approach of this relationship, in order to better clarify its role in obesity and hypertension, as the basis for effective and specific prevention and treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Sophie N Saxton
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| | - Carolina De Ciuceis
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Maria Lorenza Muiesan
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Damiano Rizzoni
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Enrico Agabiti Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| |
Collapse
|
9
|
Tong Y, Zuo Z, Li X, Li M, Wang Z, Guo X, Wang X, Sun Y, Chen D, Zhang Z. Protective role of perivascular adipose tissue in the cardiovascular system. Front Endocrinol (Lausanne) 2023; 14:1296778. [PMID: 38155947 PMCID: PMC10753176 DOI: 10.3389/fendo.2023.1296778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This review provides an overview of the key role played by perivascular adipose tissue (PVAT) in the protection of cardiovascular health. PVAT is a specific type of adipose tissue that wraps around blood vessels and has recently emerged as a critical factor for maintenance of vascular health. Through a profound exploration of existing research, this review sheds light on the intricate structural composition and cellular origins of PVAT, with a particular emphasis on combining its regulatory functions for vascular tone, inflammation, oxidative stress, and endothelial function. The review then delves into the intricate mechanisms by which PVAT exerts its protective effects, including the secretion of diverse adipokines and manipulation of the renin-angiotensin complex. The review further examines the alterations in PVAT function and phenotype observed in several cardiovascular diseases, including atherosclerosis, hypertension, and heart failure. Recognizing the complex interactions of PVAT with the cardiovascular system is critical for pursuing breakthrough therapeutic strategies that can target cardiovascular disease. Therefore, this review aims to augment present understanding of the protective role of PVAT in cardiovascular health, with a special emphasis on elucidating potential mechanisms and paving the way for future research directions in this evolving field.
Collapse
Affiliation(s)
- Yi Tong
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zheng Zuo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinqi Li
- Center for Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Minghua Li
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhenggui Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Guo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xishu Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dongmei Chen
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Valentini A, Cardillo C, Della Morte D, Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:3006. [PMID: 38002006 PMCID: PMC10669084 DOI: 10.3390/biomedicines11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR). In this review, we describe the relationship between PVAT and ED, and we also analyse the role of PVAT in the pathogenesis of CVDs and T2DM, further assessing its potential therapeutic target with the aim of restoring normal ED and reducing global cardiovascular risk.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - David Della Morte
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| |
Collapse
|
11
|
Fu M, Shu S, Peng Z, Liu X, Chen X, Zeng Z, Yang Y, Cui H, Zhao R, Wang X, Du L, Wu M, Feng W, Song J. Single-Cell RNA Sequencing of Coronary Perivascular Adipose Tissue From End-Stage Heart Failure Patients Identifies SPP1+ Macrophage Subpopulation as a Target for Alleviating Fibrosis. Arterioscler Thromb Vasc Biol 2023; 43:2143-2164. [PMID: 37706320 PMCID: PMC10597444 DOI: 10.1161/atvbaha.123.319828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Perivascular adipose tissue (PVAT) is vital for vascular homeostasis, and PVAT dysfunction is associated with increased atherosclerotic plaque burden. But the mechanisms underlining coronary PVAT dysfunction in coronary atherosclerosis remain elusive. METHODS We performed single-cell RNA sequencing of the stromal vascular fraction of coronary PVAT from 3 groups of heart transplant recipients with end-stage heart failure, including 3 patients with nonobstructive coronary atherosclerosis, 3 patients with obstructive coronary artery atherosclerosis, and 4 nonatherosclerosis control subjects. Bioinformatics was used to annotate the cellular populations, depict the cellular developmental trajectories and interactions, and explore the differences among 3 groups of coronary PVAT at the cellular and molecular levels. Pathological staining, quantitative real-time polymerase chain reaction, and in vitro studies were performed to validate the key findings. RESULTS Ten cell types were identified among 67 936 cells from human coronary PVAT. Several cellular subpopulations, including SPP1+ (secreted phosphoprotein 1) macrophages and profibrotic fibroadipogenic progenitor cells, were accumulated in PVAT surrounding atherosclerotic coronary arteries compared with nonatherosclerosis coronary arteries. The fibrosis percentage was increased in PVAT surrounding atherosclerotic coronary arteries, and it was positively associated with the grade of coronary artery stenosis. Cellular interaction analysis suggested OPN (osteopontin) secreted by SPP1+ macrophages interacted with CD44 (cluster of differentiation 44)/integrin on fibroadipogenic progenitor cells. Strikingly, correlation analyses uncovered that higher level of SPP1 in PVAT correlates with a more severe fibrosis degree and a higher coronary stenosis grade. In vitro studies showed that conditioned medium from atherosclerotic coronary PVAT promoted the migration and proliferation of fibroadipogenic progenitor cells, while such effect was prevented by blocking CD44 or integrin. CONCLUSIONS SPP1+ macrophages accumulated in the PVAT surrounding atherosclerotic coronary arteries, and they promoted the migration and proliferation of fibroadipogenic progenitor cells via OPN-CD44/integrin interaction and thus aggravated the fibrosis of coronary PVAT, which was positively correlated to the coronary stenosis burden. Therefore, SPP1+ macrophages in coronary PVAT may participate in the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Mengxia Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital (M.F., M.W.), Capital Medical University, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Zhiming Peng
- Department of Orthopedics, Peking Union Medical College Hospital (Z.P.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Zhiwei Zeng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Ruojin Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Leilei Du
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital (L.D.), Capital Medical University, China
| | - Min Wu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital (M.F., M.W.), Capital Medical University, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China (J.S.)
| |
Collapse
|
12
|
Lázaro-Suárez ML, Domínguez de la Mora I, Rodríguez-Aguilar JC, Fortis-Barrera Á, Blancas-Flores G, Gómez-Zamudio JH, Alarcon-Villaseñor EF, Román-Ramos R, Alarcon-Aguilar FJ. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue. Metab Syndr Relat Disord 2023; 21:101-108. [PMID: 36399542 DOI: 10.1089/met.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Perivascular adipose tissue (PVAT) plays an essential role in cardiovascular homeostasis. However, during obesity and diabetes, its role in vascular tone regulation is unclear. This study aimed to evaluate the function of the PVAT on aorta reactivity in the lean and cafeteria (CAF) diet-induced obese-hyperglycemic mice model. Methods: Aorta reactivity to phenylephrine, KCl, and acetylcholine was analyzed in lean (n = 6) and obese mice (n = 6). Also, nitric oxide (NO-) and cyclooxygenase participation, in the presence (n = 6) and absence (n = 6) of PVAT, were examined in the aortas. Results: After a CAF diet for 19 weeks, obese mice showed increased body weight, glucose intolerance, and hypercholesterolemia concerning lean mice. Vascular reactivity to phenylephrine was reduced significantly in the aorta of obese mice. In contrast, the contraction produced by KCl (80 mM) was increased in the aorta of obese mice independent of PVAT. Acetylcholine-induced vasorelaxation diminished in the aortas of obese mice in the presence of PVAT. Nonselective inhibition of cyclooxygenases likely shows that PVAT and endothelium release vasorelaxant prostanoids. Conclusions: The results suggest that PVAT modulates aorta reactivity by releasing NO-, decreasing the α1-adrenergic response to phenylephrine, and probably releasing vasorelaxant prostanoids. The data suggest that PVAT regulates the vascular smooth muscle and endothelial function in a CAF diet-induced obese-hyperglycemic mice model.
Collapse
Affiliation(s)
- Martha L Lázaro-Suárez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Israel Domínguez de la Mora
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Juan Carlos Rodríguez-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Ángeles Fortis-Barrera
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Jaime H Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - Rubén Román-Ramos
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Francisco Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
13
|
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118:3434-3450. [PMID: 35880317 PMCID: PMC10202444 DOI: 10.1093/cvr/cvac120] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity and heart failure with preserved ejection fraction (HFpEF) represent two intermingling epidemics driving perhaps the greatest unmet health problem in cardiovascular medicine in the 21st century. Many patients with HFpEF are either overweight or obese, and recent data have shown that increased body fat and its attendant metabolic sequelae have widespread, protean effects systemically and on the cardiovascular system leading to symptomatic HFpEF. The paucity of effective therapies in HFpEF underscores the importance of understanding the distinct pathophysiological mechanisms of obese HFpEF to develop novel therapies. In this review, we summarize the current understanding of the cardiovascular and non-cardiovascular features of the obese phenotype of HFpEF, how increased adiposity might pathophysiologically contribute to the phenotype, and how these processes might be targeted therapeutically.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Tobbalseghir-Belarbi I, Khennaf-Hamlat N, Neggazi S, Beylot M, Aouichat-Bouguerra S. Evaluation of Proinflammatory Cytokines in Adipose Tissue of Hypertensive Lyon Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Meister TA, Soria R, Dogar A, Messerli FH, Paoloni-Giacobino A, Stenz L, Scherrer U, Sartori C, Rexhaj E. Increased Arterial Responsiveness to Angiotensin II in Mice Conceived by Assisted Reproductive Technologies. Int J Mol Sci 2022; 23:13357. [PMID: 36362144 PMCID: PMC9654033 DOI: 10.3390/ijms232113357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/01/2023] Open
Abstract
Since the first report in 1978, the number of individuals conceived by Assisted Reproductive Technologies (ART) has grown incessantly. In parallel, with the recent emergence of possible underlying mechanisms of ART-induced epigenetic changes in the renin-angiotensin system, the cardiovascular repercussions of ART in mice and human offspring (including arterial hypertension, vascular dysfunction, and cardiac remodeling) have become increasingly recognized. Here, we hypothesized that ART may increase arterial responsiveness to angiotensin II (ANG II) by epigenetically modifying the expression of its receptors. To test this hypothesis, we assessed the vasoconstrictor responsiveness to ANG II in isolated aortas from ART and control mice. We also examined ANG II receptor (ATR) type 1 and 2 expression and the promoter methylation of the At1aR, At1bR and At2R genes. We found that the vasoconstrictor response to ANG II was markedly increased in ART mice compared to controls. This exaggerated vasoconstrictor responsiveness in ART mice correlated with a significant increase in the ANG II receptor (ATR) type 1 to ATR type 2 protein expression ratio in the aorta; this was mainly driven by an increase in AT1R expression, and by hypomethylation of two CpG sites located in the At1bR gene promoter leading to increased transcription of the gene. We conclude that in mice, ART increase the vasoconstrictor response to ANG II in the aorta by epigenetically causing an imbalance between the expression of vasoconstrictor (AT1R) and vasodilator (AT2R) ANG II receptors. Unbalanced expression of AT1R and AT2R receptors seems to be a novel mechanism contributing to ART-induced arterial hypertension in mice.
Collapse
Affiliation(s)
- Theo Arthur Meister
- Department of Cardiology and Biomedical Research, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Rodrigo Soria
- Department of Cardiology and Biomedical Research, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Afzal Dogar
- Department of Cardiology and Biomedical Research, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Tropic Biosciences Ltd., Norwich Research Park Innovation Centre, Norwich NR4 7GJ, UK
| | - Franz H. Messerli
- Department of Cardiology and Biomedical Research, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | | | - Ludwig Stenz
- Department of Genetic Medicine and Development, University of Geneva, 1205 Geneva, Switzerland
| | - Urs Scherrer
- Department of Cardiology and Biomedical Research, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Claudio Sartori
- Department of Internal Medicine, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emrush Rexhaj
- Department of Cardiology and Biomedical Research, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
16
|
Abstract
Isolated systolic hypertension is associated with higher risk of cardiovascular disease and all-cause mortality. Despite being the most common form of hypertension in the elderly, it is also detectable among young and middle-aged subjects. Dietary salt (sodium chloride) intake is an important determinant of blood pressure, and high salt intake is associated with greater risk of hypertension and cardiovascular events. In most countries, habitual salt intake at all age categories largely exceeds the international recommendations. Excess salt intake, often interacting with overweight and insulin resistance, may contribute to the development and maintenance of isolated systolic hypertension in young individuals by causing endothelial dysfunction and promoting arterial stiffness through a number of mechanisms, namely increase in the renin-angiotensin-aldosterone system activity, sympathetic tone and salt-sensitivity. This short review focused on the epidemiological and clinical evidence, the mechanistic pathways and the cluster of pathophysiological factors whereby excess salt intake may favor the development and maintenance of isolated systolic hypertension in young people.
Collapse
Affiliation(s)
- Lanfranco D'Elia
- Medical School, Department of Clinical Medicine and Surgery, ESH Excellence Center of Hypertension, University of Naples Federico II, Naples, Italy
| | - Pasquale Strazzullo
- Medical School, Department of Clinical Medicine and Surgery, ESH Excellence Center of Hypertension, University of Naples Federico II, Naples, Italy -
| |
Collapse
|
17
|
Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d'Emmanuele di Villa Bianca R. The Role of Perivascular Adipose Tissue-Derived Hydrogen Sulfide in the Control of Vascular Homeostasis. Antioxid Redox Signal 2022; 37:84-97. [PMID: 35442088 DOI: 10.1089/ars.2021.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Emerging evidence suggests that perivascular adipose tissue (PVAT) has a relevant role in the control of vascular tone in physiology and pathology. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative actions. Accumulating data from both human and experimental animal models indicate that PVAT dysfunction is conceivably coupled to cardiovascular diseases, and it is associated with vascular inflammation, oxidative stress, and arterial remodeling. Therefore, "healthy" PVAT may constitute a novel therapeutic target for the prevention and treatment of cardiovascular diseases. Recent Advances: Hydrogen sulfide (H2S) has been recognized as a vascular anti-contractile factor released from PVAT. The enzymes deputed to H2S biosynthesis are variously expressed in PVAT and strictly dependent on the vascular bed and species. Metabolic and cardiovascular diseases can alter the morphological and secretory characteristics of PVAT, influencing also the H2S signaling. Here, we discuss the role of PVAT-derived H2S in healthy conditions and its relevance in alterations occurring in vascular disorders. Critical Issues: We discuss how a better understanding may help in the prevention of vascular dysfunction related to alteration in PVAT-released H2S as well as the importance of the interplay between PVAT and H2S. Future Directions: We propose future directions to evaluate the contribution of each enzyme involved in H2S biosynthesis and their alteration/switch occurring in vascular disorders and the remaining challenges in investigating the role of H2S. Antioxid. Redox Signal. 37, 84-97.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
18
|
Abstract
Bradycardia may increase aortic valve flow by increasing ventricular filling. Elevated aortic flow may skew accurate evaluation of AS. Permanent AF may increase diastolic filling variability. Correction of abnormal flow conditions is crucial to assess AS.
Collapse
|
19
|
Wang H, Li J, Wang Z, Tian Y, Li C, Jin F, Li J, Wang L. Perivascular brown adipocytes-derived kynurenic acid relaxes blood vessel via endothelium PI3K-Akt-eNOS pathway. Biomed Pharmacother 2022; 150:113040. [PMID: 35658210 DOI: 10.1016/j.biopha.2022.113040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Several metabolites from the kynurenine pathway of tryptophan metabolism play a critical role in vascular function and vascular wall remodeling. This study aimed to test whether metabolite kynurenic acid (KYNA) from the kynurenine pathway relaxes blood vessels. APPROACH AND RESULTS We employed histological staining, in vitro cell culture, Western blotting, real-time PCR, and nitric oxide detection to validate kynurenine aminotransferase (KAT) localization in the vasculature as well as KYNA action on endothelial cells. We also detected vascular reactivity by organ chamber and monitored blood pressure by telemetry to investigate the regulation effect of KYNA on vascular tone. The results presented that perivascular adipose tissue (PVAT) from mice thoracic aorta had robust staining of anti-KAT1 and KYNA than PVAT from the abdominal aorta and mesenteric artery, which is consistent with the expression profile of brown adipocyte marker uncoupling protein 1. KYNA, metabolized from kynurenine by KAT, relaxed pre-contracted both aortic ring and mesenteric artery. In addition, KYNA derived from KAT in PVAT participates in the cross-talk between PVAT and vessel by mediating PVAT inhibition on agonist-induced thoracic aorta contraction. Furthermore, intraperitoneal injection of KYNA in mice reduced blood pressure. The vessel relaxation effect of KYNA was through the endothelium-dependent PI3K-Akt-eNOS pathway. Finally, the high-fat diet decreased KAT1 expression in perithoracic aortic fat and led to KYNA reduction in blood. CONCLUSIONS Our research identified KYNA generated by KAT as a novel perivascular brown adipocyte-derived vascular relaxation factor and suggests that KYNA reduction is a critical event in vascular dysfunction under obese condition.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Jian Li
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Zheng Wang
- Department of Cardiology, The First Affiliated Hospital of Hainan Medical University, Hainan 570102, PR China
| | - Yanfeng Tian
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunlei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Feng Jin
- Foreign Language Teaching Department, Gui Zhou University of Traditional Chinese Medicine, Gui Zhou 550025, PR China
| | - Jia Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| | - Lanfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| |
Collapse
|
20
|
The Involvement of Sirtuin 1 Dysfunction in High-Fat Diet-Induced Vascular Dysfunction in Mice. Antioxidants (Basel) 2022; 11:antiox11030541. [PMID: 35326191 PMCID: PMC8944782 DOI: 10.3390/antiox11030541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
High-fat diet (HFD)-induced vascular impairment in mice is associated with a dysfunction of the perivascular adipose tissue (PVAT). The present study was conducted to investigate the involvement of sirtuin 1 (SIRT1). Male C57BL/6J mice were fed an HFD for 20 weeks to induce obesity. Vascular function was analyzed using a wire myograph system. In obese mice, the vasodilator response of PVAT-containing aortas to acetylcholine was reduced, although the vascular function of PVAT-free aortas remained normal. SIRT1 activity in PVAT of obese mice was reduced despite enhanced SIRT1 expression. Nicotinamide adenine dinucleotide (NAD+) levels and the NAD+/NADH ratio in the PVAT of obese mice were decreased, which was likely attributable to a downregulation of the NAD+-producing enzyme NAMPT. The reduced SIRT1 activity was associated with an enhanced acetylation of the endothelial nitric oxide synthase (eNOS) in the PVAT. Ex vivo incubation of PVAT-containing aorta from obese mice with NAD+ led to a complete normalization of vascular function. Thus, reduced SIRT1 activity due to NAD+ deficiency is involved in obesity-induced PVAT dysfunction.
Collapse
|
21
|
Macher J, Brahmbhatt A, Shetty A, Chughtai K, Baran T, Baah NO, Dogra V. Predicting pelvic congestion syndrome: Concomitant pelvic pain diagnoses do not affect venography or embolization outcomes. J Clin Imaging Sci 2021; 11:61. [PMID: 34877068 PMCID: PMC8645471 DOI: 10.25259/jcis_180_2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/04/2022] Open
Abstract
Objectives Pelvic congestion syndrome (PCS) is a challenging diagnosis to make secondary to nonspecific presenting symptoms and imaging findings. This retrospective review aims to discern predictive factors which can guide the decision to perform catheter-based venography and prognosticate outcomes. Material and Methods A retrospective analysis of patients who underwent catheter venography for PCS between January 2014 and December 2019 was performed. Multiple factors, including patient demographics, clinical history, pre-procedural imaging, venographic findings, and treatment outcomes 180 days post-procedure, were included in the analysis. Venographic findings were used to separate patients into two groups (positive or negative), with these factors compared across groups. Regression analysis controlled for the confounding effects of age and body mass index (BMI). Treated subjects were separated based on outcome (partial, no response, complete response, or technical failure), and comparisons were performed. Results Eighty patients were included in the initial analysis. Two patients were excluded due to prior embolization or portal hypertension. Seventy-eight patients were included in the final analysis. Sixty-two patients had positive findings, and 16 had no venographic findings to suggest PCS. A history of prior pregnancy was a significant predictor of positive venographic results (odds ratio = 5.99, P = 0.007). BMI was significantly lower in those with positive venographic results (P = 0.047). Presence of concomitant diagnoses did not affect venographic findings or treatment outcomes. No factors predicted treatment outcomes. Five of the treated patients had subsequent successful pregnancies. Conclusion A lower BMI supports the decision to perform venography for suspected PCS. In addition, patients who carried concomitant potentially confounding diagnoses for chronic pelvic pain were found to have similar rates of venographic findings suggesting PCS, as well as similar treatment outcomes.
Collapse
Affiliation(s)
- Jared Macher
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Akshaar Brahmbhatt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Anisha Shetty
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Komal Chughtai
- Department of Imaging, Stanford University School of Medicine, Stanford, California, United States
| | - Timothy Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States
| | - Nana Ohene Baah
- Department of Radiology, University of Louisville Hospital, Louisville, Kentucky, United States
| | - Vikram Dogra
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
22
|
Sasoh T, Kugo H, Kondo Y, Miyamoto K, Minami M, Higashihara M, Kawamoto H, Takeshita F, Moriyama T, Zaima N. Different effects of high-fat and high-sucrose diets on the physiology of perivascular adipose tissues of the thoracic and abdominal aorta. Adipocyte 2021; 10:412-423. [PMID: 34515626 PMCID: PMC8451459 DOI: 10.1080/21623945.2021.1965333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular diseases such as atherosclerosis and aneurysms are associated with diet. Perivascular adipose tissue (PVAT) was reportedly involved in the regulation of vascular functions. It is suggested that imbalanced diets can cause PVAT inflammation and dysfunction as well as impaired vascular function. However, the association between diets and PVAT are not clearly understood. Here, we showed that a high-fat and a high-sucrose diet affected PVAT at different sites. A high-fat diet induced increased number of large-sized lipid droplets and increased CD (Cluster of differentiation) 68+ macrophage- and monocyte chemotactic protein (MCP)-1-positive areas in the abdominal aortic PVAT (aPVAT). In addition, a high-fat diet caused decreased collagen fibre-positive area and increased CD68+ macrophage- and MCP-1-positive areas in the abdominal aorta. In contrast, a high-sucrose diet induced increased number of large-sized lipid droplets, increased CD68+ macrophage- and MCP-1-positive areas, and decreased UCP-1 positive area in the thoracic aortic PVAT (tPVAT). A high-sucrose diet caused decreased collagen fibre-positive area and increased CD68+ macrophage- and MCP-1-positive areas in the thoracic aorta. These results could be attributed to the different adipocyte populations in the tPVAT and aPVAT. Our results provide pathological evidence to improve our understanding of the relationship between diet and vascular diseases.
Collapse
Affiliation(s)
- Tsukasa Sasoh
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Yuya Kondo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Kento Miyamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Momoka Minami
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Mayo Higashihara
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | | | | | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
23
|
Ciccarelli M, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Heymans S, Hooghiemstra A, Leeuwis A, Hermkens D, Tocchetti CG, van der Velden J, Zacchigna S, Thum T. Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovasc Res 2021; 117:2416-2433. [PMID: 33483724 PMCID: PMC8562335 DOI: 10.1093/cvr/cvab009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Heart failure-either with reduced or preserved ejection fraction (HFrEF/HFpEF)-is a clinical syndrome of multifactorial and gender-dependent aetiology, indicating the insufficiency of the heart to pump blood adequately to maintain blood flow to meet the body's needs. Typical symptoms commonly include shortness of breath, excessive fatigue with impaired exercise capacity, and peripheral oedema, thereby alluding to the fact that heart failure is a syndrome that affects multiple organ systems. Patients suffering from progressed heart failure have a very limited life expectancy, lower than that of numerous cancer types. In this position paper, we provide an overview regarding interactions between the heart and other organ systems, the clinical evidence, underlying mechanisms, potential available or yet-to-establish animal models to study such interactions and finally discuss potential new drug interventions to be developed in the future. Our working group suggests that more experimental research is required to understand the individual molecular mechanisms underlying heart failure and reinforces the urgency for tailored therapeutic interventions that target not only the heart but also other related affected organ systems to effectively treat heart failure as a clinical syndrome that affects and involves multiple organs.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Department of Medicine, Surgery and Dentistry, Via S. Allende 1, 84081, Baronissi(Salerno), Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2DZ, UK
| | - Inês Falcao-Pires
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mauro Giacca
- King’s College London, Molecular Medicine Laboratory, 125 Caldharbour Lane, London WC2R2LS, United Kingdom
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
| | - Nazha Hamdani
- Department of Clinical Pharmacology and Molecular Cardiology, Institute of Physiology, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Stéphane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Bus 911, 3000 Leuven, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
- ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Astrid Hooghiemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
- Department of Medical Humanities, Amsterdam Public Health Research Institute, Amsterdam UMC, Location VUmc, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands
| | - Annebet Leeuwis
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
| | - Dorien Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1118, 1081HZ Amsterdam, the Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nicolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
24
|
The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021; 13:nu13113843. [PMID: 34836100 PMCID: PMC8621306 DOI: 10.3390/nu13113843] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels. Under physiological conditions, PVAT plays a significant role in regulation of vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC) proliferation. PVAT is responsible for releasing adipocytes-derived relaxing factors (ADRF) and perivascular-derived relaxing factors (PDRF), which have anticontractile properties. Obesity induces increased oxidative stress, an inflammatory state, and hypoxia, which contribute to PVAT dysfunction. The exact mechanism of vascular dysfunction in obesity is still not well clarified; however, there are some pathways such as renin-angiotensin-aldosterone system (RAAS) disorders and PVAT-derived factor dysregulation, which are involved in hypertension and endothelial dysfunction development. Physical activity has a beneficial effect on PVAT function among obese patients by reducing the oxidative stress and inflammatory state. Diet, which is the second most beneficial non-invasive strategy in obesity treatment, may have a positive impact on PVAT-derived factors and may restore the balance in their concentration.
Collapse
|
25
|
Torok J, Zemancikova A, Valaskova Z, Balis P. The Role of Perivascular Adipose Tissue in Early Changes in Arterial Function during High-Fat Diet and Its Combination with High-Fructose Intake in Rats. Biomedicines 2021; 9:biomedicines9111552. [PMID: 34829781 PMCID: PMC8615157 DOI: 10.3390/biomedicines9111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to evaluate the influence of a high-fat diet and its combination with high-fructose intake on young normotensive rats, with focus on the modulatory effect of perivascular adipose tissue (PVAT) on the reactivity of isolated arteries. Six-week-old Wistar–Kyoto rats were treated for 8 weeks with a control diet (10% fat), a high-fat diet (HFD; 45% fat), or a combination of the HFD with a 10% solution of fructose. Contractile and relaxant responses of isolated rat arteries, with preserved and removed PVAT for selected vasoactive stimuli, were recorded isometrically by a force displacement transducer. The results demonstrated that, in young rats, eight weeks of the HFD might lead to body fat accumulation and early excitation of the cardiovascular sympathetic nervous system, as shown by increased heart rate and enhanced arterial contractile responses induced by endogenous noradrenaline released from perivascular sympathetic nerves. The addition of high-fructose intake deteriorated this state by impairment of arterial relaxation and resulted in mild elevation of systolic blood pressure; however, the increase in arterial neurogenic contractions was not detected. The diet-induced alterations in isolated arteries were observed only in the presence of PVAT, indicating that this structure is important in initiation of early vascular changes during the development of metabolic syndrome.
Collapse
Affiliation(s)
- Jozef Torok
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Correspondence: (J.T.); (A.Z.); Tel.: +421-2-3229-6044 (J.T. & A.Z.)
| | - Anna Zemancikova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Correspondence: (J.T.); (A.Z.); Tel.: +421-2-3229-6044 (J.T. & A.Z.)
| | - Zuzana Valaskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
| |
Collapse
|
26
|
Wang M, Xing J, Liu M, Gao M, Liu Y, Li X, Hu L, Zhao X, Liao J, Liu G, Dong J. Deletion of Seipin Attenuates Vascular Function and the Anticontractile Effect of Perivascular Adipose Tissue. Front Cardiovasc Med 2021; 8:706924. [PMID: 34409079 PMCID: PMC8365033 DOI: 10.3389/fcvm.2021.706924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Seipin locates in endoplasmic reticulum (ER) and regulates adipogenesis and lipid droplet formation. Deletion of Seipin has been well-demonstrated to cause severe general lipodystrophy, however, its role in maintaining perivascular adipose tissue (PVAT) and vascular homeostasis has not been directly assessed. In the present study, we investigated the role of Seipin in mediating the anticontractile effect of PVAT and vascular function. Seipin expression in PVAT and associated vessels were detected by qPCR and western-blot. Seipin is highly expressed in PVAT, but hardly in vessels. Structural and functional alterations of PVAT and associated vessels were compared between Seipin -/- mice and WT mice. In Seipin -/- mice, aortic and mesenteric PVAT were significantly reduced in mass and adipose-derived relaxing factors (ADRFs) secretion, but increased in macrophage infiltration and ER stress, as compared with those in WT mice. Aortic and mesenteric artery rings from WT and Seipin -/- mice were mounted on a wire myograph. Vasoconstriction and vasodilation were studied in vessels with and without PVAT. WT PVAT augmented relaxation but not Seipin -/- PVAT, which suggest impaired anticontractile function in PVAT of Seipin -/- mice. Thoracic aorta and mesenteric artery from Seipin -/- mice had impaired contractility in response to phenylephrine (PHE) and relaxation to acetylcholine (Ach). In conclusion, Seipin deficiency caused abnormalities in PVAT morphology and vascular functions. Our data demonstrated for the first time that Seipin plays a critical role in maintaining PVAT function and vascular homeostasis.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Xing
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengduan Liu
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, China
| | - Yangyang Liu
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Li
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Hu
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - George Liu
- Key Laboratory of Molecular Cardiovascular Sciences, Peking University Health Science Center, School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cardiology, National Clinical Research Centre for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Shen Q, Hiebert JB, Rahman FK, Krueger KJ, Gupta B, Pierce JD. Understanding Obesity-Related High Output Heart Failure and Its Implications. INTERNATIONAL JOURNAL OF HEART FAILURE 2021; 3:160-171. [PMID: 36262639 PMCID: PMC9536652 DOI: 10.36628/ijhf.2020.0047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Morbid obesity remains most common cause of high output failure. The prevalence of the obesity is growing when two-thirds of American adults already are overweight or obese. Obesity is the risk factor for heart disease and eventually leads to heart failure. High output heart failure is common in obese patients and is characterized by high cardiac output, decreased systemic vascular resistance, and increased oxygen consumption. It often occurs in patients with chronic severe anemia, hyperthyroidism, pregnancy, arterial-venous fistulas, and liver disease. However, the pathogenesis of obesity-related high output heart failure is not fully understood. The clinical management of obesity-related high output heart failure follows conventional heart failure regimens due to lack of specific clinical recommendations. This article reviews the possible pathophysiological mechanisms and causes that contribute to obesity-related high output heart failure. This review also focuses on the implications for clinical practice and future research involved with omics technologies to explore possible molecular pathways associated with obesity-related high output heart failure.
Collapse
Affiliation(s)
- Qiuhua Shen
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - John B. Hiebert
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - Faith K. Rahman
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - Kathryn J. Krueger
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - Bhanu Gupta
- Department of Cardiovascular Medicine, The University of Kansas Health System, Kansas City, KS, USA
| | - Janet D. Pierce
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| |
Collapse
|
28
|
DeVallance ER, Branyan KW, Olfert IM, Pistilli EE, Bryner RW, Kelley EE, Frisbee JC, Chantler PD. Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Exp Physiol 2021; 106:1343-1358. [PMID: 33913209 DOI: 10.1113/ep089449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.
Collapse
Affiliation(s)
- Evan R DeVallance
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randall W Bryner
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
29
|
Kumar RK, Yang Y, Contreras AG, Garver H, Bhattacharya S, Fink GD, Rockwell CE, Watts SW. Phenotypic Changes in T Cell and Macrophage Subtypes in Perivascular Adipose Tissues Precede High-Fat Diet-Induced Hypertension. Front Physiol 2021; 12:616055. [PMID: 33815135 PMCID: PMC8010306 DOI: 10.3389/fphys.2021.616055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Perivascular adipose tissue (PVAT) may connect adiposity to hypertension because of its vasoactive functions and proximity to blood vessels. We hypothesized that immune cell changes in PVATs precede the development of high fat diet (HFD)-induced hypertension. Both sexes of Dahl S rat become equally hypertensive when fed a HFD. Further, both sexes would have similar immune cell composition in PVATs with the development and progression of hypertension. Male and female Dahl S rats were fed a regular (10% calories from fat; CD) diet or a HFD (60%) from weaning. PVATs from around the thoracic aorta (APVAT) and small mesenteric vessels (MRPVAT) were harvested at 10 weeks (pre-hypertensive), 17 weeks (onset), or 24 (hypertensive) weeks on diet. RNA-sequencing in MRPVAT at 24 weeks indicated sex-differences with HFD (>CD) and diet-differences in males (>females). The top 2 out of 7 immune processes with the maximum number of differentially expressed genes (DEGs) were associated with immune effector processes and leukocyte activation. Macrophages and T cells (and their activation status), neutrophils, mast, B and NK cells were measured by flow cytometry. Sex-specific changes in the number of CD4 memory T cells (males > females) and M2-like macrophages (females > males) in PVATs occur with a HFD before hypertension developed. Sex-differences became more prominent with the development and progression of hypertension, driven by the diet (HFD > CD). These findings suggest that though the magnitudes of increased blood pressure were equivalent in both sexes, the associated phenotypic changes in the immune subsets within the PVATs were different in the male vs. the female with the development and progression of hypertension.
Collapse
Affiliation(s)
- Ramya Kalyana Kumar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Yongliang Yang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Andres G. Contreras
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Gregory D. Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E. Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
30
|
Korkushko OV, Gorban EM, Bondarenko OV, Antonyuk-Shcheglova IA, Naskalova SS, Parshykov OV, Utko NO, Gavalko AV, Shatilo VB, Duzhak GV. APPLICATION OF QUERCETIN FOR CORRECTION OF THE IMPAIRMENT OF THE FUNCTIONAL STATE OF THE ENDOTHELIUS OF VESSELS (CLINICAL AND EXPERIMENTAL STUDY). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:321-337. [PMID: 33361844 DOI: 10.33145/2304-8336-2020-25-321-337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE in the experiment, to investigate the effect of Quercetin on the NO-dependent reactions of isolated vessels involving endothelium and perivascular adipose tissue (PVAT) after a single X-ray irradiation of rats at a sublethal dose. In a clinical study, to investigate the effect of long-term use of Quercetin on the functional state of themicrovascular endothelium in the elderly patients with metabolic syndrome (MS). MATERIAL AND METHODS Experimental studies were performed on vascular fragments obtained from adult male rats(7-8 months) of the control group, in animals exposed to a single R-irradiation at a dose of 7 Gy and animals irradiated in the same dose, which received Quercetin orally for 14 days three times a week based on 10 mg/kg bodyweight. Fragments of the thoracic aorta (TA) and mesenteric artery (MA) were cleaned of perivascular adipose tissue (PVAT-) or left uncleaned (PVAT+), and then were cut into rings (up to 2 mm). The amplitude of the contractionof the rings TA and MA under the influence of phenylephrine (PE, 3 x 10-6 M), the amplitude of the contraction of therings TA and MA in the presence of a competitive blocker of NO-synthase methyl ester of N-nitro-L-arginine(L-NAME, 10-5 M), the amplitude of relaxation of the rings TA and MA in the presence of N-acetylcysteine (NAC, 10-4 M)were measured. The clinical study examined 110 patients with MS criteria in accordance with ATP III (2001).Patients in the main group for 3 months received Quercetin from the same manufacturer, 80 mg three times a day,patients in the control group received placebo. RESULTS Single R-irradiation disrupts the regulation of the contractile function of TA and MA, which is evidenced bychanges in the contractile reactions of isolated fragments of these vessels as a response to the action of vasoactivecompounds. Course use of Quercetin in irradiated rats leads to the normalization of contractile and dilatory vascular responses due to partial correction of NO metabolism in the endothelium and PVAT. For the majority of patients(69 %) who received Quercetin, a post-occlusive hyperemia test showed a statistically significant increase of maximal volumetric velocity of the skin blood flow rate and duration of the recovery period to the baseline, which indicates about improvement of vasomotor vascular endothelial function. CONCLUSIONS Course use of Quercetin improves the functional state of the microvascular endothelium among theelderly people with MS, normalizes contractile and dilatory vascular responses in irradiated rats due to partial correction of NO metabolism in the endothelium and PVAT.
Collapse
Affiliation(s)
- O V Korkushko
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - E M Gorban
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - O V Bondarenko
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - I A Antonyuk-Shcheglova
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - S S Naskalova
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - O V Parshykov
- State Enterprise «Institute of Pharmacology and Toxicology NAMS of Ukraine», 14 Antona Tsedika St., Kyiv, 02000, Ukraine
| | - N O Utko
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - A V Gavalko
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - V B Shatilo
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| | - G V Duzhak
- State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St., Kyiv, 04114, Ukraine
| |
Collapse
|
31
|
Hid EJ, Fischerman L, Piotrkowski B, Litterio MC, Fraga CG, Galleano M. (-)-Epicatechin protects thoracic aortic perivascular adipose tissue from whitening in high-fat fed mice. Food Funct 2020; 11:5944-5954. [PMID: 32613983 DOI: 10.1039/d0fo01148g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High adipose tissue (AT) accumulation in the body increases the risk for many metabolic and chronic diseases. This work investigated the capacity of the flavonoid (-)-epicatechin to prevent undesirable modifications of AT in mice fed a high-fat diet. Studies were focused on thoracic aorta perivascular AT (taPVAT), which is involved in the control of blood vessel tone, among other functions. Male C57BL/6J mice were fed for 15 weeks a high-fat diet with or without added (-)-epicatechin (20 mg per kg body weight per d). In high-fat diet fed mice, (-)-epicatechin supplementation: (i) prevented the expansion of taPVAT, (ii) attenuated the whitening of taPVAT (according to the adipocyte morphology, diameter, and uncoupling-protein 1 (UCP-1) levels) and (iii) blunted the increase in plasma glucose and cholesterol. The observed taPVAT modifications were not associated with alterations in the aorta wall thickness, aorta tumor necrosis factor-alpha (TNF-α) and NADPH-oxidase 2 (NOX2) expression, and endothelial nitric oxide synthase (eNOS) phosphorylation levels. In summary, our results indicate (-)-epicatechin as a relevant bioactive protecting from the slow and silent development of metabolic and chronic diseases as they are associated with excessive fat intake.
Collapse
Affiliation(s)
- Ezequiel J Hid
- Cátedra de Fisicoquímica, Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Silva H. Current Knowledge on the Vascular Effects of Menthol. Front Physiol 2020; 11:298. [PMID: 32317987 PMCID: PMC7154148 DOI: 10.3389/fphys.2020.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Menthol is a monoterpene alcohol, widely used in several food and healthcare products for its particular odor and flavor. For some decades, menthol has been known to act on the vasculature directly in the endothelium and vascular smooth muscle, with recent studies showing that it also evokes an indirect vascular response via sensory fibers. The mechanisms underlying menthol's vascular action are complex due to the diversity of cellular targets, to the interplay between signaling pathways and to the variability in terms of response. Menthol can evoke either a perfusion increase or decrease in vivo in different vascular territories, an observation that warrants a critical discussion. Menthol vascular actions in vivo seem to depend on whether the vascular territory under analysis has been directly provoked with menthol or is located deep/distant to the application site. Menthol increases perfusion of directly provoked skin regions due to a complex interplay of increased nitric oxide (NO), endothelium-derived hyperpolarization factors (EDHFs) and sensory nerve responses. In non-provoked vascular beds menthol decreases perfusion which might be attributed to heat-conservation sympathetically-mediated vasoconstriction, although an increase in tissue evaporative heat loss due the formulation ethanol may also play a role. There is increasing evidence that several of menthol's cellular targets are involved in cardiovascular diseases, such as hypertension. Thus menthol and pharmacologically-similar drugs can play important preventive and therapeutic roles, which merits further investigation.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS - Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Lisboa, Portugal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
34
|
Tilley MA, Hatcher AS, Chantler PD, Asano S. Perivascular adipose tissue mediated aortic reactivity data: Female lean and obese Zucker rats. Data Brief 2020; 29:105290. [PMID: 32140508 PMCID: PMC7044513 DOI: 10.1016/j.dib.2020.105290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is recognized as a paracrine organ that controls vascular function. One of the early data demonstrated PVAT from male Sprague-Dawley rats altered aortic vascular reactivity [1]. Subsequent studies have suggested PVAT mediated vascular reactivity is impaired in a variety of vascular beds with animal models of metabolic syndrome [2]. Findings in these experimental animals are generally reported by only male data. Here we report the new data on the effects of PVAT on the aortic reactivity of female lean zucker rats (LZR) and obese zucker rats (OZR). The data presented here is related to a recent manuscript entitled "Aortic dysfunction in metabolic syndrome mediated by perivascular adipose tissue TNFα- and NOX2-dependent pathway" [3] which demonstrated PVAT from male obese Zucker rats (OZR) impaired endothelial function of aorta which is associated with altered PVAT inflammatory signaling.
Collapse
Affiliation(s)
- Matthew A. Tilley
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, WV, USA
| | - Amanda S. Hatcher
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, WV, USA
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - Shinichi Asano
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, WV, USA
| |
Collapse
|
35
|
Kumar RK, Jin Y, Watts SW, Rockwell CE. Naïve, Regulatory, Activated, and Memory Immune Cells Co-exist in PVATs That Are Comparable in Density to Non-PVAT Fats in Health. Front Physiol 2020; 11:58. [PMID: 32116768 PMCID: PMC7026504 DOI: 10.3389/fphys.2020.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Perivascular adipose tissue (PVAT), the fat surrounding peripheral blood vessels, is protective and reduces the contraction of blood vessels in health. PVAT is composed of adipocytes, stromal cells, and immune cells. Recent work supports eosinophils as one of the cell types key to the anti-contractile nature of PVAT in health. Hence, we hypothesized that there exists a basally activated immune cell community in healthy PVAT that is distinctly different from non-PVAT fats. PVATs were from around mesenteric resistance vessels (MRPVAT – white fat) and thoracic aorta (APVAT – brown fat). Non-PVATs included retroperitoneal (RP fat – white fat) and subscapular (SS fat – brown fat) while the spleen was a positive control. Tissues were harvested from adult male and female Sprague Dawley rats. Six primary immune cell types were identified in PVATs. T cells (CD4 and CD8), B cells, natural killer (NK) cells, macrophages, mast cells, and neutrophils in the stromal vascular fraction of each fat were identified using nine-color flow cytometry. PVATs contained a higher number of total immune cells vs. their respective non-PVAT fats in females. Females had a higher number of T cells in MRPVAT vs. males. Females also had a greater number of T cells and total immune cells in APVAT vs. males. Further, activation, differentiation, and/or polarization of various immune cell types were similarly determined by flow cytometry. PVATs were similar to their respective non-PVAT fats in density of recently activated B cells (B220+ CD25+). However, MRPVAT in females had a higher number of naïve CD4 T cells vs. MRPVAT in males and APVAT in females. MRPVAT also had denser naïve CD8 T cells vs. APVAT in females. Overall, this research for the first time has identified a community of discrete populations of immune cells (naive/recently activated/regulatory/memory) in healthy PVATs. Contrary to our hypothesis, PVATs are more similar than different in density to their respective non-PVAT fats.
Collapse
Affiliation(s)
- Ramya K Kumar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Yining Jin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
36
|
Zhu L, Yang B, Ma D, Wang L, Duan W. Hydrogen Sulfide, Adipose Tissue and Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:1873-1886. [PMID: 32581562 PMCID: PMC7276333 DOI: 10.2147/dmso.s249605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is now increasingly considered to be the third gasotransmitter alongside other gaseous signaling molecules, nitric oxide (NO) and carbon monoxide (CO). H2S is produced by a variety of endogenous enzymatic and non-enzymatic pathways and acts as a modulator of the physiological and pathological events of the body. Adipocytes express the cystathionine γ lyase (CSE)/H2S system, which modulates a variety of biological activities in adipose tissue (AT), including inflammation, apoptosis, insulin resistance, adipokine secretion and adipocyte differentiation. Abnormalities in the physiological functions of AT play an important role in the process of diabetes mellitus. Therefore, this review provides an overview of the general aspects of H2S biochemistry, the effect of H2S on AT function and diabetes mellitus and its molecular signalling mechanisms as well as the potential application of H2S in pharmacotherapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan250012, People’s Republic of China
- Correspondence: Wu Duan Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan250012, People’s Republic of China Tel/Fax +86-531-8692-7544 Email
| |
Collapse
|
37
|
Upadhya B, Amjad A, Stacey RB. Optimizing The Management of Obese HFpEF Phenotype: Can We Mind Both The Heart and The Kidney? J Card Fail 2019; 26:108-111. [PMID: 31759161 DOI: 10.1016/j.cardfail.2019.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The adverse prognostic implications of significant renal dysfunction during treatment of acute decompensated heart failure (HF) in patients with obese HF and preserved ejection fraction (HFpEF) provide strong rationale for development of therapeutic strategies that enhance decongestion while preserving renal function in this cohort. The combination of preload sensitivity, intrinsic renal dysfunction related to obesity, glomerular hyperfiltration, reversible renal hypoperfusion (poor renal arterial perfusion and renal venous congestion), and decreased systemic vascular resistance in obesity may predispose patients to renal hemodynamic compromise during diuresis. Thus, serum creatinine increase should not be evaluated in isolation but rather considered in the context of the entire clinical picture in patients with obese HFpEF.
Collapse
Affiliation(s)
- Bharathi Upadhya
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Aysha Amjad
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Richard Brandon Stacey
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
38
|
Son M, Oh S, Lee HS, Chung DM, Jang JT, Jeon YJ, Choi CH, Park KY, Son KH, Byun K. Ecklonia Cava Extract Attenuates Endothelial Cell Dysfunction by Modulation of Inflammation and Brown Adipocyte Function in Perivascular Fat Tissue. Nutrients 2019; 11:E2795. [PMID: 31731817 PMCID: PMC6893767 DOI: 10.3390/nu11112795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
It is well known that perivascular fat tissue (PVAT) dysfunction can induce endothelial cell (EC) dysfunction, an event which is related with various cardiovascular diseases. In this study, we evaluated whether Ecklonia cava extract (ECE) and pyrogallol-phloroglucinol-6,6-bieckol (PPB), one component of ECE, could attenuate EC dysfunction by modulating diet-induced PVAT dysfunction mediated by inflammation and ER stress. A high fat diet (HFD) led to an increase in the number and size of white adipocytes in PVAT; PPB and ECE attenuated those increases. Additionally, ECE and PPB attenuated: (i) an increase in the number of M1 macrophages and the expression level of monocyte chemoattractant protein-1 (MCP-1), both of which are related to increases in macrophage infiltration and induction of inflammation in PVAT, and (ii) the expression of pro-inflammatory cytokines (e.g., tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, chemerin) in PVAT which led to vasoconstriction. Furthermore, ECE and PPB: (i) enhanced the expression of adiponectin and IL-10 which had anti-inflammatory and vasodilator effects, (ii) decreased HFD-induced endoplasmic reticulum (ER) stress and (iii) attenuated the ER stress mediated reduction in sirtuin type 1 (Sirt1) and peroxisome proliferator-activated receptor γ (PPARγ) expression. Protective effects against decreased Sirt1 and PPARγ expression led to the restoration of uncoupling protein -1 (UCP-1) expression and the browning process in PVAT. PPB or ECE attenuated endothelial dysfunction by enhancing the pAMPK-PI3K-peNOS pathway and reducing the expression of endothelin-1 (ET-1). In conclusion, PPB and ECE attenuated PVAT dysfunction and subsequent endothelial dysfunction by: (i) decreasing inflammation and ER stress, and (ii) modulating brown adipocyte function.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| | - Hye Sun Lee
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| | - Dong-Min Chung
- Shinwoo cooperation. Ltd. 991, Worasan-ro, Munsan-eup, Jinju, Gyeongsangnam-do 52839, Korea;
| | - Ji Tae Jang
- Aqua Green Technology Co., Ltd., Smart Bldg., Jeju Science Park, Cheomdan-ro, Jeju 63309, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea; (C.H.C.); (K.Y.P.)
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea; (C.H.C.); (K.Y.P.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea; (C.H.C.); (K.Y.P.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| |
Collapse
|
39
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
40
|
Tsvetkov D, Kolpakov E, Kassmann M, Schubert R, Gollasch M. Distinguishing Between Biological and Technical Replicates in Hypertension Research on Isolated Arteries. Front Med (Lausanne) 2019; 6:126. [PMID: 31281816 PMCID: PMC6595250 DOI: 10.3389/fmed.2019.00126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2019] [Indexed: 11/27/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is implicated in the pathophysiology of cardiovascular disease, especially in obese individuals in which the quantity of renal and visceral PVAT is markedly increased. The control of arterial tone by PVAT has emerged as a relatively new field of experimental hypertension research. The discovery of this prototype of vasoregulation has been mostly inferred from data obtained using wire myography. Currently, there is a major discussion on distinguishing between biological vs. technical replicates in biomedical studies, which resulted in numerous guidelines being published on planning studies and publishing data by societies, journals, and associations. Experimental study designs are determined depending on how the experimentator distinguishes between biological vs. technical replicates. These definitions determine the ultimate standards required for making submissions to certain journals. In this article, we examine possible outcomes of different experimental study designs on PVAT control of arterial tone using isolated arteries. Based on experimental data, we determine the sample size and power of statistical analyses for such experiments. We discuss whether n-values should correspond to the number of arterial rings and analyze the resulting effects if those numbers are averaged to provide a single N-value per animal, or whether the hierarchical statistical method represents an alternative for analyzing such kind of data. Our analyses show that that the data (logEC50) from (+) PVAT to (-) PVAT arteries are clustered. Intraclass correlation (ICC) was 31.4%. Moreover, it appeared that the hierarchical approach was better than regular statistical tests as the analyses revealed by a better goodness of fit (v2-2LL test). Based on our results, we propose to use at least three independent arterial rings from each from three animals or at least seven arterial rings from each from two animals for each group, i.e., (+) PVAT vs. (-) PVAT. Finally, we discuss a clinical situation where distinguishing between biological vs. technical replicates can lead to absurd situations in clinical decision makings. We conclude that discrimination between biological vs. technical replicates is helpful in experimental studies but is difficult to implement in everyday's clinical practice.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Evgeniy Kolpakov
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim and European Center of Angioscience, Research Division Cardiovascular Physiology, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
- Department of Physiology, Medical Faculty, Augsburg University, Augsburg, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Charité University Medicine, Berlin, Germany
| |
Collapse
|
41
|
Circulating CTRP1 Levels Are Increased and Associated with the STOD in Essential Hypertension in Chinese Patients. Cardiovasc Ther 2019; 2019:4183781. [PMID: 31772610 PMCID: PMC6739797 DOI: 10.1155/2019/4183781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the correlation between complement C1q tumor necrosis factor-related protein 1 (CTRP1) and subclinical target organ damage (STOD) in essential hypertension (EH). 720 patients were enrolled in this study, including 360 healthy subjects and 360 patients with EH. The EH group included 183 patients complicated with STOD and 177 patients without STOD. In the STOD group, there were 87 patients with left ventricular hypertrophy (LVH), 32 patients with microalbuminuria (MAU), and 58 patients with complication of LVH and MAU. Enzyme-linked immunosorbent assay (ELISA) was used to detect the CTRP1, adiponectin (APN), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). We found that CTRP1 levels were higher in patients with EH than those in healthy subjects; moreover, the level of CTRP1 of patients in the group complicated with EH and STOD was increased compared with EH patients without STOD. CTRP1 levels in the group complicated with LVH and MAU were significantly higher than those in the LVH group and the MAU group. Furthermore, APN, CTRP1, and IL-6 were three factors that influenced the STOD of EH patients, among which CTRP1 and IL6 were positively related with the complication of hypertension and STOD. In conclusion, CTRP1 levels are increased and associated with the STOD (heart and kidney) in essential hypertension, which can be regarded as a novel biomarker in the prediction of prognosis for patients with essential hypertension.
Collapse
|
42
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
43
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
44
|
Donovan J, Wong PS, Garle MJ, Alexander SPH, Dunn WR, Ralevic V. Coronary artery hypoxic vasorelaxation is augmented by perivascular adipose tissue through a mechanism involving hydrogen sulphide and cystathionine-β-synthase. Acta Physiol (Oxf) 2018; 224:e13126. [PMID: 29896909 DOI: 10.1111/apha.13126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/28/2022]
Abstract
AIM Hypoxia causes vasodilatation of coronary arteries which protects the heart from ischaemic damage through mechanisms including the generation of hydrogen sulphide (H2 S), but the influence of the perivascular adipose tissue (PVAT) and myocardium is incompletely understood. This study aimed to determine whether PVAT and the myocardium modulate the coronary artery hypoxic response and whether this involves hydrogen sulphide. METHODS Porcine left circumflex coronary arteries were prepared as cleaned segments and with PVAT intact, myocardium intact or both PVAT and myocardium intact, and contractility investigated using isometric tension recording. Immunoblotting was used to measure levels of H2 S-synthesizing enzymes: cystathionine-β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (MPST). RESULTS All three H2 S-synthesizing enzymes were detected in the artery and myocardium, but only CBS and MPST were detected in PVAT. Hypoxia elicited a biphasic response in cleaned artery segments consisting of transient contraction followed by prolonged relaxation. In arteries with PVAT intact, hypoxic contraction was attenuated and relaxation augmented. In arteries with myocardium intact, hypoxic contraction was attenuated, but relaxation was unaffected. In replacement experiments, replacement of dissected PVAT and myocardium attenuated artery contraction and augmented relaxation to hypoxia, mimicking the effect of in situ PVAT and indicating involvement of a diffusible factor(s). In arteries with intact PVAT, augmentation of hypoxic relaxation was reversed by amino-oxyacetate (CBS inhibitor), but not DL-propargylglycine (CSE inhibitor) or aspartate (inhibits MPST pathway). CONCLUSION PVAT augments hypoxic relaxation of coronary arteries through a mechanism involving H2 S and CBS, pointing to an important role in regulation of coronary blood flow during hypoxia.
Collapse
Affiliation(s)
- J. Donovan
- School of Life Sciences; University of Nottingham; Nottingham UK
| | - P. S. Wong
- School of Life Sciences; University of Nottingham; Nottingham UK
| | - M. J. Garle
- School of Life Sciences; University of Nottingham; Nottingham UK
| | | | - W. R. Dunn
- School of Life Sciences; University of Nottingham; Nottingham UK
| | - V. Ralevic
- School of Life Sciences; University of Nottingham; Nottingham UK
| |
Collapse
|
45
|
Byron KL, Brueggemann LI. Kv7 potassium channels as signal transduction intermediates in the control of microvascular tone. Microcirculation 2018; 25. [PMID: 28976052 DOI: 10.1111/micc.12419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
Potassium channels are recognized as important regulators of cellular functions in most, if not all cell types. These cellular proteins assemble to form gated pores in the plasma membrane, which serve to regulate the flow of potassium ions (K+ ) from the cytosol to the extracellular space. In VSMCs, the open state of potassium channels enables the efflux of K+ and thereby establishes a negative resting voltage across the plasma membrane that inhibits the opening of VSCCs. Under these conditions, cytosolic Ca2+ concentrations are relatively low and Ca2+ -dependent contraction is inhibited. Recent research has identified Kv7 family potassium channels as important contributors to resting membrane voltage in VSMCs, with much of the research focusing on the effects of drugs that specifically activate or block these channels to produce corresponding effects on VSMC contraction and vascular tone. Increasingly, evidence is emerging that these channels are not just good drug targets-they are also essential intermediates in vascular signal transduction, mediating vasoconstrictor or vasodilator responses to a variety of physiological stimuli. This review will summarize recent research findings that support a crucial function of Kv7 channels in both positive (vasoconstrictive) and negative (vasorelaxant) regulation of microvascular tone.
Collapse
Affiliation(s)
- Kenneth L Byron
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Lyubov I Brueggemann
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
46
|
Qi XY, Qu SL, Xiong WH, Rom O, Chang L, Jiang ZS. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol 2018; 17:134. [PMID: 30305178 PMCID: PMC6180425 DOI: 10.1186/s12933-018-0777-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
Perivascular adipose tissue (PVAT), the adipose tissue that surrounds most of the vasculature, has emerged as an active component of the blood vessel wall regulating vascular homeostasis and affecting the pathogenesis of atherosclerosis. Although PVAT characteristics resemble both brown and white adipose tissues, recent evidence suggests that PVAT develops from its own distinct precursors implying a closer link between PVAT and vascular system. Under physiological conditions, PVAT has potent anti-atherogenic properties mediated by its ability to secrete various biologically active factors that induce non-shivering thermogenesis and metabolize fatty acids. In contrast, under pathological conditions (mainly obesity), PVAT becomes dysfunctional, loses its thermogenic capacity and secretes pro-inflammatory adipokines that induce endothelial dysfunction and infiltration of inflammatory cells, promoting atherosclerosis development. Since PVAT plays crucial roles in regulating key steps of atherosclerosis development, it may constitute a novel therapeutic target for the prevention and treatment of atherosclerosis. Here, we review the current literature regarding the roles of PVAT in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Yan Qi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Oren Rom
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| |
Collapse
|
47
|
Loria AS, Spradley FT, Obi IE, Becker BK, De Miguel C, Speed JS, Pollock DM, Pollock JS. Maternal separation enhances anticontractile perivascular adipose tissue function in male rats on a high-fat diet. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1085-R1095. [PMID: 30256681 DOI: 10.1152/ajpregu.00197.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinical studies have shown that obesity negatively impacts large arteries' function. We reported that rats exposed to maternal separation (MatSep), a model of early life stress, display enhanced angiotensin II (ANG II)-induced vasoconstriction in aortic rings cleaned of perivascular adipose tissue (PVAT) under normal diet (ND) conditions. We hypothesized that exposure to MatSep promotes a greater loss of PVAT-mediated protective effects on vascular function and loss of blood pressure (BP) rhythm in rats fed a high-fat diet (HFD) when compared with controls. MatSep was performed in male Wistar-Kyoto rats from days 2 to 14 of life. Normally reared littermates served as controls. On ND, aortic rings from MatSep rats with PVAT removed showed increased ANG II-mediated vasoconstriction versus controls; however, rings from MatSep rats with intact PVAT displayed blunted constriction. This effect was exacerbated by an HFD in both groups; however, the anticontractile effect of PVAT was greater in MatSep rats. Acetylcholine-induced relaxation was similar in MatSep and control rats fed an ND, regardless of the presence of PVAT. HFD impaired aortic relaxation in rings without PVAT from MatSep rats, whereas the presence of PVAT improved relaxation in both groups. On an HFD, immunolocalization of vascular smooth muscle-derived ANG-(1-7) and PVAT-derived adiponectin abundances were increased in MatSep. In rats fed an HFD, 24-h BP and BP rhythms were similar between groups. In summary, MatSep enhanced the ability of PVAT to blunt the heightened ANG II-induced vasoconstriction and endothelial dysfunction in rats fed an HFD. This protective effect may be mediated via the upregulation of vasoprotective factors within the adipovascular axis.
Collapse
Affiliation(s)
- Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Frank T Spradley
- Department of Surgery, University of Mississippi Medical Center , Jackson, Mississippi
| | - Ijeoma E Obi
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
48
|
Han S, Jeong AL, Lee S, Park JS, Buyanravjikh S, Kang W, Choi S, Park C, Han J, Son WC, Yoo KH, Cheong JH, Oh GT, Lee WY, Kim J, Suh SH, Lee SH, Lim JS, Lee MS, Yang Y. C1q/TNF-α–Related Protein 1 (CTRP1) Maintains Blood Pressure Under Dehydration Conditions. Circ Res 2018; 123:e5-e19. [DOI: 10.1161/circresaha.118.312871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sora Han
- From the Research Institute of Women’s Health (S.H.)
| | - Ae Lee Jeong
- Sookmyung Women’s University, Seoul, Korea; New Drug Development Center, Osong Medical Innovation Foundation, Korea (A.L.J.)
| | - Sunyi Lee
- Research and Development Center, CJ HealthCare, Icheon, Korea (S.L.)
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute (J.S.P.)
| | | | - Wonku Kang
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Seungmok Choi
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Changmin Park
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Jin Han
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea (J.H.)
| | - Woo-Chan Son
- Pathology Department, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (W.-C.S.)
| | - Kyung Hyun Yoo
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, Korea (J.H.C.)
| | | | - Won-Young Lee
- Ewha Womans University, Seoul, Korea; Department of Endocrinology (W.-Y.L.)
- Department of Metabolism (W.-Y.L.)
| | - Jongwan Kim
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea; and Department of Laboratory Medicine, Dankook University School of Medicine, Cheonan, Korea (J.K.)
| | - Suk Hyo Suh
- Department of Physiology, Medical School (S.H.S.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital (S.-H.L.)
| | - Jong-Seok Lim
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Myeong-Sok Lee
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Young Yang
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| |
Collapse
|
49
|
Zemančíková A, Török J. Effect of perivascular adipose tissue on arterial adrenergic contractions in normotensive and hypertensive rats with high fructose intake. Physiol Res 2018; 66:S537-S544. [PMID: 29355382 DOI: 10.33549/physiolres.933798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate the effect of high fructose intake associated with moderate increase in adiposity on rat arterial adrenergic responses and their modulation by perivascular adipose tissue (PVAT). After eight-week-lasting substitution of drinking water with 10 % fructose solution in adult normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), their systolic blood pressure, plasma triglycerides, and relative liver weight were elevated when compared to their respective control groups. Moreover, in SHR, body weight and relative heart weight were increased after treatment with fructose. In superior mesenteric arteries, PVAT exerted inhibitory influence on adrenergic contractile responses and this effect was markedly stronger in control WKY than in SHR. In fructose-administered WKY, arterial adrenergic contractions were substantially reduced in comparison with the control group; this was caused mainly by enhancement of anticontractile action of PVAT. The diminution of the mesenteric arterial contractions was not observed after fructose treatment in SHR. We conclude that the increase in body adiposity due to fructose overfeeding in rats might have prehypertensive effect. However, in WKY it might cause PVAT-dependent and independent reduction in arterial contractile responses to adrenergic stimuli, which could attenuate the pathological elevation in vascular tone.
Collapse
Affiliation(s)
- A Zemančíková
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
50
|
Anand IS. High-Output Heart Failure Revisited. J Am Coll Cardiol 2018; 68:483-486. [PMID: 27470456 DOI: 10.1016/j.jacc.2016.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Inder S Anand
- Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota; Department of Cardiology, VA Medical Center, Minneapolis, Minnesota; and the Department of Cardiology, VA Medical Center, San Diego, California.
| |
Collapse
|