1
|
Du ZQ, Xie JB, Ji SY, Zhou W, Tao ZS. Spermidine prevents iron overload-induced impaired bone mass by activating SIRT1/SOD2 signaling in senile rat model. Redox Rep 2025; 30:2485666. [PMID: 40173181 PMCID: PMC11966988 DOI: 10.1080/13510002.2025.2485666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Spermidine (SPD) is an organic compound known for its powerful antioxidant stress and anti-aging properties, and whether SPD has the ability to reduce bone mass in elderly iron overload rats is unknown. The study aimed to assess SPD's impact on iron overload-induced bone loss in elderly rats. In our aged rat model, we found that iron overload negatively influences bone metabolism and remodeling, resulting in decreased bone mineral density and increased bone loss. However, SPD treatment effectively alleviated these harmful effects, as shown by reduced serum levels of MDA and increased SOD and GSH levels. Additionally, SPD-treated rats exhibited enhanced bone mass and higher expression of OC, BMP2, SIRT1, and SOD2 in their bones. Moreover, SPD restored the imbalance in bone metabolism by counteracting the inhibition of osteogenic differentiation and promoting osteoclast differentiation induced by iron overload in MC3T3-E1 and RAW264.7 cells affected by EX527. In summary, our findings suggest that SPD's antioxidant properties may exert anti-osteoporosis effects through activation of the SIRT1/SOD2 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Qing Du
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
| | - Jia-Bin Xie
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
| | - Sheng-Yi Ji
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
| | - Wanshu Zhou
- Department of Gerontology, The Second Affiliated Hospital of Wannan Medical College, Wuhu City, People’s Republic of China
| | - Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, People’s Republic of China
| |
Collapse
|
2
|
Zhao Z, Zhang Y, Li J, Huang S, Xing G, Zhang K, Ma X, Zhang X, Zhang Y. A remotely controlled nanotherapeutic with immunomodulatory property for MRSA-induced bone infection. Biomaterials 2025; 321:123298. [PMID: 40164042 DOI: 10.1016/j.biomaterials.2025.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Osteomyelitis is a deep bone tissue infection caused by pathogenic microorganisms, with the primary pathogen being methicillin-resistant Staphylococcus aureus (MRSA). Due to the tendency of the infection site to form biofilms that shield drugs and immune cells to kill bacteria, combined with the severe local inflammatory response causing bone tissue destruction, the treatment of osteomyelitis poses a significant challenge. Herein, we developed a remotely controlled nanotherapeutic (TLBA) with immunomodulatory to treat MRSA-induced osteomyelitis. TLBA, combined with baicalin and gold nanorods, is positively charged to actively target and penetrate biofilms. Near-infrared light (808 nm) triggers spatiotemporal, controllable drug release, while bacteria are eliminated through synergistic interaction of non-antibiotic drugs and photothermal therapy, enhancing bactericidal efficiency and minimizing drug resistance. TLBA eliminated nearly 100 % of planktonic bacteria and dispersed 90 % of biofilms under NIR light stimulation. In MRSA-induced osteomyelitis rat models, laser irradiation raised the infection site temperature to 50 °C, effectively eradicating bacteria, promoting M2 macrophage transformation, inhibiting bone inflammation, curbing bone destruction, and fostering bone tissue repair. In summary, TLBA proposes a more comprehensive treatment strategy for the two characteristic pathological changes of bacterial infection and bone tissue damage in osteomyelitis.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guosheng Xing
- Laboratory of Biochemistry and Molecular Biology, Institute of Orthopedics, Tianjin Hospital, Tianjin, 300050, China
| | - Kai Zhang
- Department of Transfusion, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingze Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| |
Collapse
|
3
|
Singh S, Verma AK, Garg G, Singh AK, Rizvi SI. Spermidine protects cellular redox status and ionic homeostasis in D-galactose induced senescence and natural aging rat models. Z NATURFORSCH C 2025; 80:285-295. [PMID: 39438257 DOI: 10.1515/znc-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Impaired redox homeostasis is an important hallmark of aging. Among various anti-aging interventions, caloric restriction mimetics (CRMs) are the most effective in promoting health and longevity. The potential role of spermidine (SPD) as a CRM in modulating oxidative stress and redox homeostasis during aging remains unclear. This study aimed to investigate the protective effect of SPD in D-galactose (D-gal) accelerated induced senescence model and naturally aged rats. Young male rats (4 months), D-gal induced (500 mg/kg b. w., subcutaneously) aging model and naturally aged (22 months) rats were supplemented with SPD (10 mg/kg b. w., orally) for 6 weeks. The results showed that SPD supplementation suppresses the age induced increase in reactive oxygen species, lipid peroxidation and protein oxidation. Additionally, it increases the level of antioxidants, plasma membrane redox system in erythrocytes and membrane. These results also indicate that membrane transporter activity is correlated with the susceptibility of the erythrocyte towards oxidative damage. We therefore present evidence that SPD improves redox status and membrane impairments in erythrocytes in experimental and naturally aging rat models, however, more research is required to recommend a potential therapeutic role for SPD as an anti-aging intervention strategy.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research (MCBR), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Noida, Karnataka, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| |
Collapse
|
4
|
Chen L, Kadoya K, Endo T, Iwasaki N, Terkawi MA. Efferocytosis at the frontline of homeostasis: Shaping the bone microenvironment and therapeutic implications in related diseases. Cytokine Growth Factor Rev 2025:S1359-6101(25)00048-6. [PMID: 40368727 DOI: 10.1016/j.cytogfr.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Bone is a dynamic tissue that constantly undergoes remodeling processes throughout life to maintain its structure and integrity. During this process, physiological bone turnover, which is shaped by apoptosis, occurs in cells in the bone microenvironment. The clearance of these apoptotic cells (ACs) is executed by phagocytes through a process called efferocytosis, which simply means taking to the grave "burial." Efferocytosis is a multistage process involving the recognition, binding, internalization, and digestion of ACs, culminating in the resolution of inflammation. Critically, aberrations in efferocytosis lead to the accumulation of apoptotic corpses, impairing tissue homeostasis and contributing to various pathologies as well as bone-related diseases. Emerging evidence suggests that modulating/activating efferocytosis at any stage represents a promising therapeutic strategy for managing bone-related diseases, especially those associated with aging and inflammation. This review discusses the current understanding of the cellular and molecular mechanisms of efferocytosis, its roles within the bone microenvironment, and potential therapeutic interventions targeting efferocytosis in age-related bone diseases.
Collapse
Affiliation(s)
- Liyile Chen
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
5
|
Li S, Zhang Y, Ding S, Chang J, Liu G, Hu S. Curcumin Ameliorated Glucocorticoid-Induced Osteoporosis While Modulating the Gut Microbiota and Serum Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8254-8276. [PMID: 40139762 DOI: 10.1021/acs.jafc.4c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of secondary osteoporosis. Recently, the "bone-gut axis" theory has linked bone development with gut microbial diversity, community composition, and metabolites. Curcumin, a well-studied polyphenol, shows potential in mitigating bone loss and osteoporosis. Alendronate, a standard therapeutic agent for osteoporosis, serves as a positive control in this investigation. The study demonstrates the potency of curcumin in reducing bone loss and restoring bone mineral density, enhancing trabecular parameters notably through increased trabecular number, volume, and thickness and reduced bone marrow cavity size. Gut microbiome sequencing revealed that both curcumin and alendronate treatments similarly enhanced gut microbial diversity and altered microbiota composition, increasing beneficial bacteria (Akkermansia_muciniphila, Dubosiella_sp910585105, and Ruminococcus_sp910584195) while reducing harmful bacteria (Treponema_D_sp910584475 and Duncaniella_sp910584825). Furthermore, significant changes in serum levels of metabolites including raffinose, ursolic acid, spermidine, inosine, hypoxanthine, thiamine, and pantothenic acid were observed post-treatment with curcumin or alendronate. Importantly, these beneficial metabolites and microorganisms were negatively correlated with inflammatory cytokines. In conclusion, curcumin holds promise for use against GIOP by modulating the gut microbiome and serum metabolome as well as reducing systemic inflammation.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yating Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiang Chang
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Siwang Hu
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
6
|
Li Z, Li J, Dai S, Su X, Ren M, He S, Guo Q, Liu F. Effects of Stress on Biological Characteristics and Metabolism of Periodontal Ligament Stem Cells of Deciduous Teeth. Int Dent J 2025; 75:908-920. [PMID: 39370340 PMCID: PMC11976548 DOI: 10.1016/j.identj.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION AND AIMS Periodontal ligament stem cells (PDLSCs) from deciduous teeth (DePDLSCs) can perceive and respond to mechanical signals upon exposure to various environments. The effects of mechanical stress on the biological characteristics and metabolism of DePDLSCs were investigated using in vitro stress loading. METHODS DePDLSCs were subjected to mechanical stresses of different strengths. Cell proliferation, expression of osteogenic/osteoclastic factors, apoptosis, and oxidative stress levels were evaluated using CCK-8 assays, alkaline phosphatase staining, real-time PCR, flow cytometry, and malondialdehyde and superoxide dismutase assays. Liquid chromatography-mass spectrometry was used to perform nontargeted metabolomic detection and analysis. RESULTS Under stresses of 75 and 150 kPa, the expression of osteogenesis-related factors OPG, ALP, and RUNX2 decreased, and the ratio of RANKL/OPG significantly increased. A pressure of 150 kPa induced oxidative stress and caused a significant increase in cell apoptosis. Among the differential metabolites screened from the 150 kPa group, spermine, spermidine, ceramide, phosphatidylethanolamine, lysophosphatidylethanolamine, linoleic acid, and docosatrienoic acid were the most significantly upregulated. The metabolites screened from the 75 kPa group were mainly related to glycerophospholipid and sphingolipid metabolism, oxidative phosphorylation, and mineral absorption, which were common pathways affected in both experimental groups. CONCLUSION A certain degree of mechanical stress can inhibit the proliferative activity and osteogenic differentiation of DePDLSCs, enhance their osteoclast-inducing ability, and cause elevated levels of cell apoptosis and oxidative stress. The metabolic expression profile of DePDLSCs changed significantly under stress. Understanding changes in cellular activity and metabolic reactions may provide an experimental basis for elucidating the role of mechanical stress in root resorption and periodontal tissue remodelling of deciduous teeth. CLINICAL RELEVANCE Mechanical stress may affect periodontal tissue remodeling and root resorption of DePDLSc.
Collapse
Affiliation(s)
- Zhengyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jinyi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Shanshan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xuelong Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Meiyue Ren
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shuyang He
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR China
| | - Qingyu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Cressman A, Fierro FA. Methods to study polyamine metabolism during osteogenesis. Methods Enzymol 2025; 715:293-307. [PMID: 40382144 DOI: 10.1016/bs.mie.2025.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Mammalian polyamines, namely putrescine, spermidine, and spermine, have been implicated in many cellular homeostatic processes. Polyamines play a critical role in skeletal health as evidenced by recent studies and by skeletal disorders caused by polyamine imbalances, such as Snyder-Robinson Syndrome (SRS). However, very little is still known about the role of polyamines within bone development, homeostasis, and metabolism. Human bone marrow derived mesenchymal stromal cells (MSCs) provide a unique opportunity to study polyamines at a cellular and molecular level within the context of osteogenic differentiation and calcium deposition. Through in vitro work, mechanistic understanding of the role of polyamines within osteogenesis as well as the consequences of polyamine imbalance can provide new insights into potential therapeutics for those experiencing polyaminopathies. This chapter describes procedures to develop a human primary cell culture system and quantify osteoblastogenesis as a function of polyamine modulation.
Collapse
Affiliation(s)
- Amin Cressman
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, United States
| | - Fernando A Fierro
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, United States; Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, United States.
| |
Collapse
|
8
|
Ma Y, Zhong Y, Tang W, Valencak TG, Liu J, Deng Z, Mao J, Liu D, Wang S, Wang Y, Wang H. Lactobacillus reuteri ZJ617 attenuates metabolic syndrome via microbiota-derived spermidine. Nat Commun 2025; 16:877. [PMID: 39837844 PMCID: PMC11750987 DOI: 10.1038/s41467-025-56105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Metabolic syndrome (MetS) is a difficult-to-manage disease that poses a significant risk to human health. Here, we show that the supplementation of Lactobacillus reuteri ZJ617 ameliorates symptoms of MetS in mice induced by the high-fat diet. L. reuteri ZJ617 modulates host metabolism by interacting with the microbiome, resulting in the production of spermidine synthesized by the microbiota. L. reuteri ZJ617 serves as a source of substrates for the microbiota to synthesize spermidine, hence preventing the decline of bacteria responsible for spermidine production. Spermidine treatment mimics the metabolic effects of L. reuteri ZJ617, whereas pharmacological inhibition of spermidine biosynthesis in mice abolishes these benefits. Our findings reveal the mechanism by which L. reuteri ZJ617 alleviates MetS symptoms and provide support for its potential use as a probiotic for promoting metabolic health.
Collapse
Affiliation(s)
- Yanfei Ma
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yifan Zhong
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Wenjie Tang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Teresa G Valencak
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jingliang Liu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zhaoxi Deng
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jiangdi Mao
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Daren Liu
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310009, PR China
| | - Shanshan Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yuhao Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, PR China.
| | - Haifeng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
9
|
Yorgan TA, Zhu Y, Wiedemann P, Schöneck K, Pohl S, Schweizer M, Amling M, Barvencik F, Oheim R, Schinke T. Inactivation of spermine synthase in mice causes osteopenia due to reduced osteoblast activity. J Bone Miner Res 2024; 39:1606-1620. [PMID: 39331754 DOI: 10.1093/jbmr/zjae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analyzed in Gy mice, where a large genomic deletion also includes the neighboring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation. In the present manuscript, we describe 2 patients carrying distinct SMS variants, both diagnosed with osteoporosis. Whereas the first patient displayed all characteristic hallmarks of SRS, the second patient was initially diagnosed, based on laboratory findings, as a case of adult-onset hypophosphatasia. To study the impact of SMS inactivation on bone remodeling, we took advantage of a newly developed mouse model carrying a pathogenic SMS variant (p.G56S). Compared to their wildtype littermates, 12-wk-old male SMSG56S/0 mice displayed reduced trabecular bone mass and cortical thickness, as assessed by μCT analysis of the femur. This phenotype was histologically confirmed by the analysis of spine and tibia sections, where we also observed a moderate enrichment of non-mineralized osteoid in SMSG56S/0 mice. Cellular and dynamic histomorphometry further identified a reduced bone formation rate as a main cause of the low bone mass phenotype. Likewise, primary bone marrow cells from SMSG56S/0 mice displayed reduced capacity to form a mineralized matrix ex vivo, thereby suggesting a cell-autonomous mechanism. Taken together, our data identify SMS as an enzyme with physiological relevance for osteoblast activity, thereby demonstrating an important role of polyamine metabolism in the control of bone remodeling.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Yihao Zhu
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Philip Wiedemann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| |
Collapse
|
10
|
Cheng Q, Ni L, Liu A, Huang X, Xiang P, Zhang Q, Yang H. Spermidine protects cartilage from IL-1β-mediated ferroptosis. Mol Cell Biochem 2024; 479:2785-2794. [PMID: 38040913 DOI: 10.1007/s11010-023-04889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/29/2023] [Indexed: 12/03/2023]
Abstract
Rheumatoid arthritis is characterized by a burst of inflammation, the destruction of cartilage and the abundant release of inflammatory factors such as IL-1β. Thus, the effect of IL-1β on cartilage was examined in this study. IL-1β could cause lipid peroxidation and disturbances in iron metabolism by increasing the expression of NCOA4 and decreasing the expression of FTH, which also induced ferritinophagy. In addition, the expression of the key antioxidant proteins SLC7A11 and GPX4 was inhibited by IL-1β, resulting in ferroptosis in chondrocytes. Spermidine (SPD), a low-molecular-weight aliphatic nitrogen-containing compound that widely exists in animals, has been reported to be an antioxidant. In our study, we found that SPD could inhibit ferritinophagy and reverse the decrease in the expression of SLC7A11 and GPX4. Therefore, we uncovered one of the molecular mechanisms of cartilage destruction and inflammation and provide a potential polyamine for the treatment of RA.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China
| | - Li Ni
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China
| | - Ang Liu
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China
| | - Xiaoxiong Huang
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China
| | - Pan Xiang
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China
| | - Qin Zhang
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China.
| | - Huilin Yang
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, No. 788 Pinghai Road, Suzho, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Cantorán-Castillo A, Beltrán-Salinas B, Antúnez-Treviño JM, Martínez-Pedraza R, Franco-Márquez R, Guzmán-García MA, Cerda-Flores RM, Perales-Pérez RV, Zakian C, Ancer-Rodriguez J, Márquez-Méndez M. Preventing bisphosphonate induced osteonecrosis of the jaw with a polyguanidine conjugate (GuaDex): A promising new approach. Bone 2024; 187:117211. [PMID: 39053792 DOI: 10.1016/j.bone.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Osteonecrosis of the jaw (ONJ) is a relatively rare side effect after prolonged use of bisphosphonates, which are drugs used to treat bone resorption in osteoporosis and certain cancers. This study introduces a novel ONJ model in rats by combining exposure to bisphosphonates, oral surgery, and bacterial inoculation. Potential ONJ preventive effects of polyguanidine (GuaDex) or antibiotics were evaluated. The study consisted of twenty-four male Wistar rats were divided into four groups. Groups 1 to 3 were given weekly doses of i.v. Zoledronic acid (ZA), four weeks before and two weeks after an osteotomy procedure on their left mandibular first molar. Group 4 was a negative control. Streptococcus gordonii bacteria were introduced into the osteotomy pulp chamber and via the food for seven days. On day eight, the rats were given different treatments. Group 1 was given a GuaDex injection into the osteotomy socket, Group 2 was given an intramuscular (i.m.) injection of clindamycin, Group 3 (positive control) was given an i.m. injection of saline, and Group 4 was given an i.m. injection of saline. Blood samples were taken two weeks after the osteotomy procedure, after which the rats were euthanized. Bone healing, bone mineral density, histology, and blood status were analyzed. The results showed that Group 1 (GuaDex) had no ONJ, extensive ongoing bone regeneration, active healing activity, vascularization, and no presence of bacteria. Group 2 (clindamycin) showed early stages of ONJ, avascular areas, and bacteria. Group 3 showed stages of ONJ, inflammatory infiltrates, defective healing, and bacterial presence, and Group 4 had normal healing activity and no bacterial presence. Conclusion: ZA treatment and bacterial inoculation after tooth extraction inhibited bone remodeling/healing and induced ONJ characteristic lesions in the rats. Only GuaDex apparently prevented ONJ development, stimulated bone remodeling, and provided an antimicrobial effect.
Collapse
Affiliation(s)
- Arquímedes Cantorán-Castillo
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Belinda Beltrán-Salinas
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Jorge M Antúnez-Treviño
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Ricardo Martínez-Pedraza
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Rodolfo Franco-Márquez
- Department of Pathology and Cytopathology, Hospital Universitario, Autonomous University of Nuevo León, Av. Dr. J. Eleuterio Gonzalez S/N, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Mario A Guzmán-García
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo Leon, 66054 Gral. Escobedo, NL, Mexico
| | - Ricardo M Cerda-Flores
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Raúl V Perales-Pérez
- Odontología Avanzada Laser, Calle Juarez 109 Sur, Centro, 67500 Montemorelos, NL, Mexico
| | - Christian Zakian
- Kevork Instruments, Palacio de Justicia #888, Col. Anahuac, 66450 San Nicolas De Los Garza, NL, Mexico
| | - Jesús Ancer-Rodriguez
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Marcela Márquez-Méndez
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico.
| |
Collapse
|
12
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
13
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
14
|
Hansdah K, Lui JC. Emerging Insights into the Endocrine Regulation of Bone Homeostasis by Gut Microbiome. J Endocr Soc 2024; 8:bvae117. [PMID: 38957653 PMCID: PMC11215793 DOI: 10.1210/jendso/bvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Lee CC, Chuang CC, Chen CH, Huang YP, Chang CY, Tung PY, Lee MJ. In vitro and in vivo studies on exogenous polyamines and α-difluoromethylornithine to enhance bone formation and suppress osteoclast differentiation. Amino Acids 2024; 56:43. [PMID: 38935136 PMCID: PMC11211182 DOI: 10.1007/s00726-024-03403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Exogenous polyamines, including putrescine (PUT), spermidine (SPD), and spermine (SPM), and the irreversible inhibitor of the rate-limiting enzyme ornithine decarboxylase (ODC) of polyamine biosynthesis, α-difluoromethylornithine (DFMO), are implicated as stimulants for bone formation. We demonstrate in this study the osteogenic potential of exogenous polyamines and DFMO in human osteoblasts (hOBs), murine monocyte cell line RAW 264.7, and an ovariectomized rat model. The effect of polyamines and DFMO on hOBs and RAW 264.7 cells was studied by analyzing gene expression, alkaline phosphatase (ALP) activity, tartrate-resistant acid phosphatase (TRAP) activity, and matrix mineralization. Ovariectomized rats were treated with polyamines and DFMO and analyzed by micro computed tomography (micro CT). The mRNA level of the early onset genes of osteogenic differentiation, Runt-related transcription factor 2 (Runx2) and ALP, was significantly elevated in hOBs under osteogenic conditions, while both ALP activity and matrix mineralization were enhanced by exogenous polyamines and DFMO. Under osteoclastogenic conditions, the gene expression of both receptor activator of nuclear factor-κB (RANK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) was reduced, and TRAP activity was suppressed by exogenous polyamines and DFMO in RAW 264.7 cells. In an osteoporotic animal model of ovariectomized rats, SPM and DFMO were found to improve bone volume in rat femurs, while trabecular thickness was increased in all treatment groups. Results from this study provide in vitro and in vivo evidence indicating that polyamines and DFMO act as stimulants for bone formation, and their osteogenic effect may be associated with the suppression of osteoclastogenesis.
Collapse
Affiliation(s)
- Chien-Ching Lee
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chia-Chun Chuang
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Yuan-Pin Huang
- Department of Cosmetics and Fashion Styling, Cheng Shiu University, Kaohsiung, 83347, Taiwan
| | - Chiao-Yi Chang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Pei-Yi Tung
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan.
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan.
| |
Collapse
|
16
|
Rashid MH, Yellarthi SPK, Yellarthi PK, Didugu BGL, Mamillapalli A. Combined assessment of lysine and N-acetyl cadaverine levels assist as a potential biomarker of the smoker periodontitis. Amino Acids 2024; 56:41. [PMID: 38851640 PMCID: PMC11162398 DOI: 10.1007/s00726-024-03396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 06/10/2024]
Abstract
Periodontitis is an inflammatory condition of supporting structures of teeth leading to attachment and bone loss. Cigarette smoking is the single most important and modifiable risk factor with 5 to 20-fold susceptibility for periodontal diseases. Reverse smoking is a peculiar habit of smoking where the lit end is kept inside the mouth, which is predominant in the northern coastal districts of Andhra Pradesh. Polyamines are biologically active amines involved in tissue regeneration and modulation of inflammation. The study aimed to evaluate polyamines and check their utility as a marker in detection of periodontitis among different groups. Total polyamine levels showed significant increase in reverse smokers with periodontitis when compared to the other groups. Qualitative analysis by thin layer chromatography showed three polyamine bands with varying intensity among the different groups. Mass spectrometric and NMR analyses of the three bands identified them as N1, N8-diacetyl spermidine, N-acetyl cadaverine and lysine. Most significantly elevated levels of lysine was observed in the smoker and reverse smoker periodontitis groups when compared to healthy and non-smoker periodontitis groups. The significantly elevated levels of N-acetyl cadaverine could be responsible for the more destruction of periodontium in the reverse smoker group. Antioxidant potential decreased significantly in different smoker periodontitis groups. The present study suggests that the quantitative analysis of salivary polyamines, lysine and N-acetyl cadaverine can aid as an easy noninvasive diagnostic method for assessing the periodontal status, especially in smokers.
Collapse
Affiliation(s)
- Md Haroon Rashid
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Sandhya Pavan Kumar Yellarthi
- Department of Periodontics and Oral Implantology, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Pavan Kumar Yellarthi
- Department of Oral Medicine and Radiology, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Brinda Goda Lakshmi Didugu
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Anitha Mamillapalli
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530 045, India.
| |
Collapse
|
17
|
Xu R, Li S, Zhang Y, Pu Y, Luo G, Wang X. Causal effects of gut microbiota on the risk of osteomyelitis: a Mendelian randomization study. Front Microbiol 2024; 15:1342172. [PMID: 38863758 PMCID: PMC11166080 DOI: 10.3389/fmicb.2024.1342172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Background Osteomyelitis is characterized by an inflammatory process initiated by microorganisms, leading to infection and subsequent degradation of bone tissue. Several studies have indicated a potential link between gut microbiota and the occurrence of osteomyelitis. Utilizing the benefits of Mendelian randomization, which mitigates issues of confounding and reverse causation, we employed this approach to ascertain the presence of a causal connection between gut microbiota and osteomyelitis. Additionally, we aimed to pinpoint gut microbiota that could potentially exert substantial influence. Methods We performed a rigorous screening of single nucleotide polymorphisms in GWAS summary statistics for gut microbiota and osteomyelitis. The 2,542 instrumental variables obtained after screening were subjected to MR analyses, including inverse variance weighting, weighted median, weighted mode, MR-Egger, and Mendelian randomization pleiotropy residual sum and outlier test. We then validated the reliability of the results by performing sensitivity analyses on the MR of 196 well-defined gut microbiota. Result We established a causal relationship between gut microbiota and osteomyelitis through MR analysis. Additionally, we identified a taxon of significant importance and six taxons with nominal significance. Specifically, the family Bacteroidales S24.7 group exhibited an association with a diminished risk of osteomyelitis development. Conversely, the class Bacilli, class Bacteroidia, order Bacteroidales, order Lactobacillales, family Streptococcaceae, and genus Coprococcus3 displayed an increased risk of developing osteomyelitis. The MR outcomes for these seven taxa remained stable throughout a series of sensitivity analyses. Conclusion This study demonstrated a causal relationship between gut microbiota and osteomyelitis by Mendelian randomization. We hope that this study will provide a new direction for the treatment of osteomyelitis, which has a paucity of therapeutic options.
Collapse
Affiliation(s)
- Ran Xu
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Si Li
- Department of Pediatric Surgery, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhang
- Department of Urology, Zhongshan Hospital Xiamen University, The School of Clinical Medicine, Fujian Medical University, Xiamen, China
| | - Yue Pu
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangcheng Luo
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Urology, Zhongshan Hospital Xiamen University, The School of Clinical Medicine, Fujian Medical University, Xiamen, China
| | - Xinjun Wang
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Urology, Zhongshan Hospital Xiamen University, The School of Clinical Medicine, Fujian Medical University, Xiamen, China
| |
Collapse
|
18
|
Jiang RX, Hu N, Deng YW, Hu LW, Gu H, Luo N, Wen J, Jiang XQ. Potential therapeutic role of spermine via Rac1 in osteoporosis: Insights from zebrafish and mice. Zool Res 2024; 45:367-380. [PMID: 38485506 PMCID: PMC11017079 DOI: 10.24272/j.issn.2095-8137.2023.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
Osteoporosis is a prevalent metabolic bone disease. While drug therapy is essential to prevent bone loss in osteoporotic patients, current treatments are limited by side effects and high costs, necessitating the development of more effective and safer targeted therapies. Utilizing a zebrafish ( Danio rerio) larval model of osteoporosis, we explored the influence of the metabolite spermine on bone homeostasis. Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption. Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity. Notably, spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae. At the molecular level, Rac1 was identified as playing a pivotal role in mediating the anti-osteoporotic effects of spermine, with P53 potentially acting downstream of Rac1. These findings were confirmed using mouse ( Mus musculus) models, in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions, suggesting strong potential as a bone-strengthening agent. This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development, highlighting pivotal molecular mediators. Given their efficacy and safety, human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.
Collapse
Affiliation(s)
- Rui-Xue Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Nan Hu
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yu-Wei Deng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Long-Wei Hu
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hao Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Nan Luo
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China. E-mail:
| | - Xin-Quan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China. E-mail:
| |
Collapse
|
19
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
20
|
Wen X, Wu P, Li F, Pi G. Study on the relationship between tea polyphenols alleviating osteoporosis and the changes of microorganism-metabolite-intestinal barrier. Microb Pathog 2024; 188:106564. [PMID: 38307369 DOI: 10.1016/j.micpath.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024]
Abstract
Tea polyphenols are known to alleviate osteoporosis; however, the role of intestinal flora in this process has not been studied. This research employed 16s rRNA sequencing and non-targeted metabonomics to investigate the potential link between osteoporosis mitigation and changes in intestinal flora. MicroCT and tissue staining results demonstrated that tea polyphenols improved bone microstructure, modulated bone metabolism, and significantly alleviated osteoporosis. The administration of tea polyphenols led to alterations in the intestinal flora's composition, marked by increased abundance of Firmicutes and Lactobacillus and decreased prevalence of Bacteroidetes and Bacteroides. Concurrently, the levels of serum metabolites such as Spermidine and 5,6-Dihydrouracil, associated with intestinal microorganisms, underwent significant changes. These variations in intestinal flora and metabolites are closely linked to bone metabolism. Furthermore, tea polyphenols partially repaired intestinal barrier damage, potentially due to shifts in intestinal flora and their metabolites. Overall, our findings suggest that tea polyphenol intervention modifies the intestinal flora and serum metabolites in osteoporotic mice, which could contribute to the repair of intestinal barrier damage and thereby mitigate osteoporosis. This discovery aids in elucidating the mechanism behind tea polyphenols' osteoporosis-relieving effects.
Collapse
Affiliation(s)
- Xin Wen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Panyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Feng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guofu Pi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Cressman A, Morales D, Zhang Z, Le B, Foley J, Murray-Stewart T, Genetos DC, Fierro FA. Effects of Spermine Synthase Deficiency in Mesenchymal Stromal Cells Are Rescued by Upstream Inhibition of Ornithine Decarboxylase. Int J Mol Sci 2024; 25:2463. [PMID: 38473716 PMCID: PMC10931026 DOI: 10.3390/ijms25052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.
Collapse
Affiliation(s)
- Amin Cressman
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - David Morales
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Zhenyang Zhang
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Bryan Le
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Jackson Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Fernando A. Fierro
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
22
|
Jang JS, Hong SJ, Mo S, Kim MK, Kim YG, Lee Y, Kim HH. PINK1 restrains periodontitis-induced bone loss by preventing osteoclast mitophagy impairment. Redox Biol 2024; 69:103023. [PMID: 38181706 PMCID: PMC10789640 DOI: 10.1016/j.redox.2023.103023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
The oral colonization of periodontal pathogens onto gingival tissues establishes hypoxic microenvironment, often disrupting periodontal homeostasis in conjunction with oxidative stress. The association between reactive oxygen species (ROS) and osteolytic periodontitis have been suggested by recent studies. PTEN-induced kinase 1 (PINK1), a mitochondrial serine/threonine kinase, is an essential protein for mitochondrial quality control as it protects cells from oxidative stress by promoting degradation of damaged mitochondria through mitophagy. However, the pathophysiological roles of PINK1 in osteoclast-mediated bone loss have not been explored. Here we aimed to determine whether PINK1 plays a role in the regulation of osteoclastogenesis and alveolar bone resorption associated with periodontitis. C57BL/6 wild type (WT) and Pink1 knockout (KO) mice were subjected to ligature-induced periodontitis (LIP), and alveolar bones were evaluated by μCT-analysis and tartrate-resistant acid phosphatase (TRAP) staining. The μCT-analysis showed that bone volume fraction and travecular thickness were lower in Pink1 KO compared to WT mice. The number of TRAP-positive osteoclasts was markedly increased in the periodontal tissues of Pink1 KO mice with LIP. The genetic silencing or deletion of Pink1 promoted excessive osteoclast differentiation and bone resorption in vitro, as respectively indicated by TRAP staining and resorption pits on dentin slices. PINK1 deficiency led to mitochondrial instabilities as indicated by confocal microscopy of mitochondrial ROS, mitochondrial oxygen consumption rate (OCR) analysis, and transmission electron microscopy (TEM). Consequently, a significant increase in Ca2+-nuclear factor of activated T cells 1 (NFATc1) signaling was also found. On the other hand, restoration of mitophagy and autophagy by spermidine (SPD) treatment and the resolution of oxidative stress by N-acetyl-l-cysteine (NAC) treatment protected PINK1 deficiency-induced excessive generation of osteoclasts. Taken together, our findings demonstrate that PINK1 is essential for maintaining mitochondrial homeostasis during osteoclast differentiation. Therefore, targeting PINK1 may provide a novel therapeutic strategy for severe periodontitis with fulminant osteolysis.
Collapse
Affiliation(s)
- Ji Sun Jang
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seo Jin Hong
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
23
|
Bailey S, Fraser K. Advancing our understanding of the influence of drug induced changes in the gut microbiome on bone health. Front Endocrinol (Lausanne) 2023; 14:1229796. [PMID: 37867525 PMCID: PMC10588641 DOI: 10.3389/fendo.2023.1229796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiome has been implicated in a multitude of human diseases, with emerging evidence linking its microbial diversity to osteoporosis. This review article will explore the molecular mechanisms underlying perturbations in the gut microbiome and their influence on osteoporosis incidence in individuals with chronic diseases. The relationship between gut microbiome diversity and bone density is primarily mediated by microbiome-derived metabolites and signaling molecules. Perturbations in the gut microbiome, induced by chronic diseases can alter bacterial diversity and metabolic profiles, leading to changes in gut permeability and systemic release of metabolites. This cascade of events impacts bone mineralization and consequently bone mineral density through immune cell activation. In addition, we will discuss how orally administered medications, including antimicrobial and non-antimicrobial drugs, can exacerbate or, in some cases, treat osteoporosis. Specifically, we will review the mechanisms by which non-antimicrobial drugs disrupt the gut microbiome's diversity, physiology, and signaling, and how these events influence bone density and osteoporosis incidence. This review aims to provide a comprehensive understanding of the complex interplay between orally administered drugs, the gut microbiome, and osteoporosis, offering new insights into potential therapeutic strategies for preserving bone health.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
24
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Akinsuyi OS, Roesch LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr 2023; 11:e0032223. [PMID: 37042756 PMCID: PMC10269714 DOI: 10.1128/spectrum.00322-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.
Collapse
Affiliation(s)
- Oluwamayowa S. Akinsuyi
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Luiz F. W. Roesch
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11:31. [PMID: 37296111 PMCID: PMC10256815 DOI: 10.1038/s41413-023-00264-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis (OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the development of innovative GM-targeted therapies for OP.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Ami Y, Kodama N, Umeda M, Nakamura H, Shirasawa H, Koyanagi T, Kurihara S. Levilactobacillus brevis with High Production of Putrescine Isolated from Blue Cheese and Its Application. Int J Mol Sci 2023; 24:ijms24119668. [PMID: 37298617 DOI: 10.3390/ijms24119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Polyamine intake has been reported to help extend the lifespan of animals. Fermented foods contain high concentrations of polyamines, produced by fermenting bacteria. Therefore, the bacteria, isolated from fermented foods that produce large amounts of polyamines, are potentially used as a source of polyamines for humans. In this study, the strain Levilactobacillus brevis FB215, which has the ability to accumulate approximately 200 µM of putrescine in the culture supernatant, was isolated from fermented foods, specifically the Blue Stilton cheese. Furthermore, L. brevis FB215 synthesized putrescine from agmatine and ornithine, which are known polyamine precursors. When cultured in the extract of Sakekasu, a byproduct obtained during the brewing of Japanese rice wine containing high levels of both agmatine and ornithine, L. brevis FB215 grew to OD600 = 1.7 after 83 h of cultivation and accumulated high concentrations (~1 mM) of putrescine in the culture supernatant. The fermentation product also did not contain histamine or tyramine. The Sakekasu-derived ingredient fermented by the food-derived lactic acid bacteria developed in this study could contribute to increasing polyamine intake in humans.
Collapse
Affiliation(s)
- Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Narumi Kodama
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Masahiro Umeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hanae Nakamura
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hideto Shirasawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
28
|
Sarcopenia phenotype and impaired muscle function in male mice with fast-twitch muscle-specific knockout of the androgen receptor. Proc Natl Acad Sci U S A 2023; 120:e2218032120. [PMID: 36669097 PMCID: PMC9942915 DOI: 10.1073/pnas.2218032120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sarcopenia is distinct from normal muscle atrophy in that it is closely related to a shift in the muscle fiber type. Deficiency of the anabolic action of androgen on skeletal muscles is associated with sarcopenia; however, the function of the androgen receptor (AR) pathway in sarcopenia remains poorly understood. We generated a mouse model (fast-twitch muscle-specific AR knockout [fmARKO] mice) in which the AR was selectively deleted in the fast-twitch muscle fibers. In young male mice, the deletion caused no change in muscle mass, but it reduced muscle strength and fatigue resistance and induced a shift in the soleus muscles from fast-twitch fibers to slow-twitch fibers (14% increase, P = 0.02). After middle age, with the control mice, the male fmARKO mice showed much less muscle function, accompanied by lower hindlimb muscle mass; this phenotype was similar to the progression of sarcopenia. The bone mineral density of the femur was significantly reduced in the fmARKO mice, indicating possible osteosarcopenia. Microarray and gene ontology analyses revealed that in male fmARKO mice, there was downregulation of polyamine biosynthesis-related geneswhich was confirmed by liquid chromatography-tandem mass spectrometry assay and the primary cultured myofibers. None of the AR deletion-related phenotypes were observed in female fmARKO mice. Our findings showed that the AR pathway had essential muscle type- and sex-specific roles in the differentiation toward fast-twitch fibers and in the maintenance of muscle composition and function. The AR in fast-twitch muscles was the dominant regulator of muscle fiber-type composition and muscle function, including the muscle-bone relationship.
Collapse
|
29
|
Abstract
Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.
Collapse
Affiliation(s)
| | | | - Steve Stegen
- Corresponding author at: Clinical and Experimental Endocrinology, KU Leuven, O&N1bis, Herestraat 49 box 902, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
31
|
Hong SJ, Jung S, Jang JS, Mo S, Kwon JO, Kim MK, Kim HH. PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway. Mol Cells 2022; 45:749-760. [PMID: 36047447 PMCID: PMC9589368 DOI: 10.14348/molcells.2022.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.
Collapse
Affiliation(s)
- Seo Jin Hong
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
32
|
Yamada T, Fukasawa K, Horie T, Kadota T, Lyu J, Tokumura K, Ochiai S, Iwahashi S, Suzuki A, Park G, Ueda R, Yamamoto M, Kitao T, Shirahase H, Ochi H, Sato S, Iezaki T, Hinoi E. The role of CDK8 in mesenchymal stem cells in controlling osteoclastogenesis and bone homeostasis. Stem Cell Reports 2022; 17:1576-1588. [PMID: 35777359 PMCID: PMC9287674 DOI: 10.1016/j.stemcr.2022.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/02/2023] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are critical regulators of postnatal bone homeostasis. Osteoporosis is characterized by bone volume and strength deterioration, partly due to MSC dysfunction. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Here, CDK8 in MSCs was identified as important for bone homeostasis. CDK8 level was increased in aged MSCs along with the association with aging-related signals. Mouse genetic studies revealed that CDK8 in MSCs plays a crucial role in bone resorption and homeostasis. Mechanistically, CDK8 in MSCs extrinsically controls osteoclastogenesis through the signal transducer and transcription 1 (STAT1)-receptor activator of the nuclear factor κ Β ligand (RANKL) axis. Moreover, aged MSCs have high osteoclastogenesis-supporting activity, partly through a CDK8-dependent manner. Finally, pharmacological inhibition of CDK8 effectively repressed MSC-dependent osteoclastogenesis and prevented ovariectomy-induced osteoclastic activation and bone loss. These findings highlight that the CDK8-STAT1-RANKL axis in MSCs could play a crucial role in bone resorption and homeostasis. Aging increases CDK8 expression level in MSCs and their progeny CDK8 in MSCs plays a crucial role in bone resorption and homeostasis CDK8 in MSCs extrinsically controls osteoclastogenesis through STAT1/RANKL axis CDK8 inhibitor prevents ovariectomy-induced osteoclastic activation and bone loss
Collapse
Affiliation(s)
- Takanori Yamada
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tetsuhiro Horie
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takuya Kadota
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Jiajun Lyu
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Shinsuke Ochiai
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Sayuki Iwahashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akane Suzuki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Gyujin Park
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Rie Ueda
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Megumi Yamamoto
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Graduate School, Tokyo 113-8510, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1196, Japan.
| |
Collapse
|
33
|
Kim JH, Lee ST. Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23147521. [PMID: 35886868 PMCID: PMC9317983 DOI: 10.3390/ijms23147521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17β-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17β-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERβ) was responsible for the repression of PAOX by 17β-estradiol. A luciferase reporter assay showed that 17β-estradiol downregulates PAOX promoter activity and that 17β-estradiol-dependent PAOX repression disappeared after deletions (−3126/−2730 and −1271/−1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17β-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.
Collapse
|
34
|
Bui TI, Gill AL, Mooney RA, Gill SR. Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity. Microbiol Spectr 2022; 10:e0017022. [PMID: 35315698 PMCID: PMC9045376 DOI: 10.1128/spectrum.00170-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling postinfection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (tumor necrosis factor-α [TNF-α]) and chemokines (interferon-γ-induced protein 10 kDa [IP-10], keratinocyte-derived chemokine [KC], monokine induced by interferon-γ [MIG], monocyte chemoattractant protein-1 [MCP-1], and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice, with notable increases in the anti-inflammatory bacterium Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested that polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting that polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D. IMPORTANCE Individuals with obesity-related type 2 diabetes (obesity/T2D) are at a five times increased risk for invasive Staphylococcus aureus osteomyelitis (bone infection) following orthopedic surgeries. With increasing antibiotic resistance and limited discoveries of novel antibiotics, it is imperative that we explore other avenues for therapeutics. In this study, we demonstrated that the dietary fiber oligofructose markedly reduced osteomyelitis severity and hyperinflammation following acute prosthetic joint infections in obese/T2D mice. Reduced infection severity was associated with changes in gut microbiota composition and metabolism, as indicated by increased production of natural polyamines in the gut and circulating plasma. This work identifies a novel role for the gut microbiome in mediating control of bacterial infections and polyamines as beneficial metabolites involved in improving the obesity/T2D host response to osteomyelitis. Understanding the impact of polyamines on host immunity and mechanisms behind decreasing susceptibility to severe implant-associated osteomyelitis is crucial to improving treatment strategies for this patient population.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert A. Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
35
|
Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Zhang C, Shi L, Rui YF. The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr 2022; 63:7510-7528. [PMID: 35234534 DOI: 10.1080/10408398.2022.2047005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis (OP) is a systemic disease characterized by decreased bone mass and degeneration of bone microstructure. In recent years, more and more researches have focused on the close relationship between gut microbiota (GM) and the occurrence and progression of OP, and the regulation of probiotics and prebiotics on bone metabolism has gradually become a research hotspot. Based on the influence of brain-gut-bone axis on bone metabolism, this review expounds the potential mechanisms of probiotics and prebiotics on OP from next perspectives: regulation of intestinal metabolites, regulation of intestinal epithelial barrier function, involvement of neuromodulation, involvement of immune regulation and involvement of endocrine regulation, so as to provide a novel and promising idea for the prevention and treatment of OP in the future.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Li-Yong Bai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
36
|
Rayson A, Boudiffa M, Naveed M, Griffin J, Dall’Ara E, Bellantuono I. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol 2022; 10:682045. [PMID: 35223825 PMCID: PMC8864221 DOI: 10.3389/fcell.2022.682045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and osteoarthritis are the most common age-related diseases of the musculoskeletal system. They are responsible for high level of healthcare use and are often associated with comorbidities. Mechanisms of ageing such as senescence, inflammation and autophagy are common drivers for both diseases and molecules targeting those mechanisms (geroprotectors) have potential to prevent both diseases and their co-morbidities. However, studies to test the efficacy of geroprotectors on bone and joints are scant. The limited studies available show promising results to prevent and reverse Osteoporosis-like disease. In contrast, the effects on the development of Osteoarthritis-like disease in ageing mice has been disappointing thus far. Here we review the literature and report novel data on the effect of geroprotectors for Osteoporosis and Osteoarthritis, we challenge the notion that extension of lifespan correlates with extension of healthspan in all tissues and we highlight the need for more thorough studies to test the effects of geroprotectors on skeletal health in ageing organisms.
Collapse
Affiliation(s)
- Alexandra Rayson
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maya Boudiffa
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maneeha Naveed
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Jon Griffin
- Healthy Lifespan Institute, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| |
Collapse
|
37
|
Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. "Osteomicrobiology": The Nexus Between Bone and Bugs. Front Microbiol 2022; 12:812466. [PMID: 35145499 PMCID: PMC8822158 DOI: 10.3389/fmicb.2021.812466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific evidence supports the notion that gut microbiota plays a key role in the regulation of various physiological and pathological processes related to human health. Recent findings have now established that gut microbiota also contributes to the regulation of bone homeostasis. Studies on animal models have unraveled various underlying mechanisms responsible for gut microbiota-mediated bone regulation. Normal gut microbiota is thus required for the maintenance of bone homeostasis. However, dysbiosis of gut microbiota communities is reported to be associated with several bone-related ailments such as osteoporosis, rheumatoid arthritis, osteoarthritis, and periodontitis. Dietary interventions in the form of probiotics, prebiotics, synbiotics, and postbiotics have been reported in restoring the dysbiotic gut microbiota composition and thus could provide various health benefits to the host including bone health. These dietary interventions prevent bone loss through several mechanisms and thus could act as potential therapies for the treatment of bone pathologies. In the present review, we summarize the current knowledge of how gut microbiota and its derived microbial compounds are associated with bone metabolism and their roles in ameliorating bone health. In addition to this, we also highlight the role of various dietary supplements like probiotics, prebiotics, synbiotics, and postbiotics as promising microbiota targeted interventions with the clinical application for leveraging treatment modalities in various inflammatory bone pathologies.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
38
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Zhao Q, Huang JF, Cheng Y, Dai MY, Zhu WF, Yang XW, Gonzalez FJ, Li F. Polyamine metabolism links gut microbiota and testicular dysfunction. MICROBIOME 2021; 9:224. [PMID: 34758869 PMCID: PMC8582214 DOI: 10.1186/s40168-021-01157-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Male fertility impaired by exogenous toxins is a serious worldwide issue threatening the health of the new-born and causing infertility. However, the metabolic connection between toxic exposures and testicular dysfunction remains unclear. RESULTS In the present study, the metabolic disorder of testicular dysfunction was investigated using triptolide-induced testicular injury in mice. We found that triptolide induced spermine deficiency resulting from disruption of polyamine biosynthesis and uptake in testis, and perturbation of the gut microbiota. Supplementation with exogenous spermine reversed triptolide-induced testicular dysfunction through increasing the expression of genes related to early and late spermatogenic events, as well as increasing the reduced number of offspring. Loss of gut microbiota by antibiotic treatment resulted in depletion of spermine levels in the intestine and potentiation of testicular injury. Testicular dysfunction in triptolide-treated mice was reversed by gut microbial transplantation from untreated mice and supplementation with polyamine-producing Parabacteroides distasonis. The protective effect of spermine during testicular injury was largely dependent on upregulation of heat shock protein 70s (HSP70s) both in vivo and in vitro. CONCLUSIONS The present study linked alterations in the gut microbiota to testicular dysfunction through disruption of polyamine metabolism. The diversity and dynamics of the gut microbiota may be considered as a therapeutic option to prevent male infertility. Video Abstract.
Collapse
Affiliation(s)
- Qi Zhao
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Shanwei Institute for Food and Drug Control, Shanwei, Guangdong Province 516622 China
| | - Yan Cheng
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Man-Yun Dai
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Wei-Feng Zhu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191 China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Fei Li
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
40
|
Yuan H, Wu SX, Zhou YF, Peng F. Spermidine Inhibits Joints Inflammation and Macrophage Activation in Mice with Collagen-Induced Arthritis. J Inflamm Res 2021; 14:2713-2721. [PMID: 34194234 PMCID: PMC8238551 DOI: 10.2147/jir.s313179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose Spermidine (SPD) is a naturally occurring polyamine. In this study, we examined the role and possible mechanism of SPD in collagen-induced arthritis (CIA) mice. Materials and Methods CIA mice were intraperitoneally injected with SPD (2 and 50 mg/kg), dexamethasone (0.5 mg/kg), or saline daily for 21 days. The severity of the disease and inflammatory responses in the serum and joint tissue were assessed through macroscopic, immunohistochemical, and histological analyses. Results Macroscopic and histological results indicated that SPD protected against the development of CIA. SPD suppressed the levels of the pro-inflammatory cytokines IL-6 and IL-1β and increased the levels of the anti-inflammatory factor IL-10 in the serum. Immunohistochemical staining showed that 50 mg/kg SPD inhibited iNOS expression in synovial macrophages in the ankle joints of CIA mice. Conclusion These results suggest that SPD may protect CIA mice by inhibiting the polarization of M1 macrophages in the synovial tissue, reducing pro-inflammatory cytokines, and promoting anti-inflammatory factor release.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Si-Xian Wu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yi-Feng Zhou
- Operating Room, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Fang Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| |
Collapse
|
41
|
Gordon BS, Rossetti ML, Casero RA. Spermidine is not an independent factor regulating limb muscle mass in mice following androgen deprivation. Appl Physiol Nutr Metab 2021; 46:452-460. [PMID: 33125852 DOI: 10.1139/apnm-2020-0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Maintaining a critical amount of skeletal muscle mass is linked to reduced morbidity and mortality. In males, testicular androgens regulate muscle mass with a loss of androgens being critical as it is associated with muscle atrophy. Atrophy of the limb muscles is particularly important, but the pathways by which androgens regulate limb muscle mass remain equivocal. We used microarray analysis to identify changes to genes involved with polyamine metabolism in the tibialis anterior (TA) muscle of castrated mice. Of the polyamines, the concentration of spermidine (SPD) was significantly reduced in the TA of castrated mice. To assess whether SPD was an independent factor by which androgens regulate limb muscle mass, we treated castrated mice with SPD for 8 weeks and compared them with sham operated mice. Though this treatment paradigm effectively restored SPD concentrations in the TA muscles of castrated mice, mass of the limb muscles (i.e., TA, gastrocnemius, plantaris, and soleus) were not increased to the levels observed in sham animals. Consistent with those findings, muscle force production was also not increased by SPD treatment. Overall, these data demonstrate for the first time that SPD is not an independent factor by which androgens regulate limb skeletal muscle mass. Novelty: Polyamines regulate growth in various cells/tissues. Spermidine concentrations are reduced in the limb skeletal muscle following androgen depletion. Restoring spermidine concentrations in the limb skeletal muscle does not increase limb muscle mass or force production.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Michael L Rossetti
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
| | - Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
42
|
Peng J, Yu XJ, Yu LL, Tian FW, Zhao JX, Zhang H, Chen W, Zhai QX. The influence of gut microbiome on bone health and related dietary strategies against bone dysfunctions. Food Res Int 2021; 144:110331. [PMID: 34053534 DOI: 10.1016/j.foodres.2021.110331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The link between the gut microbiome and bone health has begun to attract widespread interest in recent years. The gut microbiome are vital in many diseases involving bone loss. Probiotics, prebiotics, and dietary supplements have been suggested to protect bone health by altering the composition of the gut microbiota. Notably, studying the relationship between the gut microbiome and bone health can provide a basis for the prevention and treatment of bone diseases. This review focuses on the link between the gut microbiome and bone diseases, exploring current knowledge of the mechanisms by which gut bacteria affect bone health. In addition, the influences of dietary supplements on the interactions between the gut microbiome and bone health are discussed. This knowledge will promote new ideas for gut microbiota-mediated dietary interventions in patients with bone diseases.
Collapse
Affiliation(s)
- Jiang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin-Jie Yu
- Hwa Chong Institution (College), 661 Bukit Timah Road, Singapore
| | - Lei-Lei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Feng-Wei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Xin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qi-Xiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
43
|
Bellissimo MP, Ziegler TR, Jones DP, Liu KH, Fernandes J, Roberts JL, Weitzmann MN, Pacifici R, Alvarez JA. Plasma high-resolution metabolomics identifies linoleic acid and linked metabolic pathways associated with bone mineral density. Clin Nutr 2021; 40:467-475. [PMID: 32620447 PMCID: PMC7714706 DOI: 10.1016/j.clnu.2020.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 05/25/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS There is a considerable degree of variation in bone mineral density (BMD) within populations. Use of plasma metabolomics may provide insight into established and novel determinants of BMD variance, such as nutrition and gut microbiome composition, to inform future prevention and treatment strategies for loss of BMD. Using high-resolution metabolomics (HRM), we examined low-molecular weight plasma metabolites and nutrition-related metabolic pathways associated with BMD. METHODS This cross-sectional study included 179 adults (mean age 49.5 ± 10.3 yr, 64% female). Fasting plasma was analyzed using ultra-high-resolution mass spectrometry with liquid chromatography. Whole body and spine BMD were assessed by dual energy X-ray absorptiometry and expressed as BMD (g/cm2) or Z-scores. Multiple linear regression, pathway enrichment, and module analyses were used to determine key plasma metabolic features associated with bone density. RESULTS Of 10,210 total detected metabolic features, whole body BMD Z-score was associated with 710 metabolites, which were significantly enriched in seven metabolic pathways, including linoleic acid, fatty acid activation and biosynthesis, and glycerophospholipid metabolism. Spine BMD was associated with 970 metabolites, significantly enriched in pro-inflammatory pathways involved in prostaglandin formation and linoleic acid metabolism. In module analyses, tryptophan- and polyamine-derived metabolites formed a network that was significantly associated with spine BMD, supporting a link with the gut microbiome. CONCLUSIONS Plasma HRM provides comprehensive information relevant to nutrition and components of the microbiome that influence bone health. This data supports pro-inflammatory fatty acids and the gut microbiome as novel regulators of postnatal bone remodeling.
Collapse
Affiliation(s)
- Moriah P Bellissimo
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA; Emory Microbiome Research Center, Emory University, Atlanta, GA, USA.
| | - Dean P Jones
- Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jolyn Fernandes
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph L Roberts
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA; Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Microbiome Research Center, Emory University, Atlanta, GA, USA; Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA; Emory Microbiome Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
44
|
Kong SH, Kim JH, Shin CS. Serum Spermidine as a Novel Potential Predictor for Fragility Fractures. J Clin Endocrinol Metab 2021; 106:e582-e591. [PMID: 33099626 DOI: 10.1210/clinem/dgaa745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Metabolomics is an emerging tool that provides insights into the dynamics of phenotypic changes. It is a potential method for the discovery of novel serum markers of fracture. OBJECTIVE To identify metabolite parameters that can be used as a proxy for osteoporotic fracture risk. DESIGN Prospective study based on the Ansung cohort in Korea. SETTING The general community. PARTICIPANTS A total of 1504 participants with metabolomic analyses. INTERVENTIONS None. MAIN OUTCOME MEASURE Fragility fractures. RESULTS We measured 135 baseline metabolite profiles in fasting serum of the participants. The participants had a mean age of 60.2 years and were comprised of 585 (38.9%) men. During a mean 9-year follow-up, 112 osteoporotic fracture events occurred. Of all metabolites measured, only serum spermidine concentrations were positively associated with the risk of fracture (hazard ratio [HR] per 1 μM of spermidine 1.35, 95% confidence interval [CI] = 1.03-1.65, P = 0.020) after adjusting for age, sex, body mass index, diabetes, hypertension, smoking status, previous fracture history, and baseline tibial quantitative ultrasound. Participants with spermidine concentrations >1.57 μM had a 2.2-fold higher risk of fractures (95% CI 1.08-4.51, P = 0.030) compared with those with concentrations ≤1.57 μM after adjustment. In a subgroup analysis, women with baseline spermidine concentrations >1.57 μM also had a 2.4-fold higher risk of fracture than those with concentrations ≤1.57 μM (95% CI 1.02-5.48, P = 0.047). CONCLUSIONS Increased baseline spermidine concentrations were associated with a risk of osteoporotic fracture during a mean 9-year follow-up. The biological significance of the metabolites in the musculoskeletal system could be a subject for future studies.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
45
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Ochiai S, Tokumura K, Park G, Ozaki K, Horie T, Yamada T, Iwahashi S, Ohta K, Fusawa H, Okayama Y, Kaneda K, Iezaki T, Hinoi E. Daily oral supplementation of Hochu-Ekki-To prevents osteoclastic activation and bone loss in ovariectomized mice. J Pharmacol Sci 2021; 145:1-5. [PMID: 33357767 DOI: 10.1016/j.jphs.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Bone remodeling is sophisticatedly regulated by two different cell types: bone-resorbing osteoclasts and bone-forming osteoblasts. Hochu-Ekki-To, a Japanese traditional herbal medicine, is commonly used for the treatment of chronic diseases or frailty after an illness; however, its effects on metabolic bone diseases such as osteoporosis are not well known. We herein report that daily oral Hochu-Ekki-To administration significantly inhibits osteoclast activation as well as the reduction in bone volume in ovariectomized mice. Our results suggest that supplementation with Hochu-Ekki-To might be beneficial for the prophylaxis and treatment of metabolic bone diseases associated with abnormal osteoclast activation.
Collapse
Affiliation(s)
- Shinsuke Ochiai
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Tokumura
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Gyujin Park
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Tetsuhiro Horie
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Takanori Yamada
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Sayuki Iwahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Kaname Ohta
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Fusawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuka Okayama
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Takashi Iezaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
47
|
Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, Suárez-Zamorano N, Spiljar M, Fabbiano S, Busse B, Ivanišević J, Macpherson A, Bonnet N, Trajkovski M. Warmth Prevents Bone Loss Through the Gut Microbiota. Cell Metab 2020; 32:575-590.e7. [PMID: 32916104 PMCID: PMC7116155 DOI: 10.1016/j.cmet.2020.08.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34°C) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects. Both warmth and warm microbiota transplantation revert the ovariectomy-induced transcriptomics changes of the tibia and increase periosteal bone formation. Combinatorial metagenomics/metabolomics analysis shows that warmth enhances bacterial polyamine biosynthesis, resulting in higher total polyamine levels in vivo. Spermine and spermidine supplementation increases bone strength, while inhibiting polyamine biosynthesis in vivo limits the beneficial warmth effects on the bone. Our data suggest warmth exposure as a potential treatment option for osteoporosis while providing a mechanistic framework for its benefits in bone disease.
Collapse
Affiliation(s)
- Claire Chevalier
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Silas Kieser
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Melis Çolakoğlu
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Julia Brun
- Division of Bone Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Martina Spiljar
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Salvatore Fabbiano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Björn Busse
- Institute for Osteology and Biomechanics, University Clinics Hamburg, 22529 Hamburg, Germany
| | - Julijana Ivanišević
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Andrew Macpherson
- Department for Biomedical Research, University of Bern, University Clinics for Visceral Surgery and Medicine, Inselspital, Bern University Hospitals, 3008 Bern, Switzerland
| | - Nicolas Bonnet
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Division of Bone Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
48
|
Amino Acid Metabolism in Rheumatoid Arthritis: Friend or Foe? Biomolecules 2020; 10:biom10091280. [PMID: 32899743 PMCID: PMC7563518 DOI: 10.3390/biom10091280] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
In mammals, amino acid metabolism has evolved to act as a critical regulator of innate and adaptive immune responses. Rheumatoid arthritis (RA) is the most common form of inflammatory arthropathy sustained by autoimmune responses. We examine here the current knowledge of tryptophan and arginine metabolisms and the main immunoregulatory pathways in amino acid catabolism, in both RA patients and experimental models of arthritis. We found that l-tryptophan (Trp) metabolism and, in particular, the kynurenine pathway would exert protective effects in all experimental models and in some, but not all, RA patients, possibly due to single nucleotide polymorphisms in the gene coding for indoleamine 2,3-dioxygenase 1 (IDO1; the enzyme catalyzing the rate-limiting step of the kynurenine pathway). The function, i.e., either protective or pathogenetic, of the l-arginine (Arg) metabolism in RA was less clear. In fact, although immunoregulatory arginase 1 (ARG1) was highly induced at the synovial level in RA patients, its true functional role is still unknown, possibly because of few available preclinical data. Therefore, our analysis would indicate that amino acid metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA and that further studies are demanding to pursue such an important objective.
Collapse
|
49
|
Keirns BH, Lucas EA, Smith BJ. Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutr Res 2020; 83:30-48. [PMID: 33010588 DOI: 10.1016/j.nutres.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The pathology of osteoporosis is multifactorial, but a growing body of evidence supports an important role of the gut-bone axis, especially in bone loss associated with menopause, rheumatoid arthritis, and periodontal disease. Aberrant T cell responses favoring an increase in the ratio of T helper 17 cells to T regulatory cells play a critical role in the underlying etiology of this bone loss. Many of the dietary phytochemicals known to have osteoprotective activity such as flavonoids, organosulfur compounds, phenolic acids, as well as the oligosaccharides also improve gut barrier function and affect T cell differentiation and activation within gut-associated lymphoid tissues and at distal sites. Here, we examine the potential of these phytochemicals to act as prebiotics and immunomodulating agents, in part targeting the gut to mediate their effects on bone.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
50
|
Ozaki K, Yamada T, Horie T, Ishizaki A, Hiraiwa M, Iezaki T, Park G, Fukasawa K, Kamada H, Tokumura K, Motono M, Kaneda K, Ogawa K, Ochi H, Sato S, Kobayashi Y, Shi YB, Taylor PM, Hinoi E. The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Sci Signal 2019; 12:12/589/eaaw3921. [PMID: 31289211 DOI: 10.1126/scisignal.aaw3921] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L-type amino acid transporter 1 (LAT1), which is encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types, contributing to the pathogenesis of cancer and neurological disorders. Amino acid substrates of LAT1 have a beneficial effect on bone health directly and indirectly, suggesting a potential role for LAT1 in bone homeostasis. Here, we identified LAT1 in osteoclasts as important for bone homeostasis. Slc7a5 expression was substantially reduced in osteoclasts in a mouse model of ovariectomy-induced osteoporosis. The osteoclast-specific deletion of Slc7a5 in mice led to osteoclast activation and bone loss in vivo, and Slc7a5 deficiency increased osteoclastogenesis in vitro. Loss of Slc7a5 impaired activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway in osteoclasts, whereas genetic activation of mTORC1 corrected the enhanced osteoclastogenesis and bone loss in Slc7a5-deficient mice. Last, Slc7a5 deficiency increased the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1) and the nuclear accumulation of NFATc1, a master regulator of osteoclast function, possibly through the canonical nuclear factor κB pathway and the Akt-glycogen synthase kinase 3β signaling axis, respectively. These findings suggest that the LAT1-mTORC1 axis plays a pivotal role in bone resorption and bone homeostasis by modulating NFATc1 in osteoclasts, thereby providing a molecular connection between amino acid intake and skeletal integrity.
Collapse
Affiliation(s)
- Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsushi Ishizaki
- Laboratory of Clinical Analytical Sciences, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.,Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Tokumura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Mei Motono
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Graduate School, Tokyo 113-8510, Japan
| | - Shingo Sato
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Graduate School, Tokyo 113-8510, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peter M Taylor
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|