1
|
AMIN R, DEY BK, ALAM F, SHARIFI-RAD J, CALINA D. Antioxidant strategies and oxidative stress dynamics in chronic kidney disease: an integrative insight. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 36. [DOI: 10.23736/s2724-542x.24.03117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
3
|
Jian J, Liu Y, Zheng Q, Wang J, Jiang Z, Liu X, Chen Z, Wan S, Liu H, Wang L. The E3 ubiquitin ligase TRIM39 modulates renal fibrosis induced by unilateral ureteral obstruction through regulating proteasomal degradation of PRDX3. Cell Death Discov 2024; 10:17. [PMID: 38195664 PMCID: PMC10776755 DOI: 10.1038/s41420-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Renal fibrosis is considered to be the ultimate pathway for various chronic kidney disease, with a complex etiology and great therapeutic challenges. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM39 plays a role in renal fibrosis remain unexplored. In this study, we investigated the role of TRIM39 in renal fibrosis and its molecular mechanism. TRIM39 expression was analyzed in patients' specimens, HK-2 cells and unilateral ureteral obstruction (UUO) mice were used for functional and mechanistic studies. We found an upregulated expression of TRIM39 in renal fibrosis human specimens and models. In addition, TRIM39 knockdown was found efficient for alleviating renal fibrosis in both UUO mice and HK-2 cells. Mechanistically, we demonstrated that TRIM39 interacted with PRDX3 directly and induced ubiquitination degradation of PRDX3 at K73 and K149 through the K48 chain, which resulted in ROS accumulation and increased inflammatory cytokine generation, and further aggravated renal fibrosis. It provided an emerging potential target for the therapies of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhengyu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Department of Urology, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450052, Henan, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Jian J, Wang D, Xiong Y, Wang J, Zheng Q, Jiang Z, Zhong J, Yang S, Wang L. Puerarin alleviated oxidative stress and ferroptosis during renal fibrosis induced by ischemia/reperfusion injury via TLR4/Nox4 pathway in rats. Acta Cir Bras 2023; 38:e382523. [PMID: 37556718 PMCID: PMC10403246 DOI: 10.1590/acb382523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/18/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE To investigate the role of puerarin on renal fibrosis and the underlying mechanism in renal ischemia and reperfusion (I/R) model. METHODS Rats were intraperitoneally injected with puerarin (50 or 100 mg/kg) per day for one week before renal I/R. The level of renal collagen deposition and interstitial fibrosis were observed by hematoxylin and eosin and Sirius Red staining, and the expression of α-smooth muscle actin (α-SMA) was examined by immunohistochemical staining. The ferroptosis related factors and TLR4/Nox4-pathway-associated proteins were detected by Western blotting. RESULTS Puerarin was observed to alleviate renal collagen deposition, interstitial fibrosis and the α-SMA expression induced by I/R. Superoxide dismutase (SOD) activities and glutathione (GSH) level were decreased in I/R and hypoxia/reoxygenation (H/R), whereas malondialdehyde (MDA) and Fe2+ level increased. However, puerarin reversed SOD, MDA, GSH and Fe2+ level changes induced by I/R and H/R. Besides, Western blot indicated that puerarin inhibited the expression of ferroptosis related factors in a dose-dependent manner, which further demonstrated that puerarin had the effect to attenuate ferroptosis. Moreover, the increased expression of TLR/Nox4-pathway-associated proteins were observed in I/R and H/R group, but puerarin alleviated the elevated TLR/Nox4 expression. CONCLUSIONS Our results suggested that puerarin inhibited oxidative stress and ferroptosis induced by I/R and, thus, delayed the progression of renal fibrosis, providing a new target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Dan Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Yufeng Xiong
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Jingsong Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Qingyuan Zheng
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Zhengyu Jiang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Jiacheng Zhong
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Song Yang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Lei Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| |
Collapse
|
5
|
Aslam Saifi M, Hirawat R, Godugu C. Lactoferrin-Decorated Cerium Oxide Nanoparticles Prevent Renal Injury and Fibrosis. Biol Trace Elem Res 2023; 201:1837-1845. [PMID: 35568769 DOI: 10.1007/s12011-022-03284-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
Renal fibrosis is a hallmark feature of chronic kidney diseases (CKDs). However, despite the increased prevalence of renal fibrosis, there is no approved antifibrotic drug for the management of renal fibrosis. Cerium oxide nanoparticles (CONPs) have been demonstrated to possess a number of properties including antioxidant, anti-inflammatory and nephroprotective activity. As the kidneys are rich in lactoferrin (Lf) receptors, we synthesised the lactoferrin-CONP (Lf-CONP) system to be used for active targeting of the kidneys and provide antifibrotic effects of CONPs to the kidneys. We used the unilateral ureteral obstruction (UUO)-induced renal fibrosis model and treated the animals with Lf-CONP to observe the antifibrotic effects of Lf-CONP. Lf-CONP was found to inhibit the progression of renal fibrosis in a superior manner when compared to CONPs alone.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Rishabh Hirawat
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Hsieh YH, Tsai JP, Ting YH, Hung TW, Chao WW. Rosmarinic acid ameliorates renal interstitial fibrosis by inhibiting the phosphorylated-AKT mediated epithelial-mesenchymal transition in vitro and in vivo. Food Funct 2022; 13:4641-4652. [PMID: 35373225 DOI: 10.1039/d2fo00204c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via renal fibrosis. Epithelial-mesenchymal transition (EMT) is a crucial feature of renal fibrosis. Rosmarinic acid (RA) is an ester of caffeic acid and 3,4-dihydroxyphenylacetic acid with a wide range of desirable biological activities. In this study, we investigated whether RA exerted anti-renal fibrosis effects and its related mechanisms in a unilateral ureteral obstruction (UUO) mouse model. C57BL/6 mice were orally administered RA (10 and 20 mg kg-1 d-1) for 7 consecutive days before and after UUO surgery. The mice were then sacrificed to collect the blood and kidneys. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to evaluate the renal injury and function. Immunohistochemical analysis, reverse transcription-polymerase chain reaction (RT-PCR), and western blotting were used to detect the expression levels of EMT markers. In vitro studies were performed using the IS-stimulated NRK-52E cell line. Here, the pathological changes, collagen deposition, and mRNA and protein expression levels of profibrotic factors and fibrotic markers were found to be significantly elevated in the kidneys of UUO mice. We found that RA administration significantly ameliorated UUO-induced kidney damage by reversing abnormal serum creatinine and blood urea nitrogen levels. It was found that RA treatment decreased the expression levels of alpha-smooth muscle actin (α-SMA), collagen I, fibronectin, transforming growth factor (TGF)-β1, vimentin and phosphorylated AKT (p-AKT) while increasing the E-cadherin expression in both UUO kidneys and IS-treated NRK-52E cells. Our results demonstrate that RA may be a promising therapeutic agent for renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Yu R, Tian M, He P, Chen J, Zhao Z, Zhang Y, Zhang B. Suppression of LMCD1 ameliorates renal fibrosis by blocking the activation of ERK pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119200. [PMID: 34968577 DOI: 10.1016/j.bbamcr.2021.119200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.
Collapse
Affiliation(s)
- Rui Yu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
8
|
Hira K, Sharma P, Mahale A, Prakash Kulkarni O, Sajeli Begum A. Cyclo(Val-Pro) and Cyclo(Leu-Hydroxy-Pro) from Pseudomonas sp. (ABS-36) alleviates acute and chronic renal injury under in vitro and in vivo models (Ischemic reperfusion and unilateral ureter obstruction). Int Immunopharmacol 2022; 103:108494. [PMID: 34973530 DOI: 10.1016/j.intimp.2021.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022]
Abstract
The study aimed to identify small molecules having potentiality in alleviating renal injury. Two natural compounds cyclo(Val-Pro) (1) and cyclo(Leu-Hydroxy-Pro) (2) were first evaluated under acute renal injury model of ischemic reperfusion at different doses of 25, 50 and 75 mg/kg body weight. Further, the compounds were subjected to antimycin A-induced ischemic in vitro study (NRK-52E cell lines). Both the compounds significantly decreased plasma IL-1β levels (P < 0.05). Also, the mRNA expression levels of inflammatory markers (TNF-α, IL-6 and IL-1β) and renal injury markers (KIM-1, NGAL, α-GST and π-GST) in the renal tissues were significantly alleviated (P < 0.01) along with the improvement in histological damage and control over neutrophil infiltration as a result of ischemic reperfusion. The in vitro study revealed the protective effect against antimycin A-induced cytotoxicity (P < 0.05) and antiapoptotic effect acting through the regulation of Bax, caspase 3 (pro and cleaved) and BCL2 with reduction in Annexin+PI+ cells. Further, the compound cyclo(Val-Pro) (1) was evaluated (50 mg/kg body weight dose) in chronic unilateral ureter obstruction model of renal injury in mice and TGF-β-induced in vitro fibrotic model (NRK-49F cell lines). Cyclo(Val-Pro) (1) significantly reduced the expression levels of fibrotic markers (collagen-1, α-SMA and TGF-β) and showed marked alleviation of renal fibrosis (sirius red staining). Also, the proliferation of TGF-β-induced NRK-49F cells was significantly reduced along with decreased levels of collagen-1 and α-SMA in immunohistochemistry studies. In conclusion, the compounds significantly abrogated ischemic injury by inhibiting renal inflammation and tubular epithelial apoptosis. Further, cyclo (Val-Pro) (1) exhibited significant anti-fibrotic activity through the inhibition of fibroblast activation and proliferation. Thus, these proline-based cyclic dipeptides are recommended as drug leads for treating renal injury.
Collapse
Affiliation(s)
- Kirti Hira
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - A Sajeli Begum
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India.
| |
Collapse
|
9
|
Kim HR, Jin HS, Eom YB. Metabolite Genome-Wide Association Study for Indoleamine 2,3-Dioxygenase Activity Associated with Chronic Kidney Disease. Genes (Basel) 2021; 12:1905. [PMID: 34946851 PMCID: PMC8701662 DOI: 10.3390/genes12121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) causes progressive damage to kidney function with increased inflammation. This process contributes to complex amino acid changes. Indoleamine 2,3-dioxygenase (IDO) has been proposed as a new biomarker of CKD in previous studies. In our research, we performed a metabolite genome-wide association study (mGWAS) to identify common and rare variants associated with IDO activity in a Korean population. In addition, single-nucleotide polymorphisms (SNPs) selected through mGWAS were further analyzed for associations with the estimated glomerular filtration rate (eGFR) and CKD. A total of seven rare variants achieved the genome-wide significance threshold (p < 1 × 10-8). Among them, four genes (TNFRSF19, LOC105377444, LOC101928535, and FSTL5) associated with IDO activity showed statistically significant associations with eGFR and CKD. Most of these rare variants appeared specifically in an Asian geographic region. Furthermore, 15 common variants associated with IDO activity were detected in this study and five novel genes (RSU1, PDGFD, SNX25, LOC107984031, and UBASH3B) associated with CKD and eGFR were identified. This study discovered several loci for IDO activity via mGWAS and provided insight into the underlying mechanisms of CKD through association analysis with CKD. To the best of our knowledge, this is the first study to suggest a genetic link between IDO activity and CKD through comparative and integrated analysis.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Chungnam, Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungnam, Korea
| |
Collapse
|
10
|
Dissecting the Involvement of Ras GTPases in Kidney Fibrosis. Genes (Basel) 2021; 12:genes12060800. [PMID: 34073961 PMCID: PMC8225075 DOI: 10.3390/genes12060800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Many different regulatory mechanisms of renal fibrosis are known to date, and those related to transforming growth factor-β1 (TGF-β1)-induced signaling have been studied in greater depth. However, in recent years, other signaling pathways have been identified, which contribute to the regulation of these pathological processes. Several studies by our team and others have revealed the involvement of small Ras GTPases in the regulation of the cellular processes that occur in renal fibrosis, such as the activation and proliferation of myofibroblasts or the accumulation of extracellular matrix (ECM) proteins. Intracellular signaling mediated by TGF-β1 and Ras GTPases are closely related, and this interaction also occurs during the development of renal fibrosis. In this review, we update the available in vitro and in vivo knowledge on the role of Ras and its main effectors, such as Erk and Akt, in the cellular mechanisms that occur during the regulation of kidney fibrosis (ECM synthesis, accumulation and activation of myofibroblasts, apoptosis and survival of tubular epithelial cells), as well as the therapeutic strategies for targeting the Ras pathway to intervene on the development of renal fibrosis.
Collapse
|
11
|
The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis. Clin Sci (Lond) 2021; 134:2873-2891. [PMID: 33078834 DOI: 10.1042/cs20200923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-β (TGF-β)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-β expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.
Collapse
|
12
|
Zhou J, Liu S, Guo L, Wang R, Chen J, Shen J. NMDA receptor-mediated CaMKII/ERK activation contributes to renal fibrosis. BMC Nephrol 2020; 21:392. [PMID: 32907546 PMCID: PMC7488001 DOI: 10.1186/s12882-020-02050-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/30/2020] [Indexed: 02/08/2023] Open
Abstract
Background This study aimed to understand the mechanistic role of N-methyl-D-aspartate receptor (NMDAR) in acute fibrogenesis using models of in vivo ureter obstruction and in vitro TGF-β administration. Methods Acute renal fibrosis (RF) was induced in mice by unilateral ureteral obstruction (UUO). Histological changes were observed using Masson’s trichrome staining. The expression levels of NR1, which is the functional subunit of NMDAR, and fibrotic and epithelial-to-mesenchymal transition markers were measured by immunohistochemical and Western blot analysis. HK-2 cells were incubated with TGF-β, and NMDAR antagonist MK-801 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) antagonist KN-93 were administered for pathway determination. Chronic RF was introduced by sublethal ischemia–reperfusion injury in mice, and NMDAR inhibitor dextromethorphan hydrobromide (DXM) was administered orally. Results The expression of NR1 was upregulated in obstructed kidneys, while NR1 knockdown significantly reduced both interstitial volume expansion and the changes in the expression of α-smooth muscle actin, S100A4, fibronectin, COL1A1, Snail, and E-cadherin in acute RF. TGF-β1 treatment increased the elongation phenotype of HK-2 cells and the expression of membrane-located NR1 and phosphorylated CaMKII and extracellular signal–regulated kinase (ERK). MK801 and KN93 reduced CaMKII and ERK phosphorylation levels, while MK801, but not KN93, reduced the membrane NR1 signal. The levels of phosphorylated CaMKII and ERK also increased in kidneys with obstruction but were decreased by NR1 knockdown. The 4-week administration of DXM preserved renal cortex volume in kidneys with moderate ischemic–reperfusion injury. Conclusions NMDAR participates in both acute and chronic renal fibrogenesis potentially via CaMKII-induced ERK activation.
Collapse
Affiliation(s)
- Jingyi Zhou
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang Province, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China
| | - Shuaihui Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang Province, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China
| | - Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang Province, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang Province, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China. .,Key Laboratory of Nephropathy, Hangzhou, Zhejiang Province, China. .,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China. .,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.
| | - Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China. .,Key Laboratory of Nephropathy, Hangzhou, Zhejiang Province, China. .,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China. .,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.
| |
Collapse
|
13
|
Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao GY, Li M, Zhou H, Lin SQ, Ran JH, Yang BX. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 2020; 41:670-677. [PMID: 31804606 PMCID: PMC7468553 DOI: 10.1038/s41401-019-0324-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Renal fibrosis is considered as the pathway of almost all kinds of chronic kidney diseases (CKD) to the end stage of renal diseases (ESRD). Ganoderic acid (GA) is a group of lanostane triterpenes isolated from Ganoderma lucidum, which has shown a variety of pharmacological activities. In this study we investigated whether GA exerted antirenal fibrosis effect in a unilateral ureteral obstruction (UUO) mouse model. After UUO surgery, the mice were treated with GA (3.125, 12.5, and 50 mg· kg-1 ·d-1, ip) for 7 or 14 days. Then the mice were sacrificed for collecting blood and kidneys. We showed that GA treatment dose-dependently attenuated UUO-induced tubular injury and renal fibrosis; GA (50 mg· kg-1 ·d-1) significantly ameliorated renal disfunction during fibrosis progression. We further revealed that GA treatment inhibited the extracellular matrix (ECM) deposition in the kidney by suppressing the expression of fibronectin, mainly through hindering the over activation of TGF-β/Smad signaling. On the other hand, GA treatment significantly decreased the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and vimentin, and upregulated E-cadherin expression in the kidney, suggesting the suppression of tubular epithelial-mesenchymal transition (EMT) partially via inhibiting both TGF-β/Smad and MAPK (ERK, JNK, p38) signaling pathways. The inhibitory effects of GA on TGF-β/Smad and MAPK signaling pathways were confirmed in TGF-β1-stimulated HK-2 cell model. GA-A, a GA monomer, was identified as a potent inhibitor on renal fibrosis in vitro. These data demonstrate that GA or GA-A might be developed as a potential therapeutic agent in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Qiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ying-Li Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guang-Ying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Qian Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou, 350002, China
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Hua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
14
|
CTRP1 Attenuates UUO-induced Renal Fibrosis via AMPK/NOX4 Pathway in Mice. Curr Med Sci 2020; 40:48-54. [PMID: 32166664 DOI: 10.1007/s11596-020-2145-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Indexed: 01/08/2023]
Abstract
C1q/TNF-related protein 1 (CTRP1), a conserved protein of the C1q family, plays a key role in cardiovascular and metabolic diseases. However, the role of CTRP1 in renal injury is unclear. The purpose of this study is to explore the role of CTRP1 in unilateral ureteral obstruction (UUO)-induced renal fibrosis and to elucidate the underlying mechanism. Using gene delivery system, CTRP1 was overexpressed in the kidney, then the mice were operated to induce UUO model after adenovirus transfection. It was found that the expression of CTRP1 in the renal tissue was decreased in mice after UUO. CTRP1 overexpression decreased the kidney function and kidney weight index. Moreover, CTRP1 reduced oxidative stress and renal collagen deposition in vivo. As expected, we found that CTRP1 activated AMP-activated kinase (AMPK) and decreased NOX4 expression, while silencing AMPKα1 abolished the protective effects of CTRP1 overexpression in mice after UUO. In conclusion, CTRP1 may protect against UUO-induced renal injury via AMPK/NOX4 signaling. Our results indicate that CTRP1 exhibits potential effects to treat renal fibrosis caused by UUO.
Collapse
|
15
|
Peruchetti DB, Freitas AC, Pereira VC, Lopes JV, Takiya CM, Nascimento NR, Pinheiro AAS, Caruso-Neves C. PKB is a central molecule in the modulation of Na+-ATPase activity by albumin in renal proximal tubule cells. Arch Biochem Biophys 2019; 674:108115. [DOI: 10.1016/j.abb.2019.108115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
|
16
|
Awazu M, Abe T, Hashiguchi A, Hida M. Maternal undernutrition aggravates renal tubular necrosis and interstitial fibrosis after unilateral ureteral obstruction in male rat offspring. PLoS One 2019; 14:e0221686. [PMID: 31479481 PMCID: PMC6719870 DOI: 10.1371/journal.pone.0221686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/13/2019] [Indexed: 01/18/2023] Open
Abstract
Maternal undernutrition is known to reduce glomerular number but it may also affect tubulointerstitium, capillary density, and response to oxidative stress. To investigate whether the latter elements are affected, we examined the response to unilateral ureteral obstruction (UUO), an established model of renal tubulointerstitial fibrosis, in the kidney of offspring from control and nutrient restricted rats. Six-week old male offspring from rats given food ad libitum (CON) and those subjected to 50% food restriction throughout pregnancy (NR) were subjected to UUO for 7 days. Body weight was significantly lower in NR. Systolic blood pressure and blood urea nitrogen increased similarly in CON and NR after UUO. Tubular necrosis in the obstructed kidney, on the other hand, was more extensive in NR. Also, the collagen area, a marker of fibrosis, of the obstructed kidney was significantly increased compared with the contralateral kidney only in NR. Capillary density was decreased similarly in the obstructed kidney of CON and NR compared with the contralateral kidney. Urine nitrate/nitrite, a marker of nitric oxide production, from the obstructed kidney was significantly increased in NR compared with CON. Nitrotyrosine, a marker of nitric oxide-mediated free radical injury, was increased in the obstructed kidney compared with the contralateral kidney in both CON and NR, but the extent was significantly greater in NR. In conclusion, more severe tubular necrosis and fibrosis after UUO was observed in NR, which was thought to be due to increased nitrosative stress.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tokiya Abe
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Hida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Ma FY, Han Y, Ozols E, Chew P, Vesey DA, Gobe GC, Morais C, Lohman RJ, Suen JY, Johnson DW, Fairlie DP, Nikolic-Paterson DJ. Protease-activated receptor 2 does not contribute to renal inflammation or fibrosis in the obstructed kidney. Nephrology (Carlton) 2019; 24:983-991. [PMID: 31314137 DOI: 10.1111/nep.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
AIM Protease-activated receptor 2 (PAR2) has been implicated in the development of renal inflammation and fibrosis. In particular, activation of PAR2 in cultured tubular epithelial cells induces extracellular signal-regulated kinase signalling and secretion of fibronectin, C-C Motif Chemokine Ligand 2 (CCL2) and transforming growth factor-β1 (TGF-β1), suggesting a role in tubulointerstitial inflammation and fibrosis. We tested this hypothesis in unilateral ureteric obstruction (UUO) in which ongoing tubular epithelial cell damage drives tubulointerstitial inflammation and fibrosis. METHODS Unilateral ureteric obstruction surgery was performed in groups (n = 9/10) of Par2-/- and wild type (WT) littermate mice which were killed 7 days later. Non-experimental mice were controls. RESULTS Wild type mice exhibited a 5-fold increase in Par2 messenger RNA (mRNA) levels in the UUO kidney. In situ hybridization localized Par2 mRNA expression to tubular epithelial cells in normal kidney, with a marked increase in Par2 mRNA expression by tubular cells, including damaged tubular cells, in WT UUO kidney. Tubular damage (tubular dilation, increased KIM-1 and decreased α-Klotho expression) and tubular signalling (extracellular signal-regulated kinase phosphorylation) seen in WT UUO were not altered in Par2-/- UUO. In addition, macrophage infiltration, up-regulation of M1 (NOS2) and M2 (CD206) macrophage markers, and up-regulation of pro-inflammatory molecules (tumour necrosis factor, CCL2, interleukin-36α) in WT UUO kidney were unchanged in Par2-/- UUO. Finally, the accumulation of α-SMA+ myofibroblasts, deposition of collagen IV and expression of pro-fibrotic factors (CTGF, TGF-β1) were not different between WT and Par2-/- UUO mice. CONCLUSION Protease-activated receptor 2 expression is substantially up-regulated in tubular epithelial cells in the obstructed kidney, but this does not contribute to the development of tubular damage, renal inflammation or fibrosis.
Collapse
Affiliation(s)
- Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yingjie Han
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - Elyce Ozols
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - Phyllis Chew
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Department of Urology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Rink-Jan Lohman
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Nimbolide ameliorates unilateral ureteral obstruction-induced renal fibrosis by inhibition of TGF-β and EMT/Slug signalling. Mol Immunol 2019; 112:247-255. [PMID: 31202101 DOI: 10.1016/j.molimm.2019.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) involves interstitial fibrosis as an underlying pathological process associated with compromised renal function irrespective of etiological cause of the injury. The transforming growth factor-β (TGF-β) plays a pivotal role in progression of renal fibrosis. TGF-β transduces its downstream signalling by phosphorylation of smad2/3 and also regulates epithelial-mesenchymal-transition (EMT), a program centrally involved in activation of fibroblasts. Renal fibrosis was induced in Swiss albino mice by unilateral ureteral obstruction of animals. Kidney tissues were evaluated for fibrotic protein expression by western blot and immunohistochemistry. The administration of nimbolide (NB) to UUO animals reduced the oxidative stress, expression of ECM proteins, TGF-β, p-smad and EMT program. Further, NB administration also improved histoarchitecture of obstructed kidney and reduced the collagen deposition in kidney. Our results provided compelling evidence to support antifibrotic activity of NB by reduction in oxidative stress, TGF-β, and EMT program in fibrotic kidney. The administration of NB in animals blunted the UUO-induced renal injury, inflammation and reduced fibrogenesis in obstructed kidney.
Collapse
|
19
|
Li S, Qiu B, Lu H, Lai Y, Liu J, Luo J, Zhu F, Hu Z, Zhou M, Tian J, Zhou Z, Yu S, Yi F, Nie J. Hyperhomocysteinemia Accelerates Acute Kidney Injury to Chronic Kidney Disease Progression by Downregulating Heme Oxygenase-1 Expression. Antioxid Redox Signal 2019; 30:1635-1650. [PMID: 30084650 DOI: 10.1089/ars.2017.7397] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS The risk factors promoting acute kidney injury (AKI) to chronic kidney disease (CKD) progression remain largely unknown. The aim of the present study was to investigate whether hyperhomocysteinemia (Hhcy) accelerates the development of renal fibrosis after AKI. RESULTS Hhcy aggravated ischemia-reperfusion-induced AKI and the subsequent development of renal fibrotic lesions characterized by excessive extracellular matrix deposition. Mechanistically, the RNA binding protein human antigen R (HuR) bound to the 3'-untranslated region (3'-UTR) of heme oxygenase-1 (HO-1) messenger RNA (mRNA). Homocysteine (Hcy) downregulated HuR expression, reduced the binding of HuR to the 3'-UTR of HO-1, and thereafter decreased HO-1 expression. Administration of the HO-1 inducer cobalt protoporphyrin-IX significantly hindered Hhcy-augmented reactive oxygen species production and renal fibrotic lesions. Innovation and Conclusion: These data indicate that Hhcy might be a novel risk factor that promotes AKI to CKD progression. Lowering Hcy level or HO-1 induction might be a potential therapeutic strategy to improve the outcome of AKI.
Collapse
Affiliation(s)
- Shuang Li
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingbing Qiu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Lu
- 2 Department of Public Health, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunshi Lai
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jixing Liu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajun Luo
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fengxin Zhu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Hu
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaomiao Zhou
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwei Tian
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanmei Zhou
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouyi Yu
- 2 Department of Public Health, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fan Yi
- 3 Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jing Nie
- 1 State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Hsieh WY, Chang TH, Chang HF, Chuang WH, Lu LC, Yang CW, Lin CS, Chang CC. Renal chymase-dependent pathway for angiotensin II formation mediated acute kidney injury in a mouse model of aristolochic acid I-induced acute nephropathy. PLoS One 2019; 14:e0210656. [PMID: 30633770 PMCID: PMC6329531 DOI: 10.1371/journal.pone.0210656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/28/2018] [Indexed: 01/20/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) is the primary enzyme that converts angiotensin I (Ang I) to angiotensin II (Ang II) in the renin-angiotensin system (RAS). However, chymase hydrates Ang I to Ang II independently of ACE in some kidney diseases, and it may play an important role. The present study investigated whether chymase played a crucial role in aristolochic acid I (AAI)-induced nephropathy. C57BL/6 mice were treated with AAI via intraperitoneal injection for an accumulated AAI dosage of 45 mg/kg body weight (BW) (15 mg/kg BW per day for 3 days). The animals were sacrificed after acute kidney injury development, and blood, urine and kidneys were harvested for biochemical and molecular assays. Mice exhibited increased serum creatinine, BUN and urinary protein after the AAI challenge. Significant infiltrating inflammatory cells and tubular atrophy were observed in the kidneys, and high immunocytokine levels were detected. Renal RAS-related enzyme activities were measured, and a significantly increased chymase activity and slightly decreased ACE activity were observed in the AAI-treated mice. The renal Ang II level reflected the altered profile of RAS enzymes and was significantly increased in AAI-treated mice. Treatment of AAI-induced nephropathic mice with an ACE inhibitor (ACEI) or chymase inhibitor (CI; chymostatin) reduced renal Ang II levels. The combination of ACEI and CI (ACEI+CI) treatment significantly reversed the AAI-induced changes of Ang II levels and kidney inflammation and injuries. AAI treatment significantly increased renal p-MEK without increasing p-STAT3 and p-Smad3 levels, and p-MEK/p-ERK1/2 signalling pathway was significantly activated. CI and ACEI+CI treatments reduced this AAI-activated signaling pathway. AAI-induced nephropathy progression was significantly mitigated with CI and ACEI+CI treatment. This study elucidates the role of RAS in the pathogenesis of AAI-induced nephropathy.
Collapse
Affiliation(s)
- Wen-Yeh Hsieh
- Division of Pulmonary Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Teng-Hsiang Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Wan-Hsuan Chuang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Che Lu
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chung-Wei Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Chu Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Environmental and Precision Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- Department of Nutrition, Hungkuang University, Taichung, Taiwan
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| |
Collapse
|
21
|
Carlström M. Hydronephrosis and risk of later development of hypertension. Acta Paediatr 2019; 108:50-57. [PMID: 29959876 DOI: 10.1111/apa.14482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
AIM Congenital ureteral obstruction is a fairly common condition in infants, and its clinical management has been long debated during the last decade. The long-term physiological consequences of today's conservative non-surgical management in many asymptomatic hydronephrotic children are unclear. METHODS Experimental studies in rats and mice, retrospective studies in children and adults, as well as prospective studies in children are included in this mini review. RESULTS Experimental models of hydronephrosis in rats and mice have demonstrated that partial ureteropelvic junction obstruction (UPJO) is casually linked with development of hypertension and renal injuries in later life. The mechanisms are multifactorial and involve increased activity of the renin-angiotensin-aldosterone system and renal sympathetic nerve activity. Furthermore, oxidative stress and nitric oxide deficiency in the affected kidney appear to play important roles in the development and maintenance of hypertension. Clinical case reports in adults and recent prospective studies in children have associated hydronephrosis with elevated blood pressure, which could be reduced by surgical management of the obstruction. CONCLUSION Based on current experimental and clinical knowledge regarding the link between partial UPJO and changes in blood pressure, it is proposed that today's non-operative management of hydronephrosis should be reconsidered to reduce the risk of developing elevated blood pressure or hypertension in later life.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| |
Collapse
|
22
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Changes in cell fate determine the regenerative and functional capacity of the developing kidney before and after release of obstruction. Clin Sci (Lond) 2018; 132:2519-2545. [PMID: 30442812 DOI: 10.1042/cs20180623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Congenital obstructive nephropathy is a major cause of chronic kidney disease (CKD) in children. The contribution of changes in the identity of renal cells to the pathology of obstructive nephropathy is poorly understood. Using a partial unilateral ureteral obstruction (pUUO) model in genetically modified neonatal mice, we traced the fate of cells derived from the renal stroma, cap mesenchyme, ureteric bud (UB) epithelium, and podocytes using Foxd1Cre, Six2Cre, HoxB7Cre, and Podocyte.Cre mice respectively, crossed with double fluorescent reporter (membrane-targetted tandem dimer Tomato (mT)/membrane-targetted GFP (mG)) mice. Persistent obstruction leads to a significant loss of tubular epithelium, rarefaction of the renal vasculature, and decreased renal blood flow (RBF). In addition, Forkhead Box D1 (Foxd1)-derived pericytes significantly expanded in the interstitial space, acquiring a myofibroblast phenotype. Degeneration of Sine Oculis Homeobox Homolog 2 (Six2) and HoxB7-derived cells resulted in significant loss of glomeruli, nephron tubules, and collecting ducts. Surgical release of obstruction resulted in striking regeneration of tubules, arterioles, interstitium accompanied by an increase in blood flow to the level of sham animals. Contralateral kidneys with remarkable compensatory response to kidney injury showed an increase in density of arteriolar branches. Deciphering the mechanisms involved in kidney repair and regeneration post relief of obstruction has potential therapeutic implications for infants and children and the growing number of adults suffering from CKD.
Collapse
|
24
|
Thioredoxin-interacting protein deficiency ameliorates kidney inflammation and fibrosis in mice with unilateral ureteral obstruction. J Transl Med 2018; 98:1211-1224. [PMID: 29884908 DOI: 10.1038/s41374-018-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is associated with inflammation, tubulointerstitial fibrosis, and oxidative stress in diabetic kidney disease, yet the potential role of TXNIP in nondiabetic renal injury is not well known. This study aimed to investigate the effect of TXNIP on renal injury by creating a unilateral ureteral obstruction (UUO) model in TXNIP knockout (TKO) mice. We performed sham or UUO surgery in 8-week-old TXNIP KO male mice and age and sex-matched wild-type (WT) mice. Animals were killed at 3, 5, 7, or 14 days after surgery, and renal tissues were obtained for RNA, protein, and other analysis. Our results show that the expression of TXNIP was increased in a time-dependent manner in the ligated kidneys. TXNIP deletion reduced renal fibrosis, apoptosis, α-SMA, TGF-β1 and CTGF expression, and activation of Smad3, p38 MAPK, and ERK1/2 in UUO kidneys. We also found UUO-induced renal F4/80+ macrophage infiltration, MCP-1 expression and activation of NF-κB and NLRP3 inflammasome were attenuated in TKO mice. Furthermore, our study revealed that TXNIP deficiency inhibited the expression of 8-OHdG, heme oxygenase-1 (HO-1) and NADPH oxidase 4 (Nox4) in UUO kidney. In summary, our study suggests that TXNIP plays a key role in the renal inflammation and fibrosis induced by UUO. Inhibition of TXNIP may be a strategy to slow the progression of chronic kidney diseases.
Collapse
|
25
|
Dorotea D, Cho A, Lee G, Kwon G, Lee J, Sahu PK, Jeong LS, Cha DR, Ha H. Orally active, species-independent novel A 3 adenosine receptor antagonist protects against kidney injury in db/db mice. Exp Mol Med 2018; 50:1-14. [PMID: 29674631 PMCID: PMC5938017 DOI: 10.1038/s12276-018-0053-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 11/22/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and the current pharmacological treatment for DKD is limited to renin-angiotensin system (RAS) inhibitors. Adenosine is detectable in the kidney and is significantly elevated in response to cellular damage. While all 4 known subtypes of adenosine receptors, namely, A1AR, A2aAR, A2bAR, and A3AR, are expressed in the kidney, our previous study has demonstrated that a novel, orally active, species-independent, and selective A3AR antagonist, LJ-1888, ameliorates unilateral ureteral obstruction-induced tubulointerstitial fibrosis. The present study examined the protective effects of LJ-2698, which has higher affinity and selectivity for A3AR than LJ-1888, on DKD. In experiment I, dose-dependent effects of LJ-2698 were examined by orally administering 1.5, 5, or 10 mg/kg for 12 weeks to 8-week-old db/db mice. In experiment II, the effects of LJ-2698 (10 mg/kg) were compared to those of losartan (1.5 mg/kg), which is a standard treatment for patients with DKD. LJ-2698 effectively prevented kidney injuries such as albuminuria, glomerular hypertrophy, tubular injury, podocyte injury, fibrosis, inflammation, and oxidative stress in diabetic mice as much as losartan. In addition, inhibition of lipid accumulation along with increases in PGC1α, a master regulator of mitochondrial biogenesis, were demonstrated in diabetic mice treated with either LJ-2698 or losartan. These results suggest that LJ-2698, a selective A3AR antagonist, may become a novel therapeutic agent against DKD. A therapeutic treatment targeting a protein involved in the progression of diabetic kidney disease (DKD) shows promise in mouse trials. Between 30 and 40 per cent of diabetic patients suffer from DKD, a common cause to fatal end-stage kidney disease. Protein receptors, commonly expressed on cell surfaces throughout the body, play both positive and negative roles in diseases. The A3 adenosine receptor (A3AR) is highly expressed in diabetic kidney tissue, and is linked to disease progression. Hunjoo Ha at Ewha Womans University in Seoul, Republic of Korea, and co-workers demonstrated the positive effect of a novel drug in targeting A3AR in mice with DKD. A 12-week treatment of the drug prevented kidney injury, lowered oxidative stress and inflammation, and improved kidney function. It may prove an invaluable drug, particularly in combination with an existing DKD drug.
Collapse
Affiliation(s)
- Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ahreum Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Guideock Kwon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Junghwa Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Pramod K Sahu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea.,Future Medicine Co, Seoul, Korea
| | - Lak Shin Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
26
|
Huang H, Xu C, Wang Y, Meng C, Liu W, Zhao Y, Huang XR, You W, Feng B, Zheng ZH, Huang Y, Lan HY, Qin J, Xia Y. Lethal (3) malignant brain tumor-like 2 (L3MBTL2) protein protects against kidney injury by inhibiting the DNA damage–p53–apoptosis pathway in renal tubular cells. Kidney Int 2018; 93:855-870. [DOI: 10.1016/j.kint.2017.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/04/2017] [Accepted: 09/28/2017] [Indexed: 01/10/2023]
|
27
|
Wang S, Sun Z, Yang S, Chen B, Shi J. CTRP6 inhibits cell proliferation and ECM expression in rat mesangial cells cultured under TGF-β1. Biomed Pharmacother 2018; 97:280-285. [DOI: 10.1016/j.biopha.2017.10.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022] Open
|
28
|
Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest. Biochem J 2017; 474:4207-4218. [PMID: 29150436 DOI: 10.1042/bcj20170682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023]
Abstract
Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro, NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling.
Collapse
|
29
|
Trivedi P, Kumar RK, Iyer A, Boswell S, Gerarduzzi C, Dadhania VP, Herbert Z, Joshi N, Luyendyk JP, Humphreys BD, Vaidya VS. Targeting Phospholipase D4 Attenuates Kidney Fibrosis. J Am Soc Nephrol 2017; 28:3579-3589. [PMID: 28814511 DOI: 10.1681/asn.2016111222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/11/2017] [Indexed: 01/13/2023] Open
Abstract
Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-β signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-β-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-β signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ramya K Kumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ashwin Iyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sarah Boswell
- Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| | - Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vivekkumar P Dadhania
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| | - Zach Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikita Joshi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; .,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
30
|
Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice. Am J Med Sci 2017; 354:199-210. [DOI: 10.1016/j.amjms.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/15/2017] [Accepted: 04/17/2017] [Indexed: 01/26/2023]
|
31
|
Wang F, Takahashi K, Li H, Zu Z, Li K, Xu J, Harris RC, Takahashi T, Gore JC. Assessment of unilateral ureter obstruction with multi-parametric MRI. Magn Reson Med 2017; 79:2216-2227. [PMID: 28736875 DOI: 10.1002/mrm.26849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Quantitative multi-parametric MRI (mpMRI) methods may allow the assessment of renal injury and function in a sensitive and objective manner. This study aimed to evaluate an array of MRI methods that exploit endogenous contrasts including relaxation rates, pool size ratio (PSR) derived from quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), nuclear Overhauser enhancement (NOE), and apparent diffusion coefficient (ADC) for their sensitivity and specificity in detecting abnormal features associated with kidney disease in a murine model of unilateral ureter obstruction (UUO). METHODS MRI scans were performed in anesthetized C57BL/6N mice 1, 3, or 6 days after UUO at 7T. Paraffin tissue sections were stained with Masson trichrome following MRI. RESULTS Compared to contralateral kidneys, the cortices of UUO kidneys showed decreases of relaxation rates R1 and R2 , PSR, NOE, and ADC. No significant changes in CEST effects were observed for the cortical region of UUO kidneys. The MRI parametric changes in renal cortex are related to tubular cell death, tubular atrophy, tubular dilation, urine retention, and interstitial fibrosis in the cortex of UUO kidneys. CONCLUSION Measurements of multiple MRI parameters provide comprehensive information about the molecular and cellular changes produced by UUO. Magn Reson Med 79:2216-2227, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ke Li
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Manresa MC, Taylor CT. Hypoxia Inducible Factor (HIF) Hydroxylases as Regulators of Intestinal Epithelial Barrier Function. Cell Mol Gastroenterol Hepatol 2017; 3:303-315. [PMID: 28462372 PMCID: PMC5404106 DOI: 10.1016/j.jcmgh.2017.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia). Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs), which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms.
Collapse
Key Words
- CD, Crohn’s disease
- DMOG, dimethyloxalylglycine
- DSS, dextran sodium sulfate
- Epithelial Barrier
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- Hypoxia
- Hypoxia-Inducible Factor (HIF) Hydroxylases
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- NF-κB, nuclear factor-κB
- PHD, hypoxia-inducible factor–prolyl hydroxylases
- TFF, trefoil factor
- TJ, tight junction
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
- Mario C. Manresa
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
33
|
Adjunction of a MEK inhibitor to Vemurafenib in the treatment of metastatic melanoma results in a 60% reduction of acute kidney injury. Cancer Chemother Pharmacol 2017; 79:1043-1049. [PMID: 28396940 DOI: 10.1007/s00280-017-3300-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION A combined therapy MEK inhibitor, Cobimetinib (CB) and BRAF inhibitor, Vemurafenib (VMF), results in an improvement in progression-free survival among patients with BRAF V600-mutated metastatic melanoma. VMF skin adverse effects attributed to ERK paradoxical activation are decreased by the adjunction of CB. The aim of this study was to determine if this combination also improved the renal side effects of VMF. PATIENTS AND METHODS To investigate the incidence of acute kidney injury (AKI), we conducted a retrospective observational monocentric study in Lyon Sud University Hospital in France. We included 38 patients with metastatic BRAF-mutated melanomas treated by VMF and CB between March 2015 and June 2016. According to the NCI-CTCAE classification, AKI was defined as an increase in serum creatinine exceeding the baseline concentration by 1.5-fold. Serum creatinine was measured before treatment, then on a monthly basis during treatment, and 1 month after treatment discontinuation. Patients were divided into two main groups: AKI-positive (AKI+) and AKI-negative (AKI-), and further subdivided into three groups according to AKI severity (stage 1-5). RESULTS Of 38 patients, 29 (76%) were AKI-, and all 9 AKI+ patients (24%) were diagnosed within the first trimester of treatment. Three-quarters of AKI (n = 7, 77%) had stage 1 AKI and the remaining 23% stage 2 AKI. Pre-treatment renal function was significantly better in AKI+ group: 105 vs. 80 ml/min/1.73m² AKI-, p = 0.009. Compared to previous results, the AKI incidence under the combined VMF-CB vs. VMF monotherapy was reduced by 60%. CONCLUSION We reported a reduced incidence and severity of nephrotoxicity of the association inhibitors of BRAF and MEK compared to a BRAF inhibitor monotherapy.
Collapse
|
34
|
Manresa MC, Tambuwala MM, Radhakrishnan P, Harnoss JM, Brown E, Cavadas MA, Keogh CE, Cheong A, Barrett KE, Cummins EP, Schneider M, Taylor CT. Hydroxylase inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF-β1 signaling. [corrected]. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1076-G1090. [PMID: 27789456 DOI: 10.1152/ajpgi.00229.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/09/2016] [Indexed: 01/31/2023]
Abstract
Fibrosis is a complication of chronic inflammatory disorders such as inflammatory bowel disease, a condition which has limited therapeutic options and often requires surgical intervention. Pharmacologic inhibition of oxygen-sensing prolyl hydroxylases, which confer oxygen sensitivity upon the hypoxia-inducible factor pathway, has recently been shown to have therapeutic potential in colitis, although the mechanisms involved remain unclear. Here, we investigated the impact of hydroxylase inhibition on inflammation-driven fibrosis in a murine colitis model. Mice exposed to dextran sodium sulfate, followed by a period of recovery, developed intestinal fibrosis characterized by alterations in the pattern of collagen deposition and infiltration of activated fibroblasts. Treatment with the hydroxylase inhibitor dimethyloxalylglycine ameliorated fibrosis. TGF-β1 is a key regulator of fibrosis that acts through the activation of fibroblasts. Hydroxylase inhibition reduced TGF-β1-induced expression of fibrotic markers in cultured fibroblasts, suggesting a direct role for hydroxylases in TGF-β1 signaling. This was at least in part due to inhibition of noncanonical activation of extracellular signal-regulated kinase (ERK) signaling. In summary, pharmacologic hydroxylase inhibition ameliorates intestinal fibrosis through suppression of TGF-β1-dependent ERK activation in fibroblasts. We hypothesize that in addition to previously reported immunosupressive effects, hydroxylase inhibitors independently suppress profibrotic pathways.
Collapse
Affiliation(s)
- Mario C Manresa
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.,School of Medicine and Medical Science, Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northerm Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Eric Brown
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Miguel A Cavadas
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland; and
| | - Ciara E Keogh
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alex Cheong
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland; and
| | - Kim E Barrett
- Department of Medicine and Biomedical Sciences Ph.D. Program, University of California, San Diego, School of Medicine, La Jolla, California
| | - Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Cormac T Taylor
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland; .,Systems Biology Ireland, University College Dublin, Dublin, Ireland; and
| |
Collapse
|
35
|
Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting GSK3β. Sci Rep 2016; 6:36698. [PMID: 27857162 PMCID: PMC5114614 DOI: 10.1038/srep36698] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) remains challenging for clinical practice and poses a risk of developing progressive chronic kidney disease (CKD) with no definitive treatment available yet. Tanshinone IIA, an active ingredient of Chinese herbal Salvia miltiorrhiza, has been widely used in Asia for the remarkable organoprotective activities. Its effect on established AKI, however, remains unknown. In mice with folic acid-induced AKI, delayed treatment with Tanshinone IIA, commenced early or late after injury, diminished renal expression of kidney injury markers, reduced apoptosis and improved kidney dysfunction, concomitant with mitigated histologic signs of AKI to CKD transition, including interstitial fibrosis and tubular atrophy, and with an ameliorated inflammatory infiltration in tubulointerstitium and a favored M2-skewed macrophage polarization. Mechanistically, Tanshinone IIA blunted glycogen synthase kinase (GSK)3β overactivity and hyperactivation of its downstream mitogen-activated protein kinases that are centrally implicated in renal fibrogenesis and inflammation. Inhibition of GSK3β is likely a key mechanism mediating the therapeutic activity of Tanshinone IIA, because sodium nitroprusside, a GSK3β activator, largely offset its renoprotective effect. In confirmatory studies, rescue treatment with Tanshinone IIA likewise ameliorated ischemia/reperfusion-induced kidney destruction in mice. Our data suggest that Tanshinone IIA represents a valuable treatment that improves post-AKI kidney salvage via targeting GSK3β.
Collapse
|
36
|
Min HS, Cha JJ, Kim K, Kim JE, Ghee JY, Kim H, Lee JE, Han JY, Jeong LS, Cha DR, Kang YS. Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy. J Korean Med Sci 2016; 31:1403-12. [PMID: 27510383 PMCID: PMC4974181 DOI: 10.3346/jkms.2016.31.9.1403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Hye Sook Min
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Kitae Kim
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jung Eun Kim
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jung Yeon Ghee
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Hyunwook Kim
- Department of Nephrology, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Ji Eun Lee
- Department of Nephrology, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Jee Young Han
- Department of Pathology, Inha University Medical College, Incheon, Korea
| | - Lak Shin Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Young Sun Kang
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea.
| |
Collapse
|
37
|
Tamma G, Valenti G. Evaluating the Oxidative Stress in Renal Diseases: What Is the Role for S-Glutathionylation? Antioxid Redox Signal 2016; 25:147-64. [PMID: 26972776 DOI: 10.1089/ars.2016.6656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) have long been considered as toxic derivatives of aerobic metabolism displaying a harmful effect to living cells. Deregulation of redox homeostasis and production of excessive free radicals may contribute to the pathogenesis of kidney diseases. In line, oxidative stress increases in patients with renal dysfunctions due to a general increase of ROS paralleled by impaired antioxidant ability. RECENT ADVANCES Emerging evidence revealed that physiologically, ROS can act as signaling molecules interplaying with several transduction pathways such as proliferation, differentiation, and apoptosis. ROS can exert signaling functions by modulating, at different layers, protein oxidation since proteins have "cysteine switches" that can be reversibly reduced or oxidized, supporting the dynamic signaling regulation function. In this scenario, S-glutathionylation is a posttranslational modification involved in oxidative cellular response. CRITICAL ISSUES Although it is widely accepted that renal dysfunctions are often associated with altered redox signaling, the relative role of S-glutathionylation on the pathogenesis of specific renal diseases remains unclear and needs further investigations. In this review, we discuss the impact of ROS in renal health and diseases and the role of selective S-glutathionylation proteins potentially relevant to renal physiology. FUTURE DIRECTIONS The paucity of studies linking the reversible protein glutathionylation with specific renal disorders remains unmet. The growing number of S-glutathionylated proteins indicates that this is a fascinating area of research. In this respect, further studies on the association of reversible glutathionylation with renal diseases, characterized by oxidative stress, may be useful to develop new pharmacological molecules targeting protein S-glutathionylation. Antioxid. Redox Signal. 25, 147-164.
Collapse
Affiliation(s)
- Grazia Tamma
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy
| | - Giovanna Valenti
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy .,3 Centro di Eccellenza di Genomica in campo Biomedico ed Agrario (CEGBA) , Bari, Italy
| |
Collapse
|
38
|
Wetzl V, Schinner E, Kees F, Hofmann F, Faerber L, Schlossmann J. Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin. Front Pharmacol 2016; 7:195. [PMID: 27462268 PMCID: PMC4940422 DOI: 10.3389/fphar.2016.00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/cGMP to inhibit transforming growth factor-β (TGF-β) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-β signaling and increased PDE5a phosphorylation.
Collapse
Affiliation(s)
- Veronika Wetzl
- Department of Pharmacology and Toxicology, University of RegensburgRegensburg, Germany; Novartis Pharma GmbHNuremberg, Germany
| | - Elisabeth Schinner
- Department of Pharmacology and Toxicology, University of Regensburg Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology and Toxicology, University of Regensburg Regensburg, Germany
| | - Franz Hofmann
- Institute of Pharmacology and Toxicology, Technical University of Munich Munich, Germany
| | - Lothar Faerber
- Department of Pharmacology and Toxicology, University of RegensburgRegensburg, Germany; Novartis Pharma GmbHNuremberg, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg Regensburg, Germany
| |
Collapse
|
39
|
Jung ES, Lee J, Heo NJ, Kim S, Kim DK, Joo KW, Han JS. Low-dose paclitaxel ameliorates renal fibrosis by suppressing transforming growth factor-β1-induced plasminogen activator inhibitor-1 signaling. Nephrology (Carlton) 2016; 21:574-82. [DOI: 10.1111/nep.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/11/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Eun Sook Jung
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Jeonghwan Lee
- Department of Internal Medicine; Hallym University Hangang Sacred Heart Hospital; Seoul Korea
| | - Nam Ju Heo
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Sejoong Kim
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Dong Ki Kim
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Kwon Wook Joo
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Jin Suk Han
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| |
Collapse
|
40
|
Cheng X, Zheng X, Song Y, Qu L, Tang J, Meng L, Wang Y. Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats. Free Radic Res 2016; 50:840-52. [DOI: 10.1080/10715762.2016.1181757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Molecular validation of the precision-cut kidney slice (PCKS) model of renal fibrosis through assessment of TGF-β1-induced Smad and p38/ERK signaling. Int Immunopharmacol 2016; 34:32-36. [DOI: 10.1016/j.intimp.2016.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
|
42
|
BAI YONGHENG, LU HONG, LIN CHENGCHENG, XU YAYA, HU DANNÜ, LIANG YONG, HONG WEILONG, CHEN BICHENG. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int J Mol Med 2016; 37:1317-27. [DOI: 10.3892/ijmm.2016.2546] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
|
43
|
Qian Y, Peng K, Qiu C, Skibba M, Huang Y, Xu Z, Zhang Y, Hu J, Liang D, Zou C, Wang Y, Liang G. Novel Epidermal Growth Factor Receptor Inhibitor Attenuates Angiotensin II-Induced Kidney Fibrosis. J Pharmacol Exp Ther 2016; 356:32-42. [PMID: 26514795 DOI: 10.1124/jpet.115.228080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic activation of renin-angiotensin system (RAS) greatly contributes to renal fibrosis and accelerates the progression of chronic kidney disease; however, the underlying molecular mechanism is poorly understood. Angiotensin II (Ang II), the central component of RAS, is a key regulator of renal fibrogenic destruction. Here we show that epidermal growth factor receptor (EGFR) plays an important role in Ang II-induced renal fibrosis. Inhibition of EGFR activation by novel small molecules or by short hairpin RNA knockdown in Ang II-treated SV40 mesangial cells in vitro suppresses protein kinase B and extracellular signal-related kinase signaling pathways and transforming growth factor-β/Sma- and Mad-related protein activation, and abolishes the accumulation of fibrotic markers such as connective tissue growth factor, collagen IV. The transactivation of EGFR by Ang II in SV40 cells depends on the phosphorylation of proto-oncogene tyrosine-protein kinase Src (c-Src) kinase. Further validation in vivo demonstrates that EGFR small molecule inhibitor successfully attenuates renal fibrosis and kidney dysfunction in a mouse model induced by Ang II infusion. These findings indicate a crucial role of EGFR in Ang II-dependent renal deterioration, and reveal EGFR inhibition as a new therapeutic strategy for preventing progression of chronic renal diseases.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kesong Peng
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chenyu Qiu
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Melissa Skibba
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yi Huang
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jie Hu
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chunpeng Zou
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science (Y.Q., K.P., C.Q., M.S., Y.H., Z.X., Y.Z., J.H., D.L., Y.W., and G.L.); Department of Ultrasonography, 2nd Affiliated Hospital (C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
44
|
P311 promotes renal fibrosis via TGFβ1/Smad signaling. Sci Rep 2015; 5:17032. [PMID: 26616407 PMCID: PMC4663757 DOI: 10.1038/srep17032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/26/2022] Open
Abstract
P311, a gene that was identified in 1993, has been found to have diverse biological functions in processes such as cell proliferation, migration and differentiation. However, its role in fibrosis is unknown. We previously observed that P311 is highly expressed in skin hypertrophic scars. In this study, P311 over-expression was detected in a subset of tubular epithelial cells in clinical biopsy specimens of renal fibrosis; this over-expression, was found concurrent with α-smooth muscle actin (α-SMA) and transforming growth factor beta1 (TGFβ1) expression. Subsequently, these results were verified in a mouse experimental renal fibrosis model induced by unilateral ureteral obstruction. The interstitial deposition of collagen, α-SMA and TGF-β1 expression, and macrophage infiltration were dramatically decreased when P311 was knocked out. Moreover, TGFβ/Smad signaling had a critical effect on the promotion of renal fibrosis by P311. In conclusion, this study demonstrate that P311 plays a key role in renal fibrosis via TGFβ1/Smad signaling, which could be a novel target for the management of renal fibrosis.
Collapse
|
45
|
Zhang B, Cowden D, Zhang F, Yuan J, Siedlak S, Abouelsaad M, Zeng L, Zhou X, O'Toole J, Das AS, Kofskey D, Warren M, Bian Z, Cui Y, Tan T, Kresak A, Wyza RE, Petersen RB, Wang GX, Kong Q, Wang X, Sedor J, Zhu X, Zhu H, Zou WQ. Prion Protein Protects against Renal Ischemia/Reperfusion Injury. PLoS One 2015; 10:e0136923. [PMID: 26327228 PMCID: PMC4556704 DOI: 10.1371/journal.pone.0136923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, The People’s Republic of China
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, HuBei, The People’s Republic of China
| | - Daniel Cowden
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Fan Zhang
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Shandong University, Jinan, The People’s Republic of China
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Sandra Siedlak
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Mai Abouelsaad
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Liang Zeng
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Urology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People’s Republic of China
| | - Xuefeng Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - John O'Toole
- Kidney Disease Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Medicine and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alvin S. Das
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Diane Kofskey
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Miriam Warren
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Zehua Bian
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuqi Cui
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Adam Kresak
- Human Tissue Procurement Facility (HTPF) and the Comprehensive Cancer Center Tissue Resources Core, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio 44106, United States of America
| | - Robert E. Wyza
- Human Tissue Procurement Facility (HTPF) and the Comprehensive Cancer Center Tissue Resources Core, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio 44106, United States of America
| | - Robert B. Petersen
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Gong-Xian Wang
- Department of Urology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People’s Republic of China
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- National Center for Regenerative Medicine, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - John Sedor
- Kidney Disease Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Medicine and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail: (WQZ); (HZ); (XZ)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (WQZ); (HZ); (XZ)
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Urology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People’s Republic of China
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Neurology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- National Center for Regenerative Medicine, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, The People’s Republic of China
- * E-mail: (WQZ); (HZ); (XZ)
| |
Collapse
|
46
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
47
|
Chen HH, Lu PJ, Chen BR, Hsiao M, Ho WY, Tseng CJ. Heme oxygenase-1 ameliorates kidney ischemia-reperfusion injury in mice through extracellular signal-regulated kinase 1/2-enhanced tubular epithelium proliferation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2195-201. [PMID: 26232688 DOI: 10.1016/j.bbadis.2015.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
Abstract
Heme oxygenase (HO)-1 confers transient resistance against oxidative damage, including renal ischemia-reperfusion injury (IRI). We investigated the potential protective effect of HO-1 induction in a mouse model of renal IRI induced by bilateral clamping of the kidney arteries. The mice were randomly assigned to five groups to receive an intraperitoneal injection of PBS, hemin (an HO-1 inducer, 100μmol/kg), hemin+ZnPP (an HO-1 inhibitor, 5mg/kg), hemin+PD98059 (a MEK-ERK inhibitor, 10mg/kg) or a sham operation. All of the groups except for the sham-operated group underwent 25min of ischemia and 24 to 72h of reperfusion. Renal function and tubular damage were assessed in the mice that received hemin or the vehicle treatment prior to IRI. The renal injury score and HO-1 protein levels were evaluated via H&E and immunohistochemistry staining. Hemin-preconditioned mice exhibited preserved renal cell function (BUN: 40±2mg/dl, creatinine: 0.53±0.06mg/dl), and the tubular injury score at 72h (1.65±0.12) indicated that tubular damage was prevented. Induction of HO-1 induced the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2. However, these effects were abolished with ZnPP treatment. Kidney function (BUN: 176±49mg/dl, creatinine: 1.54±0.39mg/dl) increased, and the tubular injury score (3.73±0.09) indicated that tubular damage also increased with ZnPP treatment. HO-1-induced tubular epithelial proliferation was attenuated by PD98059. Our findings suggest that HO-1 preconditioning promotes ERK1/2 phosphorylation and enhances tubular recovery, which subsequently prevents further renal injury.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Graduate Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Bo-Ron Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
48
|
Thelen S, Abouhamed M, Ciarimboli G, Edemir B, Bähler M. Rho GAP myosin IXa is a regulator of kidney tubule function. Am J Physiol Renal Physiol 2015; 309:F501-13. [PMID: 26136556 DOI: 10.1152/ajprenal.00220.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/29/2015] [Indexed: 11/22/2022] Open
Abstract
Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology.
Collapse
Affiliation(s)
- Sabine Thelen
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Marouan Abouhamed
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Bayram Edemir
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| |
Collapse
|
49
|
ZHU TIECHUI, YANG JUN, LIU XIANGDONG, ZHANG LIANYUN, ZHANG JIE, WANG YONGTAO, MA HAIJUN, REN ZHENHUI. Hypoxia-inducible adrenomedullin ameliorates the epithelial-to-mesenchymal transition in human proximal tubular epithelial cells. Mol Med Rep 2015; 11:3760-6. [DOI: 10.3892/mmr.2015.3189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 08/19/2014] [Indexed: 11/06/2022] Open
|
50
|
Yamada K, Doi S, Nakashima A, Kawaoka K, Ueno T, Doi T, Yokoyama Y, Arihiro K, Kohno N, Masaki T. Expression of age-related factors during the development of renal damage in patients with IgA nephropathy. Clin Exp Nephrol 2014; 19:830-7. [PMID: 25504369 DOI: 10.1007/s10157-014-1070-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 12/02/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic kidney disease patients share clinical and pathological features with the general aging population. Increased oxidative DNA damage, accumulation of cell cycle-arrested cells and decreased Klotho expression are assumed to be age-related factors that are reportedly linked to kidney disease. This study sought to determine the association between these age-related factors and renal damage in patients with IgA nephropathy (IgAN). METHODS We performed a cross-sectional analysis of 71 patients who were diagnosed with IgAN by renal biopsy. Expression of 8-hydroxydeoxyguanosine (8-OHdG, a marker of oxidative DNA damage), p16 (a marker of cell cycle-arrest) and Klotho (an anti-aging protein) were evaluated by immunohistochemical staining of renal biopsy samples. We correlated the changes in expression of these markers with Lee's pathologic grades and the Oxford classification. We also investigated the independent association between these markers and interstitial fibrosis using multiple linear regression analysis. RESULTS 8-OHdG and p16 increased but Klotho decreased with progression of pathologic grade. Expression of 8-OHdG and p16 increased with the deterioration of mesangial hypercellularity and segmental glomerulosclerosis. In addition, p16 increased but Klotho decreased with progression of tubular atrophy/interstitial fibrosis. In univariate regression analysis, age, body mass index, systolic blood pressure, urinary protein excretion and expression of 8-OHdG, p16 and Klotho showed significant correlations with interstitial fibrosis. Multivariable regression analyses revealed that aging, increased renal expression of p16 and decreased expression of Klotho were independently correlated with interstitial fibrosis. CONCLUSIONS The age-related factors might play important roles in the development of IgAN.
Collapse
Affiliation(s)
- Kyoko Yamada
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Koichiro Kawaoka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukio Yokoyama
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|