1
|
Wathanavasin W, Cheungpasitporn W, Thongprayoon C, Fülöp T. Effects of Dietary Fiber Supplementation on Modulating Uremic Toxins and Inflammation in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Toxins (Basel) 2025; 17:57. [PMID: 39998074 PMCID: PMC11860371 DOI: 10.3390/toxins17020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Emerging evidence supports the beneficial effects of dietary fiber supplementation in alleviating gut dysbiosis, which leads to a reduction in uremic toxins and inflammatory markers in chronic kidney disease (CKD) patients. However, current evidence-based renal nutrition guidelines do not provide recommendations regarding dietary fiber intake. We performed a systematic review and meta-analysis to investigate and highlight the effects of dietary fiber supplementation on modulating uremic toxins and inflammatory markers in individuals with CKD, with or without dialysis. The eligible randomized controlled trials (RCTs) were identified from PubMed, Scopus, and Cochrane Central Register of Controlled trials until 27 November 2024. The results were synthesized using a random-effects model and presented as standardized mean differences (SMDs) with a 95% confidence interval (CI). A total of 21 studies with 700 patients were included. When compared with the control group, dietary fiber supplementation ranging from 6 to 50 g/day, for typically more than 4 weeks, could significantly reduce the levels of serum uremic toxins, including p-cresyl sulfate, indoxyl sulfate, and blood urea nitrogen (SMD -0.22, -0.34, -0.25, respectively, with p-values < 0.05), as well as biomarkers of inflammation, including interleukin-6 and tumor necrosis factor alpha (SMD -0.44, -0.34, respectively, with p-values < 0.05). These beneficial effects were consistent across different types of fibers and CKD status (with or without dialysis). However, no significant reduction in serum trimethylamine N-oxide, uric acid, and high-sensitivity C-reactive protein levels was observed with dietary fiber intervention. This study would pave the way for prioritizing dietary quality, particularly a fiber-rich diet, beyond the traditional focus on the quantities of protein, energy, and electrolyte restrictions among individuals with CKD.
Collapse
Affiliation(s)
- Wannasit Wathanavasin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
- Nephrology Unit, Department of Medicine, Charoenkrung Pracharak Hospital, Bangkok Metropolitan Administration, Bangkok 10120, Thailand
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
| | - Tibor Fülöp
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Hill ZR, Flynn CK, Adams JB. Indoxyl Sulfate and Autism Spectrum Disorder: A Literature Review. Int J Mol Sci 2024; 25:12973. [PMID: 39684683 DOI: 10.3390/ijms252312973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Indoxyl sulfate-a bacterially derived metabolite-has been identified as a toxin that is elevated in children with autism spectrum disorder (ASD). As a neurotoxin, uremic toxin, nephrotoxin, cardiotoxin, osteotoxin, and myotoxin, indoxyl sulfate has been associated with several other conditions, including chronic kidney disease, acute kidney injury, Parkinson's disease, cognitive disorders, and mood disorders such as anxiety and depression. Indoxyl sulfate is derived from bacterial modification of host tryptophan, and elevated levels of indoxyl sulfate are associated with decreased levels of important neurotransmitters including serotonin, dopamine, and norepinephrine. This article will review what is currently known about indoxyl sulfate in relation to ASD and its comorbidities. A systematic review identified six studies of levels of indoxyl sulfate in children with ASD. All six studies found that indoxyl sulfate was significantly elevated in the urine of children with ASD compared to typically developing children. Through this review, indoxyl sulfate was identified as a toxic microbially derived metabolite that is significantly increased in a subset of children with ASD and may contribute to both core and co-morbid ASD symptoms.
Collapse
Affiliation(s)
- Zoë R Hill
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Christina K Flynn
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA
| | - James B Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Shen Y, Shen Y, Bi X, Shen A, Wang Y, Ding F. Application of Nanoparticles as Novel Adsorbents in Blood Purification Strategies. Blood Purif 2024; 53:743-754. [PMID: 38740012 DOI: 10.1159/000539286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and good hemocompatibility shown during the treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES (i) The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. (ii) Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. (iii) Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in the treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. (vi) A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.
Collapse
Affiliation(s)
- Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,
| | - Yuqi Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao Bi
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aiwen Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Graboski AL, Kowalewski ME, Simpson JB, Cao X, Ha M, Zhang J, Walton WG, Flaherty DP, Redinbo MR. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem Biol 2023; 30:1402-1413.e7. [PMID: 37633277 PMCID: PMC10702206 DOI: 10.1016/j.chembiol.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ha
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianan Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Lai Q, Zhu X, Zhang L, Kou J, Liu F, Yu B, Li F. Inhibition of OAT1/3 and CMPF uptake attenuates myocardial ischemia-induced chronic heart failure via decreasing fatty acid oxidation and the therapeutic effects of ruscogenin. Transl Res 2023; 261:1-15. [PMID: 37315712 DOI: 10.1016/j.trsl.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Chronic heart failure (CHF) as a long-term disease is highly prevalent in elder people worldwide. Early diagnosis and treatments are crucial for preventing the development of CHF. Herein, we aimed to identify novel diagnostic biomarker, therapeutic target and drug for CHF. Untargeted metabolomic analysis has been used to characterize the different metabolomic profile between CHF patients and healthy people. Meanwhile, the targeted metabolomic study demonstrated the elevation of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in the serum of CHF patients and coronary artery ligation-induced CHF mice. Subsequently, we firstly observed that elevation of CMPF impaired cardiac function and aggravated myocardial injury by enhancing fatty acid oxidation (FAO). Interestingly, inhibition of responsible transporters organic anion transporter 1/3 (OAT1/3) has been found to decrease the CMPF level, and suppress FAO-related key protein expressions including peroxisome proliferator-activated receptor alpha, peroxisome proliferative activated receptor-α, carnitine palmitoyl transferase 1, and malonyl CoA decarboxylase in coronary artery ligation-induced CHF mice. Meanwhile, the inhibitor of OAT1/3 presented an excellent improvement in cardiac function and histological injury. Based on the above findings, molecular docking was adopted to screen the potential therapeutic drug targeting OAT1/3, and ruscogenin (RUS) exhibited a great binding affinity with OAT1 and OAT3. Next, it was verified that RUS could remarkedly decrease the expression of OAT1/3 and CMPF levels in heart tissue of CHF mice, as well as suppress the expression of FAO-related proteins. What's more, RUS can effectively improve cardiac function, myocardial fibrosis and morphological damage. Collectively, this study provided a potential metabolic marker CMPF and novel target OAT1/3 for CHF, which were demonstrated to be involved in FAO. And RUS was identified as a potential anti-FAO drug for CHF by regulating OAT1/3.
Collapse
Affiliation(s)
- Qiong Lai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaozhou Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Kong J, Kui H, Tian Y, Kong X, He T, Li Q, Gu C, Guo J, Liu C. Nephrotoxicity assessment of podophyllotoxin-induced rats by regulating PI3K/Akt/mTOR-Nrf2/HO1 pathway in view of toxicological evidence chain (TEC) concept. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115392. [PMID: 37651795 DOI: 10.1016/j.ecoenv.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Adverse reactions to traditional Chinese medicine have hindered the healthy development and internationalization process of the traditional Chinese medicine industry. The critical issue that needs to be solved urgently is to evaluate the safety of traditional Chinese medicine systematically and effectively. Podophyllotoxin (PPT) is a highly active compound extracted from plants of the genus Podophyllum such as Dysosma versipellis (DV). However, its high toxicity and toxicity to multiple target organs affect the clinical application, such as the liver and kidney. Based on the concurrent effects of PPT's medicinal activity and toxicity, it would be a good example to conduct a systematic review of its safety. Therefore, this study revolves around the Toxicological Evidence Chain (TEC) concept. Based on PPT as the main toxic constituent in DV, observe the objective toxicity impairment phenotype of animals. Evaluate the serum biochemical indicators and pathological tissue sections for substantial toxic damage results. Using metabolomics, lipidomics, and network toxicology to evaluate the nephrotoxicity of PPT from multiple perspectives systematically. The results showed that PPT-induced nephrotoxicity manifested as renal tubular damage, mainly affecting metabolic pathways such as glycerophospholipid metabolism and sphingolipid metabolism. PPT inhibits the autophagy process of kidney cells through the PI3K/Akt/mTOR and Nrf2/HO1 pathways and induces the activation of oxidative stress in the body, thereby causing nephrotoxic injury. This study fully verified the feasibility of the TEC concept for the safety and toxicity evaluation of traditional Chinese medicine. Provide a research template for systematically evaluating the safety of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiao Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Jinhe Guo
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chuanxin Liu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| |
Collapse
|
7
|
Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V, Tomassetti F, Vivarini I, Bollero P, Bernardini S, Noce A. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023; 13:889. [PMID: 37623833 PMCID: PMC10456419 DOI: 10.3390/metabo13080889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Saliva is a very complex fluid and it is essential to maintain several physiological processes and functions, including oral health, taste, digestion and immunological defenses. Saliva composition and the oral microbiome can be influenced by several factors, like diet and smoking habits, and their alteration can represent an important access point for pathogens and, thus, for systemic illness onset. In this review, we explore the potentiality of saliva as a new tool for the early detection of some pathological conditions, such as oral diseases, chronic degenerative non-communicable diseases, among these chronic kidney disease (CKD). We also examined the possible correlation between oral and systemic diseases and oral and gut microbiota dysbiosis. In particular, we deeply analyzed the relationship between oral diseases and CKD. In this context, some salivary parameters can represent a new device to detect either oral or systemic pathologies. Moreover, the positive modulation of oral and gut microbiota induced by prebiotics, postbiotics, or symbiotics could represent a new possible adjuvant therapy in the clinical management of oral diseases and CKD.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Vivarini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
8
|
Sadaati S, Daneshamouz S, Bahig J, Shoker A, Abdelrasoul A. In-Situ Synchrotron Imaging, Experimental, and Computational Investigations on the Efficiency of Trametes versicolor Laccase on Detoxification of P-Cresyl Sulfate (PCS) Protein Bound Uremic Toxin (PBUT). J Biotechnol 2023; 368:12-30. [PMID: 37004788 DOI: 10.1016/j.jbiotec.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Protein bound uremic toxins (PBUTs) are small substances binding to larger proteins, mostly human serum albumin (HSA), and are challenging to remove by hemodialysis (HD). Among different classes of PBUTs, p-cresyl sulfate (PCS) is the most widely used marker molecule and major toxin, as 95% is bound to HSA. PCS has a pro-inflammatory effect and increases both the uremia symptom score and multiple pathophysiological activities. High-flux HD to clear PCS leads to serious loss of HSA, which results in a high mortality rate. The goal of the present study is to investigate the efficacy of PCS detoxification in serum of HD patients using a biocompatible laccase enzyme from Trametes versicolor. Molecular docking was used to gain an in-depth understanding of the interactions between PCS and the laccase to identify the functional group(s) responsible for ligand-protein receptor interactions. UV-Vis spectroscopy and gas chromatography-mass spectrometry (GC-MS) were used to assess the detoxification of PCS. GC-MS was used to identify the detoxification byproducts and their toxicity was assessed using docking commutations. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging available at the Canadian Light Source (CLS) was conducted to assess HSA binding with PCS before and after detoxification with laccase and undertake the corresponding quantitative analysis. GC-MS analyses confirmed the detoxification of PCS with laccase at a concentration of 500mg/L. The potential pathway of PCS detoxification in the presence of the laccase was identified. Increasing laccase concentration led to the formation of m-cresol, as indicated by the corresponding absorption in the UV-Vis spectra and a sharp peak on the GC-MS spectra. Our analysis provides insight into the general features of PCS binding on Sudlow site II, as well as insights into PCS detoxification product interactions. The average affinity energy for detoxification products was lower than that of PCS. Even though some byproducts showed potential toxicity, the level was lower than for PCS based on toxicity indexes (e.g., LD50/LC50, carcinogenicity, neurotoxicity, mutagenicity). In addition, these small compounds can also be more easily removed by HD compared to PCS. SR-µCT quantitative analysis showed adhesion of the HSA to a significant reduced extent in the presence of the laccase enzyme in bottom sections of the polyarylethersulfone (PAES) clinical HD membrane tested. Overall, this study opens new frontiers for PCS detoxification.
Collapse
|
9
|
Lauriola M, Farré R, Evenepoel P, Overbeek SA, Meijers B. Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins (Basel) 2023; 15:116. [PMID: 36828430 PMCID: PMC9960799 DOI: 10.3390/toxins15020116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a higher cardiovascular risk compared to the average population, and this is partially due to the plasma accumulation of solutes known as uremic toxins. The binding of some solutes to plasma proteins complicates their removal via conventional therapies, e.g., hemodialysis. Protein-bound uremic toxins originate either from endogenous production, diet, microbial metabolism, or the environment. Although the impact of diet on uremic toxicity in CKD is difficult to quantify, nutrient intake plays an important role. Indeed, most uremic toxins are gut-derived compounds. They include Maillard reaction products, hippurates, indoles, phenols, and polyamines, among others. In this review, we summarize the findings concerning foods and dietary components as sources of uremic toxins or their precursors. We then discuss their endogenous metabolism via human enzyme reactions or gut microbial fermentation. Lastly, we present potential dietary strategies found to be efficacious or promising in lowering uremic toxins plasma levels. Aligned with current nutritional guidelines for CKD, a low-protein diet with increased fiber consumption and limited processed foods seems to be an effective treatment against uremic toxins accumulation.
Collapse
Affiliation(s)
- Mara Lauriola
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Pieter Evenepoel
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Björn Meijers
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
11
|
Zhong XY, Guo Y, Fan Z. Increased level of free-circulating MtDNA in maintenance hemodialysis patients: Possible role in systemic inflammation. J Clin Lab Anal 2022; 36:e24558. [PMID: 35708020 PMCID: PMC9279998 DOI: 10.1002/jcla.24558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background Mitochondrial DNA (MtDNA) exposed to the extracellular space due to cell death and stress has immunostimulatory properties. However, the clinical significance of circulating MtDNA in maintenance hemodialysis (MHD) patients and the precise mechanism of its emergence have yet to be investigated. Methods This cross‐sectional study consisted of 52 MHD patients and 32 age‐ and sex‐matched healthy controls. MHD patients were further categorized into high and low circulating cell‐free MtDNA (ccf‐MtDNA) groups based on the median value. Copy number of MtDNA was quantified using TaqMan‐based qPCR. Plasma cytokines were measured using ELISA kits. Reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) in peripheral blood mononuclear cells (PBMCs) were detected using DCFH‐DA or JC‐1 staining. Results The copy numbers of ccf‐MtDNA in patients with MHD were higher than those in healthy controls, and these alterations were correlated with changes of cytokines TNF‐α and IL‐6. Adjusted model in multivariate analysis showed that the presence of anuria and longer dialysis vintage were independently associated with higher levels of ccf‐MtDNA. Meanwhile, although not statistically significant, an inverse correlative trend between urinary MtDNA and ccf‐MtDNA was observed in patients with residual urine. Afterward, using PBMCs as surrogates for mitochondria‐rich cells, we found that patients in the high ccf‐MtDNA group exhibited a significantly higher ROS production and lower Δψm in cells. Conclusions Our data suggested that changes in ccf‐MtDNA correlate with the degree of inflammatory status in MHD patients, and that the excessive MtDNA may be caused by mitochondrial dysfunction and reduced urinary MtDNA excretion.
Collapse
Affiliation(s)
- Xiao-Yi Zhong
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Pieniazek A, Kopera M, Gwozdzinski L, Gwozdzinski K. Indoxyl Sulfate Induces Oxidative Changes in Plasma and Hemolysate. Molecules 2022; 27:molecules27123848. [PMID: 35744968 PMCID: PMC9231308 DOI: 10.3390/molecules27123848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
The deteriorating function of the kidneys in chronic kidney disease (CKD) is associated, among other things, with the retention of many unnecessary metabolic products in the body. Indoxyl sulfate (IS) belongs to the group of uremic toxins with a high protein binding affinity. Moreover, this compound can generate oxidative stress. We hypothesized that a high concentration of IS might induce oxidative changes in erythrocytes and plasma components, and could therefore contribute to CKD progression. In this study, we evaluated the influence of IS on the oxidative stress parameters in plasma and hemolysate. Moreover, as a result of the action of IS, we observed a decrease in the total antioxidant capacity and a change in the activity of catalase and superoxide dismutase in hemolysate and plasma. The obtained results indicate that IS induces oxidative damage to hemolysate and plasma components. Greater changes in the parameters of oxidative stress were observed in hemolysate than in plasma treated with indoxyl sulfate. The obtained results suggest that the increased concentration of IS in patients with chronic kidney disease may lead to a decrease in the lifespan of erythrocytes in their bloodstream.
Collapse
Affiliation(s)
- Anna Pieniazek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.K.); (K.G.)
- Correspondence: ; Tel.: +48-42-6354410
| | - Michal Kopera
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.K.); (K.G.)
| | - Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-753 Lodz, Poland;
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.K.); (K.G.)
| |
Collapse
|
13
|
Daneshamouz S, Saadati S, Abdelrasoul A. Molecular docking study of biocompatible enzyme interactions for removal of indoxyl sulfate (IS), indole-3-acetic acid (IAA), and p-cresyl sulfate (PCS) protein bound uremic toxins. Struct Chem 2022. [DOI: 10.1007/s11224-022-01905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Saar-Kovrov V, Zidek W, Orth-Alampour S, Fliser D, Jankowski V, Biessen EAL, Jankowski J. Reduction of protein-bound uraemic toxins in plasma of chronic renal failure patients: A systematic review. J Intern Med 2021; 290:499-526. [PMID: 33792983 DOI: 10.1111/joim.13248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Protein-bound uraemic toxins (PBUTs) accumulate in patients with chronic kidney disease and impose detrimental effects on the vascular system. However, a unanimous consensus on the most optimum approach for the reduction of plasma PBUTs is still lacking. METHODS In this systematic review, we aimed to identify the most efficient clinically available plasma PBUT reduction method reported in the literature between 1980 and 2020. The literature was screened for clinical studies describing approaches to reduce the plasma concentration of known uraemic toxins. There were no limits on the number of patients studied or on the duration or design of the studies. RESULTS Out of 1274 identified publications, 101 studies describing therapeutic options aiming at the reduction of PBUTs in CKD patients were included in this review. We stratified the studies by the PBUTs and the duration of the analysis into acute (data from a single procedure) and longitudinal (several treatment interventions) trials. Reduction ratio (RR) was used as the measure of plasma PBUTs lowering efficiency. For indoxyl sulphate and p-cresyl sulphate, the highest RR in the acute studies was demonstrated for fractionated plasma separation, adsorption and dialysis system. In the longitudinal trials, supplementation of haemodialysis patients with AST-120 (Kremezin®) adsorbent showed the highest RR. However, no superior method for the reduction of all types of PBUTs was identified based on the published studies. CONCLUSIONS Our study shows that there is presently no technique universally suitable for optimum reduction of all PBUTs. There is a clear need for further research in this field.
Collapse
Affiliation(s)
- V Saar-Kovrov
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - W Zidek
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Orth-Alampour
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany
| | - D Fliser
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Department of Internal Medicine IV - Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - V Jankowski
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany
| | - E A L Biessen
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J Jankowski
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Uremic Toxins and Their Relation with Oxidative Stress Induced in Patients with CKD. Int J Mol Sci 2021; 22:ijms22126196. [PMID: 34201270 PMCID: PMC8229520 DOI: 10.3390/ijms22126196] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.
Collapse
|
16
|
Ichimura Y, Kudoh N, Murabe T, Akao T, Watanuki S, Suzuki T, Saito T, Oda M, Saitoh H. Inhibitory effects of indoxyl sulfate and creatinine on the renal transport of meropenem and biapenem in rats. Drug Metab Pharmacokinet 2021; 40:100406. [PMID: 34352708 DOI: 10.1016/j.dmpk.2021.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Carbapenem antibiotics are excreted preferentially in the urine after intravenous administration, with organic anion transporters (OATs) known to be involved in the renal tubular secretion of carbapenem antibiotics. Various uremic toxins (UTs) accumulate in the blood of patients with end-stage renal failure, and some UTs such as indoxyl sulfate (IS) and creatinine (Cr) are excreted in the urine via OATs. However, information about the possible interactions between these UTs and carbapenems in the renal secretion remains limited. In this study, we investigated the effects of IS and Cr on the renal transport of anionic meropenem and zwitterionic biapenem by using rat renal cortical slices. The uptake of meropenem and biapenem in the renal cortical slices was significantly decreased in the presence of 0.1 mM IS or 1 mM Cr. When biapenem and Cr were co-administered to rats intravenously, biapenem clearance from the plasma was clearly retarded, reflecting the current in vitro results. However, IS and Cr exerted no inhibitory effect on the uptake of metformin, a substrate of renal organic cation transporter (OCT) 2, in the renal cortical slices. Thus, our findings indicate that IS and Cr interfere with the renal secretion of carbapenem antibiotics by preferentially inhibiting OATs.
Collapse
Affiliation(s)
- Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Natsumi Kudoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takashi Murabe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takumi Akao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Sho Watanuki
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takanao Suzuki
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Toshihide Saito
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
17
|
Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Transl Res 2021; 229:115-134. [PMID: 32891787 DOI: 10.1016/j.trsl.2020.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic kidney disease (CKD) in the worldwide population is currently estimated between 11% and 13%. Adequate renal clearance is compromised in these patients and the accumulation of a large number of uremic retention solutes results in an irreversible worsening of renal function which can lead to end stage renal disease (ESRD). Approximately three million ESRD patients currently receive renal replacement therapies (RRTs), such as hemodialysis, which only partially restore kidney function, as they are only efficient in removing mainly small, unbound solutes from the circulation while leaving larger and protein-bound uremic toxins (PBUTs) untouched. The accumulation of PBUTs in patients highly increases the risk of cardiovascular events and is associated with higher mortality and morbidity in CKD and ESRD. In this review, we address several strategies currently being explored toward reducing PBUT concentrations, including clinical and medical approaches, therapeutic techniques, and recent developments in RRT technology. These include preservation of renal function, limitation of colon derived PBUTs, oral sorbents, adsorbent RRT technology, and use of albumin displacers. Despite the promising results of the different approaches to promote enhanced removal of a small percentage of the more than 30 identified PBUTs, on their own, none of them provide a treatment with the required efficiency, safety and cost-effectiveness to prevent CKD-related complications and decrease mortality and morbidity in ESRD.
Collapse
|
18
|
Continuous-flow microfluidic device for synthesis of cationic porous polystyrene microspheres as sorbents of p-xylene from physiological saline. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Removal of Urea, β2-Microglobulin, and Indoxyl Sulfate Assessed by Absorbance and Fluorescence in the Spent Dialysate During Hemodialysis. ASAIO J 2021; 66:698-705. [PMID: 31425267 DOI: 10.1097/mat.0000000000001058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, simultaneous removal assessment of marker molecules from three uremic toxin groups was performed during different hemodialysis treatment modalities using optical characteristics of spent dialysate. Results from optical measurements were compared with the results from chemical laboratory. Ten chronic dialysis patients, mean age 59 ± 15 years, were included in the study during 40 hemodialysis sessions. Low-flux hemodialysis (HD), high-flux hemodialysis (HF), and postdilutional online hemodiafiltration (HDF) with different settings were used. The reduction ratio (RR) and total removed solute (TRS) of three uremic solutes were determined: small molecular weight urea, middle molecular β2-microglobulin (B2M), and protein-bound indoxyl sulfate (IS). Concentrations of these solutes in the spent dialysate were measured by laboratory (lab) and optical (opt) methods, in the serum by laboratory methods, and calculated RR values in percentage were compared accordingly. Total removed solute was obtained from the total dialysate collection (TDC) using lab and opt methods. The highest RR values were found for urea and B2M, and the lowest for IS. The difference between RR of lab and opt results estimated as mean accuracy (BIAS) was ≤8.1% for all three solutes. Good correspondence between TRS lab vs. opt was achieved, resulting in strong linear correlation values R from 0.727 for urea to 0.971 for IS. Accuracy for TRS values as BIAS ± standard error (SE), comparing lab vs. opt, showed no statistical difference for any of the observed uremic solutes (P > 0.05). The accuracy of the optical method was not influenced by the dialysis modality (HD, HF, and HDF).
Collapse
|
20
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
21
|
Roth-Stefanski CT, Dolenga C, Nakao LS, Pecoits-Filho R, de Moraes TP, Moreno-Amaral AN. Pilot Study of Probiotic Supplementation on Uremic Toxicity and Inflammatory Cytokines in Chronic Kidney Patients. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190215111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Bacterial metabolism contributes to the generation of uremic toxins in patients
with chronic kidney disease (CKD). It has been investigated the use of probiotics in the reduction
of uremic toxins intestinal production.
Objective:
The aim of this pilot study was to evaluate the effect of probiotic supplementation on reducing
the production of uremic toxins and the inflammatory profile of CKD patients.
Methods:
We performed a randomized, blind, placebo-controlled, crossover study on patients with
CKD stages 3 and 4. The intervention was a probiotic formulation composed of Lactobacillus
acidophilus strains given orally three times a day for 3 months. Changes in uremic toxins
(p-Cresylsulfate and Indoxyl Sulfate) and serum inflammatory cytokines were the primary endpoints.
Results:
Of the 44 patients randomized, 25 completed the study (mean age 51 ± 9.34, 64% female,
mean eGFR 36 ± 14.26 mL/min/1.73m², mean BMI 28.5 ± 5.75 kg/m²). At 3 months, there were no
significant changes in any of the studied biomarkers including p-cresylsulfate (p = 0.57), Indoxyl sulfate
(p = 0.08) and interleukin-6 (p = 0.55).
Conclusion:
Lactobacillus acidophilus strains given as probiotic were not able to reduce serum levels
of uremic toxins and biomarkers of inflammation in CKD patients in stage 3 and 4.
Collapse
Affiliation(s)
- Cristina T. Roth-Stefanski
- Department of Postgraduate in Health Science (PPGCS), Medical School, Pontifical Catholic University of Parana, Rua Imaculada Conceicao, 1155, Curitiba, Brazil
| | - Carla Dolenga
- Basic Pathology Department, UFPR, Curitiba/PR, Brazil
| | - Lia S. Nakao
- Basic Pathology Department, UFPR, Curitiba/PR, Brazil
| | - Roberto Pecoits-Filho
- Department of Postgraduate in Health Science (PPGCS), Medical School, Pontifical Catholic University of Parana, Rua Imaculada Conceicao, 1155, Curitiba, Brazil
| | - Thyago P. de Moraes
- Department of Postgraduate in Health Science (PPGCS), Medical School, Pontifical Catholic University of Parana, Rua Imaculada Conceicao, 1155, Curitiba, Brazil
| | - Andrea N. Moreno-Amaral
- Department of Postgraduate in Health Science (PPGCS), Medical School, Pontifical Catholic University of Parana, Rua Imaculada Conceicao, 1155, Curitiba, Brazil
| |
Collapse
|
22
|
Popowski E, Kohl B, Schneider T, Jankowski J, Schulze-Tanzil G. Uremic Toxins and Ciprofloxacin Affect Human Tenocytes In Vitro. Int J Mol Sci 2020; 21:4241. [PMID: 32545914 PMCID: PMC7353042 DOI: 10.3390/ijms21124241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Tendinopathy is a rare but serious complication of quinolone therapy. Risk factors associated with quinolone-induced tendon disorders include chronic kidney disease accompanied by the accumulation of uremic toxins. Hence, the present study explored the effects of the representative uremic toxins phenylacetic acid (PAA) and quinolinic acid (QA), both alone and in combination with ciprofloxacin (CPX), on human tenocytes in vitro. Tenocytes incubated with uremic toxins +/- CPX were investigated for metabolic activity, vitality, expression of the dominant extracellular tendon matrix (ECM) protein type I collagen, cell-matrix receptor β1-integrin, proinflammatory interleukin (IL)-1β, and the ECM-degrading enzyme matrix metalloproteinase (MMP)-1. CPX, when administered at high concentrations (100 mM), suppressed tenocyte metabolism after 8 h exposure and at therapeutic concentrations after 72 h exposure. PAA reduced tenocyte metabolism only after 72 h exposure to very high doses and when combined with CPX. QA, when administered alone, led to scarcely any cytotoxic effect. Combinations of CPX with PAA or QA did not cause greater cytotoxicity than incubation with CPX alone. Gene expression of the pro-inflammatory cytokine IL-1β was reduced by CPX but up-regulated by PAA and QA. Protein levels of type I collagen decreased in response to high CPX doses, whereas PAA and QA did not affect its synthesis significantly. MMP-1 mRNA levels were increased by CPX. This effect became more pronounced in the form of a synergism following exposure to a combination of CPX and PAA. CPX was more tenotoxic than the uremic toxins PAA and QA, which showed only distinct suppressive effects.
Collapse
Affiliation(s)
- Erman Popowski
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.P.); (B.K.); (T.S.)
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.P.); (B.K.); (T.S.)
| | - Tobias Schneider
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.P.); (B.K.); (T.S.)
- Institute of Anatomy, Paracelsus Private Medical University, Nuremberg and Salzburg, Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Gundula Schulze-Tanzil
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
23
|
Cigarrán Guldris S. Gut-derived toxins and chronic kidney disease: time for action? Am J Clin Nutr 2020; 111:948-949. [PMID: 32219425 DOI: 10.1093/ajcn/nqaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Olivier V, Dunyach-Remy C, Corbeau P, Cristol JP, Sutra T, Burtey S, Lavigne JP, Moranne O. Factors of microinflammation in non-diabetic chronic kidney disease: a pilot study. BMC Nephrol 2020; 21:141. [PMID: 32316931 PMCID: PMC7175551 DOI: 10.1186/s12882-020-01803-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The relationships between digestive bacterial translocation, uremic toxins, oxidative stress and microinflammation in a population of chronic kidney disease (CKD) patients without metabolic nor inflammatory disease are unknown. Methods Bacterial translocation, uremic toxins, oxidative stress, and inflammation were assessed by measuring plasma levels of 16S ribosomal DNA (16S rDNA), p-cresyl sulfate (PCS), indoxyl sulfate (IS), indole acetic acid (IAA), F2-isoprostanes, hsCRP and receptor I of TNFα (RITNFα) in patients without metabolic nor inflammatory disease. 44 patients with CKD from stage IIIB to V and 14 controls with normal kidney function were included from the nephrology outpatients. 11 patients under hemodialysis (HD) were also included. Correlations between each factor and microinflammation markers were studied. Results 16S rDNA levels were not increased in CKD patients compared to controls but were decreased in HD compared to non-HD stage V patients (4.7 (3.9–5.3) vs 8.6 (5.9–9.7) copies/μl, p = 0.002). IS, PCS and IAA levels increased in HD compared to controls (106.3 (73.3–130.4) vs 3.17 (2.4–5.1) μmol/l, p < 0.0001 for IS; 174.2 (125–227.5) vs 23.7 (13.9–52.6) μmol/l, p = 0.006 for PCS; and 3.7 (2.6–4.6) vs 1.3 (1.0–1.9) μmol/l, p = 0.0002 for IAA). Urea increased in non-HD stage V patients compared to controls (27.6 (22.7–30.9) vs 5.4 (4.8–6.4) mmol/l, p < 0.0001) and was similar in HD and in non-HD stage V (19.3 (14.0–24.0) vs 27.6 (22.7–30.9) mmol/l, p = 0.7). RITNFα levels increased in HD patients compared to controls (12.6 (9.6–13.3) vs 1.1 (1.0–1.4) ng/ml, p < 0.0001); hsCRP levels increased in non-HD stage V patients compared to controls (2.9 (1.4–8.5) vs 0.8 (0.5–1.7) mg/l, p = 0.01) and remained stable in HD patients (2.9 (1.4–8.5) vs 5.1 (0.9–11.5) mg/l, p = 1). F2-isoprostanes did not differ in CKD patients compared to controls. Among uremic toxins, IS and urea were correlated to RITNFα (r = 0.8, p < 0.0001 for both). PCS, IS and urea were higher in patients with hsCRP≧5 mg/l (p = 0.01, 0.04 and 0.001 respectively). 16S rDNA, F2-isoprostanes were not correlated to microinflammation markers in our study. Conclusions In CKD patients without any associated metabolic nor inflammatory disease, only PCS, IS, and urea were correlated with microinflammation. Bacterial translocation was decreased in patients under HD and was not correlated to microinflammation.
Collapse
Affiliation(s)
- Valerie Olivier
- Department of Nephrology - Dialysis - Apheresis, Caremeau Hospital, University Montpellier-Nîmes, CHU Nîmes, Nimes, France.
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, U1047, INSERM, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Pierre Corbeau
- UMR9002, Institute for Human Genetics, CNRS-University of Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier, France.,Department of Biochemistry and Hormonology, CHU Montpellier, Montpellier, France
| | - Thibault Sutra
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier, France.,Department of Biochemistry and Hormonology, CHU Montpellier, Montpellier, France
| | - Stephane Burtey
- C2VN, INSERM 1263, INRA 1260, Aix-Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, U1047, INSERM, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Olivier Moranne
- Department of Nephrology - Dialysis - Apheresis, Caremeau Hospital, University Montpellier-Nîmes, CHU Nîmes, Nimes, France.,EA2415, Laboratoire Epidémiologie, Santé Publique, Biostatistiques, University of Montpellier, Nîmes, France
| |
Collapse
|
25
|
Lactobacillus salivarius BP121 prevents cisplatin‑induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p‑cresol sulfate via alleviating dysbiosis. Int J Mol Med 2020; 45:1130-1140. [PMID: 32124946 PMCID: PMC7053870 DOI: 10.3892/ijmm.2020.4495] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is important for maintaining the integrity of the intestinal barrier, promoting immunological tolerance and carrying out metabolic activities that have not evolved in hosts. Intestinal dysbiosis is associated with chronic kidney disease and probiotic supplementation has been shown to be beneficial. However, it is not known whether gut microorganisms‑specifically, lactic acid bacteria (LAB) can protect against acute kidney injury (AKI). To address this issue, the present study investigated the effects of Lactobacillus salivarius BP121, an intestinal LAB isolated from the feces of newborns, in a rat model of cisplatin‑induced AKI and also in Caco‑2 human intestinal epithelial cells. BP121 prevented cisplatin‑induced AKI in rats, as demonstrated by decreases in inflammation and oxidative stress in kidney tissue and in serum levels of uremic toxins such as indoxyl sulfate (IS) and p‑cresol sulfate (PCS). BP121 also reduced intestinal permeability, as determined using fluorescein isothiocyanate‑dextran by immunohistochemical detection of tight junction (TJ) proteins such as zona occludens‑1 and occludin. The abundance of Lactobacillus spp., which are beneficial intestinal flora, was increased by BP121; this was accompanied by an increase in the concentrations of short‑chain fatty acids in feces. Additionally, H2O2‑induced TJ protein damage was reduced in Caco‑2 cells treated with BP121 culture supernatant, an effect that was reversed by the 5' AMP‑activated protein kinase (AMPK) inhibitor Compound C and Toll‑like receptor (TLR)4 inhibitor TLR4‑IN‑C34. In conclusion, this study demonstrated that L. salivarius BP121 protects against cisplatin‑induced AKI by decreasing inflammation and oxidative stress and this renoprotective effect is partially mediated by modulating the gut environment and thereby suppressing IS and PCS production as well as by regulating AMPK and TLR4 dependent TJ assembly.
Collapse
|
26
|
Lin CC, Sengee A, Mjøs SA. Minor compounds and potential interferents in gas chromatographic analyses of human serum fatty acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1138:121963. [DOI: 10.1016/j.jchromb.2019.121963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 11/29/2022]
|
27
|
Kiuchi MG, Ho JK, Nolde JM, Gavidia LML, Carnagarin R, Matthews VB, Schlaich MP. Sympathetic Activation in Hypertensive Chronic Kidney Disease - A Stimulus for Cardiac Arrhythmias and Sudden Cardiac Death? Front Physiol 2020; 10:1546. [PMID: 32009970 PMCID: PMC6974800 DOI: 10.3389/fphys.2019.01546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Studies have revealed a robust and independent correlation between chronic kidney disease (CKD) and cardiovascular (CV) events, including death, heart failure, and myocardial infarction. Recent clinical trials extend this range of adverse CV events, including malignant ventricular arrhythmias and sudden cardiac death (SCD). Moreover, other studies point out that cardiac structural and electrophysiological changes are a common occurrence in this population. These processes are likely contributors to the heightened hazard of arrhythmias in CKD population and may be useful indicators to detect patients who are at a higher SCD risk. Sympathetic overactivity is associated with increased CV risk, specifically in the population with CKD, and it is a central feature of the hypertensive state, occurring early in its clinical course. Sympathetic hyperactivity is already evident at the earliest clinical stage of CKD and is directly related to the progression of renal failure, being most pronounced in those with end-stage renal disease. Sympathetic efferent and afferent neural activity in kidney failure is a crucial facilitator for the perpetuation and evolvement of the disease. Here, we will revisit the role of the feedback loop of the sympathetic neural cycle in the context of CKD and how it may aggravate several of the risk factors responsible for causing SCD. Targeting the overactive sympathetic nervous system therapeutically, either pharmacologically or with newly available device-based approaches, may prove to be a pivotal intervention to curb the substantial burden of cardiac arrhythmias and SCD in the high-risk population of patients with CKD.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Janis Marc Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, Australia.,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Wu PH, Lin YT, Wu PY, Lee HH, Lee SC, Hung SC, Chen SC, Kuo MC, Chiu YW. Association between Circulation Indole-3-Acetic Acid Levels and Stem Cell Factor in Maintenance Hemodialysis Patients: A Cross-Sectional Study. J Clin Med 2020; 9:jcm9010124. [PMID: 31906560 PMCID: PMC7019261 DOI: 10.3390/jcm9010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Protein-bound uremic toxin is a cardiovascular (CV) risk factor for patients with end-stage renal disease. Indole-3-acetic acid (IAA) was found to be associated with CV disease but the detailed pathophysiology remains unknown. Moreover, mitogen-activated protein kinase (MAPK) signaling cascades play an important role in the pathogenesis of CV disease. Thus, we explored the association between circulating IAA levels and forty MAPK cascade associated proteins in patients undergoing hemodialysis (HD). Circulating total form IAA was quantified by mass spectrometry and forty MAPK cascade associated proteins by a proximity extension assay in 331 prevalent HD patients. Accounting for multiple testing, and in multivariable-adjusted linear regression models, circulating total form IAA levels were positively associated with stem cell factor (β coefficient 0.13, 95% confidence interval 0.04 to 0.21, p = 0.004). A bioinformatics approach using the search tool for interactions of chemicals (STITCH) tool provided information that IAA may be involved in the regulation of cell proliferation, hematopoietic cells, and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. The knowledge gained here can be generalized, thereby impacting the non-traditional CV risk factors in patients with kidney disease. Further in vitro work is necessary to validate the translation of the mechanistic pathways.
Collapse
Affiliation(s)
- Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
| | - Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pei-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Hei-Hwa Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 23142, Taiwan;
| | - Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7351)
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
29
|
Lin YT, Wu PH, Liang SS, Mubanga M, Yang YH, Hsu YL, Kuo MC, Hwang SJ, Kuo PL. Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis. Sci Rep 2019; 9:20388. [PMID: 31892730 PMCID: PMC6938492 DOI: 10.1038/s41598-019-57004-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease have a greater risk of cognitive impairment. Cerebral uremic solute accumulation causes uremic encephalopathy; however, the association of protein-bound uremic toxins on cognitive function remains unclear. The present study aimed to investigate the association of two protein-bound uremic toxins, namely indoxyl sulfate (IS) and p-cresyl sulfate (PCS), on cognitive function in patients receiving hemodialysis (HD) for at least 90 days. Circulating free form IS and PCS were quantified by liquid chromatography/mass spectrometry. Mini-Mental State Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI) were used to evaluate cognitive function. In total, 260 HD patients were recruited with a mean age of 58.1 ± 11.3 years, of which, 53.8% were men, 40% had diabetes, and 75.4% had hypertension. The analysis revealed that both free IS and free PCS were negatively associated with the CASI score and MMSE. After controlling for confounders, circulating free IS levels persisted to be negatively associated with MMSE scores [β = −0.62, 95% confidence interval (CI): −1.16 to −0.08] and CASI scores (β = −1.97, 95% CI: −3.78 to −0.16), mainly in the CASI domains of long-term memory, mental manipulation, language ability, and spatial construction. However, there was no correlation between free PCS and total MMSE or total CASI scores after controlling for confounders. In conclusion, circulating free form IS, but not PCS is associated with lower cognitive function test scores in HD patients. Thus, a further study is needed to evaluate whether a decrease in free IS levels can slow down cognitive decline in HD patients.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden.,Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mwenya Mubanga
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Institute of Population Sciences, National Health Research Institutes, Miaoli, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Ikematsu N, Kashiwagi M, Hara K, Waters B, Matsusue A, Takayama M, Kubo SI. Organ distribution of endogenous p-cresol in hemodialysis patients. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:81-85. [PMID: 31064961 DOI: 10.2152/jmi.66.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND p-Cresol concentrations are high in the blood of hemodialysis (HD) patients. However, its organ distribution has not yet been investigated in detail. We herein report the distribution of p-cresolin HD patients from forensic autopsy cases. METHODS p-Cresol was measured in the blood, urine, lungs, liver, and kidneys from 4 HD and 4 non-HD cases. Samples were extracted with p-cresol-d8 (internal standard), derivatized,and injected on the GC-MS. RESULTS AND DISCUSSION The total urinary p-cresol/Cr was 79.73 ng/ml in HD cases,which was 16-fold higher than that in non-HD cases. p-Cresol in the blood and kidneys were 30-fold higher or more at 11.92 and 13.08 µg/mL(g), respectively. p-Cresol in the liver and lungs were approximately 20-fold higher at 4.82 and 9.99 µg/g, respectively. p-Cresol was markedly increased in not only the blood, but also the urine and organs of HD cases. The distribution of p-cresol in the blood, urine, and organs differed between HD and non-HD cases. In HD cases, the percentages of conjugated (C) and protein-bound conjugated (PC) urinary p-cresol were 57 and 41%, respectively. C and PC p-cresol was 66% and 25% in the kidneys, respectively, and similar results were obtained in the lungs. J. Med. Invest. 66 : 81-85, February, 2019.
Collapse
Affiliation(s)
- Natsuki Ikematsu
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayuki Kashiwagi
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kenji Hara
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Brian Waters
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Aya Matsusue
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Mio Takayama
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin-Ichi Kubo
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
31
|
Shen Y, Wang Y, Shi Y, Bi X, Xu J, Zhu Q, Ding F. Improving the clearance of protein-bound uremic toxins using cationic liposomes as an adsorbent in dialysate. Colloids Surf B Biointerfaces 2019; 186:110725. [PMID: 31862563 DOI: 10.1016/j.colsurfb.2019.110725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Anionic and protein-bound uremic toxins, represented by indoxyl sulfate (IS), may be associated with cardiovascular outcomes and the progression of chronic kidney disease in cases of injured kidney function and are not easily cleared by traditional dialysis therapy. We fabricated cationic liposomes that were modified with polyethyleneimine (PEI), octadecylamine (Oct), and hexadecyl trimethyl ammonium bromide (CTAB), and evaluated the effects on the clearance of the representative protein-bound uremic toxins (PBUTs). The binding rate was obtained by ultrafiltration and in vitro dialysis was performed in a Rapid Equilibrium Dialysis (RED) device to assay the clearing efficiency of the dialysate supported by three types of cationic liposomes. The cationic liposomes showed a higher binding rate with IS (1.24-1.38 fold higher) and p-cresol (1.07-1.09 fold higher) than in the unmodified plain liposomes. The dialysate supported by cationic liposomes also exhibited better clearing efficiency for IS (PEI-20: 57.65 ± 1.74 %; Oct-5: 62.80 ± 0.69 %; CTAB-10: 66.54 ± 0.91 %; p < 0.05) and p-cresol (PEI-20: 67.05 ± 3.09 %; Oct-5: 79.26 ± 0.43 %; CTAB-5: 68.45 ± 1.72 %; p < 0.05) than for phosphate buffer saline (IS: 29.70 ± 2.38 %; p-cresol: 33.59 ± 3.44 %) or dialysate supported by bovine serum albumin (IS: 50.00 ± 4.01 %; p-cresol: 53.06 ± 0.97 %). In conclusion, cationic liposomes are efficient in the clearance of anionic PBUTs, and these modified liposomes suggest a potential application in blood purification.
Collapse
Affiliation(s)
- Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yuanyuan Shi
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiao Bi
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jingyi Xu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China.
| |
Collapse
|
32
|
Kalantari S, Nafar M. An update of urine and blood metabolomics in chronic kidney disease. Biomark Med 2019; 13:577-597. [DOI: 10.2217/bmm-2019-0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic kidney disease is considered as a serious obstacle in global health, with increasing incidence and prevalence. In spite of numerous attempts by using recent omics technologies, specially metabolomics, for understanding pathophysiology, molecular mechanism and identification reliable consensus biomarkers for diagnosis and prognosis of this complex disease, the current biomarkers are still insensitive and many questions about its pathomechanism are still to be unanswered. This review is focused on recent findings about urine and serum/plasma metabolite biomarkers and changes in the pathways that occurs in the disease conditions. The urine and blood metabolome content in the normal and disease state is investigated based on the current metabolomics studies and well known metabolite candidate biomarkers for chronic kidney disease are discussed.
Collapse
Affiliation(s)
- Shiva Kalantari
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Number 103, Boostan 9th Street, Pasdaran Avenue, 1666663111 Tehran, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Number 103, Boostan 9th Street, Pasdaran Avenue, 1666663111 Tehran, Iran
| |
Collapse
|
33
|
Lin YT, Wu PH, Lee HH, Mubanga M, Chen CS, Kuo MC, Chiu YW, Kuo PL, Hwang SJ. Indole-3 acetic acid increased risk of impaired cognitive function in patients receiving hemodialysis. Neurotoxicology 2019; 73:85-91. [PMID: 30826344 DOI: 10.1016/j.neuro.2019.02.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
Patients receiving hemodialysis (HD) have a higher risk of cognitive impairment and dementia than the general population. The accumulation of uremic toxins in the brain causes uremic encephalopathy, however, limited data exists to elucidate the effect of protein-bound uremic toxins on cognitive function. Here we investigate the effect of indole-3 acetic acid (IAA) and hippuric acid (HA), two different protein-bound uremic toxins from amino acid derivatives, on cognitive function by Silico and in a clinical study. Prevalent HD patients were enrolled in two independent hospitals. Serum IAA and HA were measured using mass spectrometry. Cognitive performance was measured using Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Cognitive Abilities Screening Instrument (CASI) by trained psychologists. Using silico data to predict the effect of blood-brain barrier penetration was performed. The silico data demonstrated that IAA and HA had positive blood-brain barrier penetration ability. Amongst the 230 HD patients, serum IAA was associated with poor MMSE score (β= -0.90, 95% CI -1.61 to -0.19) and poor CASI score (β= -3.29, 95% CI -5.69 to -0.88) in stepwise multiple linear regression analysis. In logistic regression model, Serum IAA was also associated with cognitive impairment based on MMSE definition (OR, 1.96, 95% CI 1.10, 3.5) and CASI definition (OR, 2.09, 95% CI 1.21, 3.61). There was no correlation between Serum HA levels and cognitive function status. In conclusion, IAA, not HA, was associated with cognitive impairment in HD patients. Further large scale and prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hei-Hwa Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mwenya Mubanga
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Cheng-Sheng Chen
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Institute of Population Sciences, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
34
|
Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases 2019; 7:diseases7010021. [PMID: 30781823 PMCID: PMC6473882 DOI: 10.3390/diseases7010021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide major health problem. Traditional risk factors for CKD are hypertension, obesity, and diabetes mellitus. Recent studies have identified gut dysbiosis as a novel risk factor for the progression CKD and its complications. Dysbiosis can worsen systemic inflammation, which plays an important role in the progression of CKD and its complications such as cardiovascular diseases. In this review, we discuss the beneficial effects of the normal gut microbiota, and then elaborate on how alterations in the biochemical environment of the gastrointestinal tract in CKD can affect gut microbiota. External factors such as dietary restrictions, medications, and dialysis further promote dysbiosis. We discuss the impact of an altered gut microbiota on neuroendocrine pathways such as the hypothalamus⁻pituitary⁻adrenal axis, the production of neurotransmitters and neuroactive compounds, tryptophan metabolism, and the cholinergic anti-inflammatory pathway. Finally, therapeutic strategies including diet modification, intestinal alpha-glucosidase inhibitors, prebiotics, probiotics and synbiotics are reviewed.
Collapse
Affiliation(s)
- Nima H Jazani
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Javad Savoj
- Department of Internal Medicine, Riverside Community Hospital, University of California-Riverside School of Medicine, Riverside, CA 92501, USA.
| | - Michael Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Nosratola D Vaziri
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Acute Exposure to Indoxyl Sulfate Impairs Endothelium-Dependent Vasorelaxation in Rat Aorta. Int J Mol Sci 2019; 20:ijms20020338. [PMID: 30650577 PMCID: PMC6359309 DOI: 10.3390/ijms20020338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota are emerging as potential contributors to the regulation of host homeostasis. Dysbiosis of the gut microbiota associated with increased intestinal permeability facilitates the passage of endotoxins and other microbial products, including indoxyl sulfate in the circulation. Although an emerging body of evidence has suggested that indoxyl sulfate is a key substance for the development of chronic kidney disease, few studies have investigated the direct association of indoxyl sulfate with vascular function. We hypothesized that indoxyl sulfate adversely affects vascular function. Aortas isolated from male Wistar rat were examined in the presence or absence of indoxyl sulfate to assess the vascular function, including vasorelaxation and vasocontraction. Indoxyl sulfate (vs. vehicle) (1) decreased vasorelaxation induced by acetylcholine (ACh) but not by sodium nitroprusside; (2) had no significant alterations of noradrenaline-induced vasocontraction in the absence and presence of endothelium; (3) decreased adenylyl cyclase activator (forskolin)-induced vasorelaxation, while such a difference was eliminated by endothelial denudation; and (4) decreased vasorelaxations induced by calcium ionophore (A23187) and transient receptor potential vanilloid 4 agonist (GSK1016790A). The indoxyl sulfate-induced decrease in the vasorelaxations induced by ACh and A23187 increased by cell-permeant superoxide dismutase or by organic anion transporter inhibitor. However, apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, had no effects on vasorelaxations induced by ACh, A23187, forskolin, and GSK1016790A in the presence of indoxyl sulfate. These results suggest that indoxyl sulfate directly affects the vascular function, particularly, endothelium-dependent vasorelaxation, and this effect may be attributable to increased oxidative stress after cell transportion via organic anion transporter, and such increased oxidative stress may not be attributable to activation of NADPH oxidase activation.
Collapse
|
36
|
Chinnappa S, Tu YK, Yeh YC, Glorieux G, Vanholder R, Mooney A. Association between Protein-Bound Uremic Toxins and Asymptomatic Cardiac Dysfunction in Patients with Chronic Kidney Disease. Toxins (Basel) 2018; 10:toxins10120520. [PMID: 30563136 PMCID: PMC6316640 DOI: 10.3390/toxins10120520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 01/15/2023] Open
Abstract
Although the relationship between protein-bound uremic toxins (PBUTs) and cardiac structure and cardiac mortality in chronic kidney disease (CKD) has been studied in the past, the association between cardiac dysfunction and PBUTs has not yet been studied. We therefore evaluated the association between impaired peak cardiac performance and the serum free and total concentrations of potentially cardiotoxic PBUTs. In a cross-sectional study of 56 male CKD patients (stages 2–5 (pre-dialysis)) who were asymptomatic with no known cardiac diseases or diabetes we measured peak cardiac power (CPOmax), aerobic exercise capacity (VO2max), and echocardiographic parameters of cardiac morphology and evaluated their association with PBUTs. The serum total and free concentrations of indoxyl sulfate (IXS), p-cresyl sulfate (PCS), p-cresyl glucuronide, indole acetic acid, and hippuric acid showed significant negative correlation with CPOmax and VO2max. IXS and PCS were independently associated with CPOmax and VO2max even after controlling for eGFR. No correlation between left ventricular mass index (LVMI) and PBUTs was seen. The present study for the first time has demonstrated the association between subclinical cardiac dysfunction in CKD and serum levels of a panel of PBUTs. Further studies are required to evaluate the mechanism of cardiotoxicity of the individual uremic toxins.
Collapse
Affiliation(s)
- Shanmugakumar Chinnappa
- Department of Nephrology, Doncaster and Bassetlaw Teaching Hospitals, Doncaster DN2 5LT, UK.
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9DA, UK.
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National University of Taiwan, Taipei 100, Taiwan.
| | - Yi Chun Yeh
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National University of Taiwan, Taipei 100, Taiwan.
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Raymond Vanholder
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Andrew Mooney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9DA, UK.
- Department of Nephrology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK.
| |
Collapse
|
37
|
Addi T, Poitevin S, McKay N, El Mecherfi KE, Kheroua O, Jourde-Chiche N, de Macedo A, Gondouin B, Cerini C, Brunet P, Dignat-George F, Burtey S, Dou L. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Arch Toxicol 2018; 93:121-136. [PMID: 30324315 DOI: 10.1007/s00204-018-2328-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is associated with high risk of thrombosis. Indole-3 acetic acid (IAA), an indolic uremic toxin, induces the expression of tissue factor (TF) in human umbilical vein endothelial cells (HUVEC) via the transcription factor aryl hydrocarbon receptor (AhR). This study aimed to understand the signaling pathways involved in AhR-mediated TF induction by IAA. We incubated human endothelial cells with IAA at 50 µM, the maximal concentration found in patients with CKD. IAA induced TF expression in different types of human endothelial cells: umbilical vein (HUVEC), aortic (HAoEC), and cardiac-derived microvascular (HMVEC-C). Using AhR inhibition and chromatin immunoprecipitation experiments, we showed that TF induction by IAA in HUVEC was controlled by AhR and that AhR did not bind to the TF promoter. The analysis of TF promoter activity using luciferase reporter plasmids showed that the NF-κB site was essential in TF induction by IAA. In addition, TF induction by IAA was drastically decreased by an inhibitor of the NF-κB pathway. IAA induced the nuclear translocation of NF-κB p50 subunit, which was decreased by AhR and p38MAPK inhibition. Finally, in a cohort of 92 CKD patients on hemodialysis, circulating TF was independently related to serum IAA in multivariate analysis. In conclusion, TF up-regulation by IAA in human endothelial cells involves a non-genomic AhR/p38 MAPK/NF-κB pathway. The understanding of signal transduction pathways related to AhR thrombotic/inflammatory pathway is of interest to find therapeutic targets to reduce TF expression and thrombotic risk in patients with CKD.
Collapse
Affiliation(s)
- Tawfik Addi
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Stéphane Poitevin
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Nathalie McKay
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Kamel Eddine El Mecherfi
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
- Université Mohamed Boudiaf USTO, Dpt génétique Moléculaire Appliquée (GMA), Oran, Algeria
| | - Omar Kheroua
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Noémie Jourde-Chiche
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Alix de Macedo
- Service de Pédiatrie-Néonatologie, Hôpital Fondation Saint Joseph, Marseille, France
| | | | - Claire Cerini
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Philippe Brunet
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Françoise Dignat-George
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Stéphane Burtey
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Laetitia Dou
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
38
|
Pajek M, Jerman A, Osredkar J, Ponikvar JB, Pajek J. Association of Uremic Toxins and Inflammatory Markers with Physical Performance in Dialysis Patients. Toxins (Basel) 2018; 10:toxins10100403. [PMID: 30275410 PMCID: PMC6215151 DOI: 10.3390/toxins10100403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/16/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Association of higher serum levels of uremic toxins and inflammatory markers with poorer physical performance is understudied. We measured the six-minute walk test (6MWT), 10 repetition sit-to-stand test (STS-10), handgrip strength (HGS), and Human Activity Profile (HAP) questionnaire score in 90 prevalent hemodialysis patents, with low comorbidity to reduce the potential confounding of concomitant disease. Midweek pre-dialysis serum levels of asymmetric dimethyl-arginine (ADMA), β2-microglobulin (B2M), high-sensitivity C-reactive protein (hs-CRP), indoxyl sulfate (IS), insulin-like growth factor 1 (IGF-1), interleukin 6 (IL-6), myostatin, and urea were analyzed as predictor parameters of physical performance measures in adjusted models. Serum levels of most measured toxins were not significantly related to performance, except for ADMA, which was significantly related to poorer performance in the STS-10 test (B = 0.11 ± 0.03 s, p < 0.01). Higher hs-CRP was associated with poorer results in the 6MWT (B = −2.6 ± 0.97 m, p < 0.01) and a lower HAP score (B = −0.36 ± 0.14, p = 0.01). There were no other significant associations found. We conclude that inflammation may be a more important pathway to physical impediment than uremic toxemia. This suggests that there is a large physical rehabilitation potential in non-inflamed uremic patients.
Collapse
Affiliation(s)
- Maja Pajek
- Faculty of Sport, University of Ljubljana, Gortanova 22, 1000 Ljubljana, Slovenia.
| | - Alexander Jerman
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 2, 1525 Ljubljana, Slovenia.
| | - Joško Osredkar
- Clinical Institute for Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška 2, 1525 Ljubljana, Slovenia.
| | | | - Jernej Pajek
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 2, 1525 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Miniaturized Bio-and Chemical-Sensors for Point-of-Care Monitoring of Chronic Kidney Diseases. SENSORS 2018; 18:s18040942. [PMID: 29565315 PMCID: PMC5948530 DOI: 10.3390/s18040942] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023]
Abstract
This review reports the latest achievements in point-of-care (POC) sensor technologies for the monitoring of ammonia, creatinine and urea in patients suffering of chronic kidney diseases (CKDs). Abnormal levels of these nitrogen biomarkers are found in the physiological fluids, such as blood, urine and sweat, of CKD patients. Delocalized at-home monitoring of CKD biomarkers via integration of miniaturized, portable, and low cost chemical- and bio-sensors in POC devices, is an emerging approach to improve patients’ health monitoring and life quality. The successful monitoring of CKD biomarkers, performed on the different body fluids by means of sensors having strict requirements in term of size, cost, large-scale production capacity, response time and simple operation procedures for use in POC devices, is reported and discussed.
Collapse
|
40
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
41
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:33. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β₂-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Olivier V, Dunyach-Remy C, Lavigne JP, Moranne O. [Micro-inflammation and digestive bacterial translocation in chronic kidney disease]. Nephrol Ther 2018; 14:135-141. [PMID: 29295767 DOI: 10.1016/j.nephro.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Micro-inflammation has been recognized as a major factor associated with the poor prognosis of patients with chronic kidney disease. Those patients have an increased rate of pro-inflammatory markers like interleukin 6, C-Reactive protein, Tumor Necrosis Factor α and fibrinogen. Among multiple and complex causes of micro-inflammation the gut microbiota could be an important actor considering the dysbiosis in chronic kidney disease which would enhance the synthesis of uremic toxins with cardiovascular toxicity and the bacterial translocation. This review details the role of the gut microbiota in human pathology and in chronic kidney disease focusing on the bacterial translocation that could occur because of an impaired digestive permeability. This bacterial translocation could induce a chronic immune response and could take part in the raise of pro-inflammatory markers in chronic kidney disease. New therapeutic strategies aiming at preventing metabolic and cardiovascular complications could emerge from the understanding of the relationships between gut microbiota and host in this particular pathology.
Collapse
Affiliation(s)
- Valérie Olivier
- Service de néphrologie dialyse-aphérèse, CHU Caremeau, 30029 Nîmes cedex 09, France.
| | - Catherine Dunyach-Remy
- Inserm unité 1047, université de Montpellier, UFR de médecine, 30908 Nîmes cedex 02, France; Service de microbiologie, CHU Caremeau, 30029 Nîmes cedex 09, France
| | - Jean-Philippe Lavigne
- Inserm unité 1047, université de Montpellier, UFR de médecine, 30908 Nîmes cedex 02, France; Service de microbiologie, CHU Caremeau, 30029 Nîmes cedex 09, France
| | - Olivier Moranne
- Service de néphrologie dialyse-aphérèse, CHU Caremeau, 30029 Nîmes cedex 09, France
| |
Collapse
|
43
|
Stockler-Pinto MB, Soulage CO, Borges NA, Cardozo LFMF, Dolenga CJ, Nakao LS, Pecoits-Filho R, Fouque D, Mafra D. From bench to the hemodialysis clinic: protein-bound uremic toxins modulate NF-κB/Nrf2 expression. Int Urol Nephrol 2017; 50:347-354. [PMID: 29151180 DOI: 10.1007/s11255-017-1748-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Uremic toxins produced by gut microbiota (indoxyl sulfate-IS, p-cresyl sulfate-p-CS, and indole-3-acetic acid-IAA) accumulate in hemodialysis (HD) patients and exhibit potent inflammatory effects. However, the impact of these toxins on nuclear E2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) expression in HD patients remains poorly defined. The aim of this study was to evaluate the association between uremic toxins and Nrf2/NF-κB expression in vitro (RAW 264.7 macrophage-like cells) and in peripheral blood mononuclear cells from HD patients. METHODS Uremic toxins, C-reactive protein (CRP), interleukin-6 (IL-6) and malondialdehyde (MDA) levels were measured in fifteen HD patients and nine healthy individuals. RAW 264.7 macrophage-like cells were incubated with IS, as a prototype of protein-bound uremic toxin. Nrf2 and NF-κB expressions were analyzed by RT-qPCR. RESULTS HD patients presented high levels of inflammatory markers, MDA and uremic toxins. In addition, they presented high NF-κB and low Nrf2 expression. Uremic toxins were positively correlated with NF-κB expression (IS, ρ = 0.58, p < 0.003; p-CS, ρ = 0.71, p < 0.001; IAA, ρ = 0.62, p < 0.001) and negatively with Nrf2 (IS, ρ = - 0.48, p = 0.01; p-CS, ρ = - 0.46, p < 0.02). Uremic toxins also exhibited positive correlations with CRP and MDA levels. Multivariate analysis revealed that p-CS is a determinant factor of NF-κB expression. In RAW 264.7 culture, NF-κB mRNA expression was stimulated by IS, while Nrf2 was downregulated. CONCLUSIONS Thus, uremic toxins may stimulate NF-κB mRNA and decrease Nrf2 expression in HD patients and, consequently, trigger inflammation and oxidative stress.
Collapse
Affiliation(s)
- Milena B Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Christophe O Soulage
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Carla J Dolenga
- Departamento de Patologia Básica, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lia S Nakao
- Departamento de Patologia Básica, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, Lyon, France
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
44
|
Delanghe S, Biesen WV, Velde NVD, Eloot S, Pletinck A, Schepers E, Glorieux G, Delanghe JR, Speeckaert MM. Binding of bromocresol green and bromocresol purple to albumin in hemodialysis patients. Clin Chem Lab Med 2017; 56:436-440. [DOI: 10.1515/cclm-2017-0444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
Abstract
Abstract
Background:
Colorimetric albumin assays based on binding to bromocresol purple (BCP) and bromocresol green (BCG) yield different results in chronic kidney disease. Altered dye binding of carbamylated albumin has been suggested as a cause. In the present study, a detailed analysis was carried out in which uremic toxins, acute phase proteins and Kt/V, a parameter describing hemodialysis efficiency, were compared with colorimetrically assayed (BCP and BCG) serum albumin.
Methods:
Albumin was assayed using immunonephelometry on a BN II nephelometer and colorimetrically based on, respectively, BCP and BCG on a Modular P analyzer. Uremic toxins were assessed using high-performance liquid chromatography. Acute phase proteins (C-reactive protein and α1-acid glycoprotein) and plasma protein α2-macroglobulin were assayed nephelometrically. In parallel, Kt/V was calculated.
Results:
Sixty-two serum specimens originating from hemodialysis patients were analyzed. Among the uremic toxins investigated, total para-cresyl sulfate (PCS) showed a significant positive correlation with the BCP/BCG ratio. The serum α1-acid glycoprotein concentration correlated negatively with the BCP/BCG ratio. The BCP/BCG ratio showed also a negative correlation with Kt/V.
Conclusions:
In renal insufficiency, the BCP/BCG ratio of serum albumin is affected by multiple factors: next to carbamylation, uremic toxins (total PCS) and α1-acid glycoprotein also play a role.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Wim Van Biesen
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | | | - Sunny Eloot
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Anneleen Pletinck
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Eva Schepers
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Griet Glorieux
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry , Ghent University Hospital , Ghent , Belgium
| | | |
Collapse
|
45
|
Khoury T, Tzukert K, Abel R, Abu Rmeileh A, Levi R, Ilan Y. The gut-kidney axis in chronic renal failure: A new potential target for therapy. Hemodial Int 2017; 21:323-334. [PMID: 27634464 DOI: 10.1111/hdi.12486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/06/2016] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating to consider the gut microbiome as a central player in the gut-kidney axis. Microbiome products, such as advanced glycation end products, phenols, and indoles, are absorbed into the circulation but are cleared by normal-functioning kidneys. These products then become toxic and contribute to the uremic load and to the progression of chronic kidney failure. In this review, we discuss the gut-kidney interaction under the state of chronic kidney failure as well as the potential mechanisms by which a change in the gut flora (termed gut dysbiosis) in chronic kidney disease (CKD) exacerbates uremia and leads to further progression of CKD and inflammation. Finally, the potential therapeutic interventions to target the gut microbiome in CKD are discussed.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Medicine, Gastroenterology and Liver Units, Jerusalem, Israel
| | - Keren Tzukert
- Department of Nephrology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Roy Abel
- Department of Nephrology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ayman Abu Rmeileh
- Department of Medicine, Gastroenterology and Liver Units, Jerusalem, Israel
| | - Ronen Levi
- Department of Nephrology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Gastroenterology and Liver Units, Jerusalem, Israel
| |
Collapse
|
46
|
Sirich TL. Obstacles to reducing plasma levels of uremic solutes by hemodialysis. Semin Dial 2017; 30:403-408. [DOI: 10.1111/sdi.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tammy L. Sirich
- The Department of Medicine; VA Palo Alto Health Care System and Stanford University; Palo Alto CA USA
| |
Collapse
|
47
|
Banerjee T, Meyer TW, Shafi T, Hostetter TH, Melamed M, Zhu Y, Powe NR. Free and total p-cresol sulfate levels and infectious hospitalizations in hemodialysis patients in CHOICE and HEMO. Medicine (Baltimore) 2017; 96:e5799. [PMID: 28178126 PMCID: PMC5312983 DOI: 10.1097/md.0000000000005799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
The uremic syndrome is attributed to progressive retention of compounds that, under normal conditions, are excreted by the healthy kidneys. p-cresol sulfate (PCS), a prototype protein-bound uremic retention solute, has been shown to exert toxic effects in vitro. Recent studies have identified relations between increased levels of PCS and indoxyl sulfate (IS) and adverse clinical outcomes in hemodialysis patients. We explored the relationship between free and total PCS and IS with infection-related hospitalizations (IH) and septicemia in 2 cohorts, Choices for Healthy Outcomes in Caring for end-stage renal disease (ESRD) Study (CHOICE) and Hemodialysis Study (HEMO).We measured free and total levels of PCS and IS in stored specimens in CHOICE, a cohort of 464 incident hemodialysis patients enrolled in 1995 to 1998 and followed for an average of 3.4 years and in a prevalent dialysis cohort of 495 patients enrolled in HEMO from 1995 to 2000 and followed for an average of 4.4 years. We measured free PCS and IS using mass spectroscopy. The 2 cohorts were linked to United States Renal Data System (USRDS) Medicare billing records to ascertain IH over follow-up. We examined the association of free and total levels of PCS and IS with IH and septicemia using multilevel Poisson regression models adjusted for demographics, comorbidities, clinical factors, and laboratory tests including residual kidney function. We stratified patients a priori based on gastrointestinal (GI) disease as PCS and IS are produced in colon.In CHOICE, highest tertile of free PCS in multivariable model was associated with 50% higher risk of IH [95% CI = 1.01-2.23] compared with lowest tertile in patients with no-GI disease. A significant trend was noted between greater levels of free PCS and septicemia in no-GI disease group in both cohorts, while no association was noted in GI disease group. Total PCS concentrations were not associated with either IH or septicemia in either cohort. No significant risk of IH or septicemia was noted with higher levels of free or total IS in either GI or no-GI disease group.These results suggest an association between higher concentrations of free PCS and infection-related and sepsis-related hospitalizations in hemodialysis patients. Better methods of dialysis should be developed to evaluate the utility of removing PCS and its effect on the outcome and also therapies to decrease gastrointestinal tract production of uremic solutes.
Collapse
Affiliation(s)
- Tanushree Banerjee
- Department of Medicine, University of California San Francisco, San Francisco
| | - Timothy W. Meyer
- Department of Medicine, Division of Nephrology, Veterans Administration Palo Alto Health Care System and Stanford University, Palo Alto, CA
| | - Tariq Shafi
- Department of Medicine, Division of Nephrology
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD
| | - Thomas H. Hostetter
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Michal Melamed
- Department of Medicine, Case Western University School of Medicine, Cleveland, OH
| | - Yunnuo Zhu
- Department of Medicine, University of California San Francisco, San Francisco
| | - Neil R. Powe
- Department of Medicine, University of California San Francisco, San Francisco
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco
| |
Collapse
|
48
|
Krieter DH, Devine E, Körner T, Rüth M, Wanner C, Raine M, Jankowski J, Lemke HD. Haemodiafiltration at increased plasma ionic strength for improved protein-bound toxin removal. Acta Physiol (Oxf) 2017; 219:510-520. [PMID: 27259463 DOI: 10.1111/apha.12730] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022]
Abstract
AIM Protein-bound uraemic toxin accumulation causes uraemia-associated cardiovascular morbidity. Enhancing the plasma ionic strength releases toxins from protein binding and makes them available for removal during dialysis. This concept was implemented through high sodium concentrations ([Na+ ]) in the substituate of pre-dilution haemodiafiltration at increased plasma ionic strength (HDF-IPIS). METHODS Ex vivo HDF-IPIS with blood tested increasing [Na+ ] to demonstrate efficacy and haemocompatibility. Haemocompatibility was further assessed in sheep using two different HDF-IPIS set-ups and [Na+ ] between 350 and 600 mmol L-1 . Safety and efficacy of para-cresyl sulphate (pCS) and indoxyl sulphate (IS) removal was further investigated in a randomized clinical pilot trial comparing HDF-IPIS to HD and HDF. RESULTS Compared to [Na+ ] of 150 mmol L-1 , ex vivo HDF-IPIS at 500 mmol L-1 demonstrated up to 50% higher IS removal. Haemolysis in sheep was low even at [Na+ ] of 600 mmol L-1 (free Hb 0.016 ± 0.001 g dL-1 ). In patients, compared to HD, a [Na+ ] of 240 mmol L-1 in HDF-IPIS resulted in 40% greater reduction (48.7 ± 23.6 vs. 67.8 ± 7.9%; P = 0.013) in free IS. Compared to HD and HDF (23.0 ± 14.8 and 25.4 ± 10.5 mL min-1 ), the dialytic clearance of free IS was 31.6 ± 12.8 mL min-1 (P = 0.017) in HDF-IPIS, but [Na+ ] in arterial blood increased from 132 ± 2 to 136 ± 3 mmol L-1 (0 vs. 240 min; P < 0.001). CONCLUSION HDF-IPIS is technically and clinically feasible. More effective HDF-IPIS requires higher temporary plasma [Na+ ], but dialysate [Na+ ] has to be appropriately adapted to avoid sodium accumulation.
Collapse
Affiliation(s)
- D. H. Krieter
- Division of Nephrology; Department of Medicine; University Hospital Würzburg; Würzburg Germany
| | | | - T. Körner
- Division of Nephrology; Department of Medicine; University Hospital Würzburg; Würzburg Germany
| | - M. Rüth
- eXcorLab GmbH; Obernburg Germany
| | - C. Wanner
- Division of Nephrology; Department of Medicine; University Hospital Würzburg; Würzburg Germany
| | - M. Raine
- eXcorLab GmbH; Obernburg Germany
| | - J. Jankowski
- Institute of Molecular Cardiovascular Research; University Hospital RWTH Aachen; Aachen Germany
| | | |
Collapse
|
49
|
Ellis RJ, Small DM, Vesey DA, Johnson DW, Francis R, Vitetta L, Gobe GC, Morais C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology (Carlton) 2016; 21:170-7. [PMID: 26239363 DOI: 10.1111/nep.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
Abstract
In the last decade, chronic kidney disease (CKD), defined as reduced renal function (glomerular filtration rate (GFR) < 60 mL/min per 1.73 m(2) ) and/or evidence of kidney damage (typically manifested as albuminuria) for at least 3 months, has become one of the fastest-growing public health concerns worldwide. CKD is characterized by reduced clearance and increased serum accumulation of metabolic waste products (uremic retention solutes). At least 152 uremic retention solutes have been reported. This review focuses on indoxyl sulphate (IS), a protein-bound, tryptophan-derived metabolite that is generated by intestinal micro-organisms (microbiota). Animal studies have demonstrated an association between IS accumulation and increased fibrosis, and oxidative stress. This has been mirrored by in vitro studies, many of which report cytotoxic effects in kidney proximal tubular cells following IS exposure. Clinical studies have associated IS accumulation with deleterious effects, such as kidney functional decline and adverse cardiovascular events, although causality has not been conclusively established. The aims of this review are to: (i) establish factors associated with increased serum accumulation of IS; (ii) report effects of IS accumulation in clinical studies; (iii) critique the reported effects of IS in the kidney, when administered both in vivo and in vitro; and (iv) summarize both established and hypothetical therapeutic options for reducing serum IS or antagonizing its reported downstream effects in the kidney.
Collapse
Affiliation(s)
- Robert J Ellis
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David M Small
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ross Francis
- Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Luis Vitetta
- Sydney Medical School - Medical Sciences, Medlab, Sydney, New South Wales, Australia.,Medlab Clinical Ltd., Medlab, Sydney, New South Wales, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Seminars in Dialysis: The 100 Most Highly Cited Papers. Semin Dial 2016; 29:518-520. [PMID: 27774673 DOI: 10.1111/sdi.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|