1
|
Dou F, Ji W, Xie Q, Wang J, Cao Y, Shi J. Transcriptome analysis and temporal expression patterns of wing development-related genes in Lymantria dispar (Lepidoptera: Erebidae). ENVIRONMENTAL ENTOMOLOGY 2025:nvae111. [PMID: 40172523 DOI: 10.1093/ee/nvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 04/04/2025]
Abstract
Spongy moth, Lymantria dispar Linnaeus (Lepidoptera: Erebidae), stands as a pervasive international threat, marked by its designation as one of the "world's 100 worst invasive species" by IUCN, owing to its voracious leaf-eating habits encompassing over 500 plant species. Its strong flight ability facilitates its spread and invasion. The present study aims to uncover differential gene expression, utilizing the Illumina Novaseq6000 sequencing platform for comprehensive transcriptome sequencing and bioinformatic analysis of total RNA extracted from larvae and pupae. Results revealed pivotal processes of protein functional structure conformation, transport, and signal transduction in functional gene annotation during the 2 developmental stages of spongy moth. 18 functional genes, namely, Distal-less (Dll), Wingless (Wg), Decapentaplegic (Dpp), Hedgehog (Hh), Cubitus interruptus (Ci), Patched (Ptc), Apterous (Ap), Serrate (Ser), Fringe (Fng), Achaete (Ac), Engrailed (En), Vestigial (Vg), Scute (Sc), Invected (Inv), Scalloped (Sd), Ultrabithorax (Ubx), Serum Response Factor (SRF), and Spalt-major, associated with wing development were identified, and their expression levels were meticulously assessed through real-time quantitative PCR (RT-qPCR) in 1st-6th instar larvae and male and female pupae wing discs. The results showed that 18 genes exhibited expression. Furthermore, the relative expression values of wing development-related genes were significantly higher in the pupae stage than in the larval stage. The relative expression values of male and female pupae were also significantly different. The RT-qPCR results were in general agreement with the results of transcriptome analysis. This study establishes a foundational understanding of the developmental mechanisms governing the formation of spongy moth wings.
Collapse
Affiliation(s)
- Fengrui Dou
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenzhuai Ji
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Qing Xie
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Jingyu Wang
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yixia Cao
- Biomedical Department, China Certification & Inspection (Group) Inspection Co., Ltd. (CCIC), Beijing, People's Republic of China
| | - Juan Shi
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Ohde T, Prokop J. The transition to flying insects: lessons from evo-devo and fossils. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101332. [PMID: 39837411 DOI: 10.1016/j.cois.2025.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Insects are the only arthropod group to achieve powered flight, which facilitated their explosive radiation on land. It remains a significant challenge to understand the evolutionary transition from nonflying (apterygote) to flying (pterygote) insects due to the large gap in the fossil record. Under such a situation, ontogenic information has historically been used to compensate for fossil evidence. Recent evo-devo studies support and refine a paleontology-based classical hypothesis that an ancestral exite incorporated into the body wall contributed to the origin of insect wings. The modern hypothesis locates an ancestral precoxa leg segment with an exite within the hexapod lateral tergum, reframing the long-standing debate on the insect wing origin. A current focus is on the contributions of the incorporated exite homolog and surrounding tissues, such as the pleuron and the medial bona fide tergum, to wing evolution. In parallel, recent analyses of Paleozoic fossils have confirmed thoracic and abdominal lateral body outgrowths as transitional wing precursors and suggested their possible role as respiratory organs in aquatic or semiaquatic environments. These recent studies have revised our understanding of the transition to flying insects. This review highlights recent progress in both evo-devo and paleontology, and discusses future challenges, including the evolution of metamorphic development.
Collapse
Affiliation(s)
- Takahiro Ohde
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 00 Praha, Czech Republic.
| |
Collapse
|
3
|
Li M, Yu X, Yao Z, Gao X, Liu Q, Zhou Z, Zhao Y. Targeting the Hh and Hippo pathways by miR-7 suppresses the development of insect wings. INSECT SCIENCE 2025. [PMID: 39823176 DOI: 10.1111/1744-7917.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Wings are important organs of insects involved in flight, mating, and other behaviors, and are therefore prime targets for pest control. The formation of insect wings is a complex process that is regulated by multiple pathways. The Hedgehog (Hh) pathway regulates the distribution of wing veins, while the Hippo pathway modulates wing size. Any interventions that can manipulate these pathways have the potential to disrupt wing development and could be used for pest control. In this study, we find that overexpression of miR-7 in Drosophila results in smaller wings with disordered veins. Mechanistically, miR-7 directly targets both ci and yki via different mature miRNAs (miR-7-5p and miR-7-3p), thereby disrupting the Hh and Hippo pathways. Importantly, this regulatory mechanism is also observed in another insect species, Helicoverpa armigera. Finally, by utilizing a nanocarrier delivery system, we show that introducing miR-7 via star polycation (SPc) leads to wing defects in H. armigera. In conclusion, these findings uncover that miR-7 inhibits wing formation by targeting both the Hippo and Hh pathways, indicating its potential for use in pest control strategies.
Collapse
Affiliation(s)
- Mingming Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xuan Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Zhihao Yao
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xuequan Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| |
Collapse
|
4
|
Moczek AP. Taking flight! Dev Biol 2025; 517:24-27. [PMID: 39278390 DOI: 10.1016/j.ydbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Understanding the origins of novel complex traits, the evolutionary transitions they enabled, and how those shaped the subsequent course of evolution, are all foundational objectives of evolutionary biology. Yet how developmental systems may transform to yield the first eye, limb, or placenta remains poorly understood. Seminal work by Courtney Clark-Hachtel, David Linz, and Yoshinori Tomoyasu published in the Proceedings of the National Academy of Sciences in 2013 used the origins of insect wings - one of the most impactful innovations of animal life on Earth - to provide both a case study and a new way of thinking of how novel complex traits may come into being. This paradigm-setting study not only transformed the way we view insect wings, their origins, and their affinities to other morphological structures; even more importantly, it created entryways to envision innovation as emerging gradually, not somehow divorced from ancestral homology, but through it via the differential modification, fusion, and elaboration of ancestral component parts. In a conceptual universe of descent with modification, where everything new must ultimately emerge from the old, this work thereby established a powerful bridge connecting ancestral homology and novelty through a gradual process of innovation, sparking much creative and groundbreaking work to follow since its publication just a little over a decade ago.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
5
|
Makkinje WPD, Simon S, Breukink I, Verbaarschot P, Machida R, Schranz ME, van Velzen R. Mayfly developmental atlas: developmental temporal expression atlas of the mayfly, Ephemera vulgata, reveals short germ-specific hox gene activation. BMC Genomics 2024; 25:1177. [PMID: 39633303 PMCID: PMC11616370 DOI: 10.1186/s12864-024-10934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Over the course of evolution, insects have seen drastic changes in their mode of development. While insects with derived modes of development have been studied extensively, information on ancestral modes of development is lacking. To address this, we selected a member of one of the earliest lineages of extant flying insects, serving as an outgroup to the modern winged insects, the short germ, non-model mayfly Ephemera vulgata Linnaeus (Insecta: Ephemeroptera, Ephemeridae). We document the embryonic morphology throughout its development and establish a global temporal expression atlas. RESULTS DAPI staining was used to visualise developmental morphology to provide a frame of reference for the sequenced timepoints. A transcriptome was assembled from 3.2 billion Illumina RNAseq reads divided in 12 timepoints with 3 replicates per timepoint consisting of 35,091 putative genes. We identified 6,091 significantly differentially expressed genes (DEGs) and analysed them for broad expression patterns via gene ontology (GO) as well as for specific genes of interest. This revealed a U-shaped relationship between the sum of DEGs and developmental timepoints, over time, with the lowest number of DEGs at 72 hours after egg laying (hAEL). Based on a principal component analysis of sequenced timepoints, overall development could be divided into four stages, with a transcriptional turning point around katatrepsis. Expression patterns of zld and smg showed a persistent negative correlation and revealed the maternal-to-zygotic transition (MZT), occurring 24 hAEL. The onset of development of some major anatomical structures, including the head, body, respiratory system, limb, muscle, and eye, are reported. Finally, we show that the ancestral short germ sequential mode of segmentation translates to a sequential Hox gene activation and find diverging expression patterns for lab and pb. We incorporate these patterns and morphological observations to an overview of the developmental timeline. CONCLUSIONS With our comprehensive differential expression study, we demonstrate the versatility of our global temporal expression atlas. It has the capacity to contribute significantly to phylogenetic insights in early-diverging insect developmental biology and can be deployed in both molecular and genomic applications for future research.
Collapse
Affiliation(s)
- Wouter P D Makkinje
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands, 6708PB.
| | - Sabrina Simon
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands, 6708PB
| | - Inge Breukink
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands, 6708PB
| | - Patrick Verbaarschot
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands, 6708PB
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano, 386-2204, Japan
| | - M Eric Schranz
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands, 6708PB
| | - Robin van Velzen
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands, 6708PB.
| |
Collapse
|
6
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
de Santis MD. On the nature of evolutionary explanations: a critical appraisal of Walter Bock's approach with a new revised proposal. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:3. [PMID: 38190055 PMCID: PMC10774170 DOI: 10.1007/s40656-023-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Walter Bock was committed to developing a framework for evolutionary biology. Bock repeatedly discussed how evolutionary explanations should be considered within the realm of Hempel's deductive-nomological model of scientific explanations. Explanation in evolution would then consist of functional and evolutionary explanations, and within the latter, an explanation can be of nomological-deductive and historical narrative explanations. Thus, a complete evolutionary explanation should include, first, a deductive functional analysis, and then proceed through nomological and historical evolutionary explanations. However, I will argue that his views on the deductive proprieties of functional analysis and the deductive-nomological parts of evolution fail because of the nature of evolution, which contains a historical element that the logic of deduction and Hempel's converting law model do not compass. Conversely, Bock's historical approach gives a critical consideration of the historical narrative element of evolutionary explanation, which is fundamental to the methodology of the historical nature of evolutionary theory. Herein, I will expand and discuss a modern view of evolutionary explanations of traits that includes the currentacknowledgement of the differences between experimental and the historical sciences, including the token and type event dichotomy, that mutually illuminate each other in order to give us a well confirmed and coherent hypothesis for evolutionary explanations. Within this framework, I will argue that the duality of evolutionary explanations is related to two components of character evolution: origin, with its evolutionary pathways along with the history, and maintenance, the function (mainly a current function) for the character being selected.
Collapse
Affiliation(s)
- Marcelo Domingos de Santis
- Departamento de Entomologia, Museu Nacional, UFRJ, Rio de Janeiro, RJ, Brazil.
- Museum Koenig Bonn, Leibniz-Institut zur Analyse des Bioaffiliationersitatswandels, Adenauerallee 127, 53113, Bonn, Germany.
| |
Collapse
|
8
|
Luo X, Xu YQ, Jin DC, Guo JJ, Yi TC. Role of the Hox Genes, Sex combs reduced, Fushi tarazu and Antennapedia, in Leg Development of the Spider Mite Tetranychus urticae. Int J Mol Sci 2023; 24:10391. [PMID: 37373537 DOI: 10.3390/ijms241210391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Mites, the second largest arthropod group, exhibit rich phenotypic diversity in the development of appendages (legs). For example, the fourth pair of legs (L4) does not form until the second postembryonic developmental stage, namely the protonymph stage. These leg developmental diversities drive body plan diversity in mites. However, little is known about the mechanisms of leg development in mites. Hox genes, homeotic genes, can regulate the development of appendages in arthropods. Three Hox genes, Sex combs reduced (Scr), Fushi tarazu (Ftz) and Antennapedia (Antp), have previously been shown to be expressed in the leg segments of mites. Here, the quantitative real-time reverse transcription PCR shows that three Hox genes are significantly increased in the first molt stage. RNA interference results in a set of abnormalities, including L3 curl and L4 loss. These results suggest that these Hox genes are required for normal leg development. Furthermore, the loss of single Hox genes results in downregulating the expression of the appendage marker Distal-less (Dll), suggesting that the three Hox genes can work together with Dll to maintain leg development in Tetranychus urticae. This study will be essential to understanding the diversity of leg development in mites and changes in Hox gene function.
Collapse
Affiliation(s)
- Xiang Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Yu-Qi Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Jian-Jun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| |
Collapse
|
9
|
DiFrisco J, Love AC, Wagner GP. The hierarchical basis of serial homology and evolutionary novelty. J Morphol 2023; 284:e21531. [PMID: 36317664 DOI: 10.1002/jmor.21531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as "partial" homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of "theoretical articulation" that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena. We pursue this strategy by drawing on successful patterns of reasoning from serial homology at the level of gene sequences to generate an enriched characterization of serial homology as a hierarchical, phylogenetic concept. Specifically, we propose that the concept of serial homology should be applied primarily to repeated but developmentally individualized body parts, such as cell types, differentiated body segments, or epidermal appendages. For these characters, a phylogenetic history can be reconstructed, similar to families of paralogous genes, endowing the notion of serial homology with a hierarchical, phylogenetic interpretation. On this basis, we propose a five-fold theoretical classification that permits a more fine-grained mapping of diverse trait-types. This facilitates answering the question of why everything is not homologous with everything else, as well as how novelty is possible given that any new character possesses evolutionary precursors. We illustrate the fecundity of our account by reference to debates over insect wing serial homologs and vertebrate paired appendages.
Collapse
Affiliation(s)
| | - Alan C Love
- Department of Philosophy, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Center for Philosophy of Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
Gonzalez CJ, Hildebrandt TR, O'Donnell B. Characterizing Hox genes in mayflies (Ephemeroptera), with Hexagenia limbata as a new mayfly model. EvoDevo 2022; 13:15. [PMID: 35897030 PMCID: PMC9331126 DOI: 10.1186/s13227-022-00200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are key regulators of appendage development in the insect body plan. The body plan of mayfly (Ephemeroptera) nymphs differs due to the presence of abdominal appendages called gills. Despite mayflies' phylogenetic position in Paleoptera and novel morphology amongst insects, little is known of their developmental genetics, such as the appendage-regulating Hox genes. To address this issue we present an annotated, early instar transcriptome and embryonic expression profiles for Antennapedia, Ultrabithorax, and Abdominal A proteins in the mayfly Hexagenia limbata, identify putative Hox protein sequences in the mayflies H. limbata, Cloeon dipterum, and Ephemera danica, and describe the genomic organization of the Hox gene cluster in E. danica. RESULTS Transcriptomic sequencing of early instar H. limbata nymphs yielded a high-quality assembly of 83,795 contigs, of which 22,975 were annotated against Folsomia candida, Nilaparvata lugens, Zootermopsis nevadensis and UniRef90 protein databases. Homeodomain protein phylogeny and peptide annotations identified coding sequences for eight of the ten canonical Hox genes (excluding zerknüllt/Hox3 and fushi tarazu) in H. limbata and C. dipterum, and all ten in E. danica. Mayfly Hox protein sequences and embryonic expression patterns of Antp, Ubx, and Abd-A appear highly conserved with those seen in other non-holometabolan insects. Similarly, the genomic organization of the Hox cluster in E. danica resembles that seen in most insects. CONCLUSIONS We present evidence that mayfly Hox peptide sequences and the embryonic expression patterns for Antp, Ubx, and Abd-A are extensively conserved with other insects, as is organization of the mayfly Hox gene cluster. The protein data suggest mayfly Antp, Ubx, and Abd-A play appendage promoting and repressing roles during embryogenesis in the thorax and abdomen, respectively, as in other insects. The identified expression of eight Hox genes, including Ubx and abd-A, in early instar nymphs further indicates a post-embryonic role, possibly in gill development. These data provide a basis for H. limbata as a complementary Ephemeridae model to the growing repertoire of mayfly model species and molecular techniques.
Collapse
Affiliation(s)
| | - Tobias R Hildebrandt
- Computational and Applied Mathematic Science, Plymouth State University, Plymouth, NH, USA
| | - Brigid O'Donnell
- Biological Sciences, Plymouth State University, Plymouth, NH, USA
| |
Collapse
|
11
|
Abdominal serial homologues of wings in Paleozoic insects. Curr Biol 2022; 32:3414-3422.e1. [PMID: 35772407 DOI: 10.1016/j.cub.2022.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The Late Paleozoic acquisition of wings in insects represents one of the key steps in arthropod evolution. While the origin of wings has been a contentious matter for nearly two centuries, recent evolutionary developmental studies suggest either the participation of both tergal and pleural tissues in the formation of wings1 or wings originated from exites of the most proximal leg podite incorporated into the insect body wall.2 The so-called "dual hypothesis" for wing origins finds support from studies of embryology, evo-devo, and genomics, although the degree of the presumed contribution from tergal and pleural tissues differ.3-6 Ohde et al.,7 confirmed a major role for tergal tissue in the formation of the cricket wing and suggested that "wings evolved from the pre-existing lateral terga of a wingless insect ancestor." Additional work has focused on identifying partial serially homologous structures of wings on the prothorax8,9 and abdominal segments.10 Thus, several studies have suggested that the prothoracic horns in scarab beetles,9 gin traps of tenebrionid and scarab beetle pupae,11,12 or abdominal tracheal gills of mayfly larvae1,13 evolved from serial homologues of wings. Here, we present critical information from abdominal lateral outgrowths (flaps) of Paleozoic palaeodictyopteran larvae, which show comparable structure to thoracic wings, consisting of cordate lateral outgrowths antero-basally hinged by muscle attachments. These flaps therefore most likely represent wing serial homologues. The presence of these paired outgrowths on abdominal segments I-IX in early diverging Pterygota likely corresponds to crustacean epipods14,15 and resembles a hypothesized ancestral body plan of a "protopterygote" model.
Collapse
|
12
|
DiFrisco J, Wagner GP, Love AC. Reframing research on evolutionary novelty and co-option: Character identity mechanisms versus deep homology. Semin Cell Dev Biol 2022; 145:3-12. [PMID: 35400563 DOI: 10.1016/j.semcdb.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
A central topic in research at the intersection of development and evolution is the origin of novel traits. Despite progress on understanding how developmental mechanisms underlie patterns of diversity in the history of life, the problem of novelty continues to challenge researchers. Here we argue that research on evolutionary novelty and the closely associated phenomenon of co-option can be reframed fruitfully by: (1) specifying a conceptual model of mechanisms that underwrite character identity, (2) providing a richer and more empirically precise notion of co-option that goes beyond common appeals to "deep homology", and (3) attending to the nature of experimental interventions that can determine whether and how the co-option of identity mechanisms can help to explain novel character origins. This reframing has the potential to channel future investigation to make substantive progress on the problem of evolutionary novelty. To illustrate this potential, we apply our reframing to two case studies: treehopper helmets and beetle horns.
Collapse
Affiliation(s)
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Yale Systems Biology Institute, Yale University, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, CT, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Alan C Love
- Department of Philosophy, University of Minnesota, Minneapolis, MN, USA; Minnesota Center for Philosophy of Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Luecke D, Rice G, Kopp A. Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes. Evol Dev 2022; 24:37-60. [PMID: 35239254 PMCID: PMC9179014 DOI: 10.1111/ede.12398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Integrative Biology, Michigan State University
| | - Gavin Rice
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Biological Sciences, University of Pittsburgh
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis
| |
Collapse
|
14
|
Ohde T, Mito T, Niimi T. A hemimetabolous wing development suggests the wing origin from lateral tergum of a wingless ancestor. Nat Commun 2022; 13:979. [PMID: 35190538 PMCID: PMC8861169 DOI: 10.1038/s41467-022-28624-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
The origin and evolution of the novel insect wing remain enigmatic after a century-long discussion. The mechanism of wing development in hemimetabolous insects, in which the first functional wings evolved, is key to understand where and how insect wings evolutionarily originate. This study explored the developmental origin and the postembryonic dramatic growth of wings in the cricket Gryllus bimaculatus. We find that the lateral tergal margin, which is homologous between apterygote and pterygote insects, comprises a growth organizer to expand the body wall to form adult wing blades in Gryllus. We also find that Wnt, Fat-Dachsous, and Hippo pathways are involved in the disproportional growth of Gryllus wings. These data provide insights into where and how insect wings originate. Wings evolved from the pre-existing lateral terga of a wingless insect ancestor, and the reactivation or redeployment of Wnt/Fat-Dachsous/Hippo-mediated feed-forward circuit might have expanded the lateral terga. Here, the authors investigate wing development in cricket and find support for evolution of the novel insect wing from the pre-existing dorsal body wall of a wingless ancestor by activation of an evolutionarily conserved growth mechanism.
Collapse
|
15
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Ye ZF, Zhang P, Gai TT, Lou JH, Dai FY, Tong XL. Sob gene is critical to wing development in Bombyx mori and Tribolium castaneum. INSECT SCIENCE 2022; 29:65-77. [PMID: 33822467 DOI: 10.1111/1744-7917.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The development of insect appendages requires the expression of multiple genes in a strict spatial and temporal order. The odd-skipped family genes are vital transcriptional factors involved in embryonic development. The development and morphogenesis of the insect wing requires multiple transcription factors to regulate the expression of wing patterning genes at the transcriptional level. However, the function of odd-related genes in insect wing morphogenesis and development during postembryonic stages is unclear. We focused on the roles of the sister of odd and bowl (sob) gene, a member of odd-skipped family genes, during the wing morphopoiesis in Bombyx mori using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 system and in Tribolium castaneum by RNA interference. The results showed that the wings were significantly smaller and degenerated, and wing veins were indistinct in the sob gene loss-of-function group in both B. mori and T. castaneum. Quantitative real-time polymerase chain reaction revealed that the Tcsob gene regulated the expression of wing development genes, such as the cht 7 and the vg gene. The findings suggest the importance of sob gene in insect wing morphology formation during postembryonic stages.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Pan Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Jing-Hou Lou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Tögel M, Pass G, Paululat A. Wing hearts in four-winged Ultrabithorax-mutant flies-the role of Hox genes in wing heart specification. Genetics 2022; 220:iyab191. [PMID: 34791231 PMCID: PMC8733458 DOI: 10.1093/genetics/iyab191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Wings are probably the most advanced evolutionary novelty in insects. In the fruit fly Drosophila melanogaster, proper development of wings requires the activity of so-called wing hearts located in the scutellum of the thorax. Immediately after the imaginal ecdysis, these accessory circulatory organs remove hemolymph and apoptotic epidermal cells from the premature wings through their pumping action. This clearing process is essential for the formation of functional wing blades. Mutant flies that lack intact wing hearts are flightless and display malformed wings. The embryonic wing heart progenitors originate from two adjacent parasegments corresponding to the later second and third thoracic segments. However, adult dipterian flies harbor only one pair of wings and only one pair of associated wing hearts in the second thoracic segment. Here we show that the specification of WHPs depends on the regulatory activity of the Hox gene Ultrabithorax. Furthermore, we analyzed the development of wing hearts in the famous four-winged Ultrabithorax (Ubx) mutant, which was first discovered by Ed Lewis in the 1970s. In these flies, the third thoracic segment is homeotically transformed into a second thoracic segment resulting in a second pair of wings instead of the club-shaped halteres. We show that a second pair of functional wing hearts is formed in the transformed third thoracic segment and that all wing hearts originate from the wild-type population of wing heart progenitor cells.
Collapse
Affiliation(s)
- Markus Tögel
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Osnabrück D-49069, Germany
| | - Günther Pass
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Achim Paululat
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Osnabrück D-49069, Germany
| |
Collapse
|
18
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Tomoyasu Y. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures. Curr Opin Genet Dev 2021; 69:48-55. [PMID: 33647834 DOI: 10.1016/j.gde.2021.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
Acquisition of novel structures often has a profound impact on the adaptation of organisms. The wing of insects is one such example, facilitating their massive success and enabling them to become the dominant clade on this planet. However, its evolutionary origin as well as the mechanisms underpinning its evolution remain elusive. Studies in crustaceans, a wingless sister group of insects, have played a pivotal role in the wing origin debate. Three recent investigations into the genes related to insect wings and legs in crustaceans provided intriguing insights into how and where insect wings evolved. Interestingly, each study proposes a distinct mechanism as a key process underlying insect wing evolution. Here, I discuss what we can learn about the evolution of insect wings and morphological novelty in general by synthesizing the outcomes of these studies.
Collapse
|
21
|
McKenna KZ, Wagner GP, Cooper KL. A developmental perspective of homology and evolutionary novelty. Curr Top Dev Biol 2021; 141:1-38. [PMID: 33602485 DOI: 10.1016/bs.ctdb.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Clark-Hachtel C, Fernandez-Nicolas A, Belles X, Tomoyasu Y. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings. Evol Dev 2021; 23:100-116. [PMID: 33503322 DOI: 10.1111/ede.12372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 01/03/2023]
Abstract
The acquisition of wings has facilitated the massive evolutionary success of pterygotes (winged insects), which now make up nearly three-quarters of described metazoans. However, our understanding of how this crucial structure has evolved remains quite elusive. Historically, two ideas have dominated in the wing origin debate, one placing the origin in the dorsal body wall (tergum) and the other in the lateral pleural plates and the branching structures associated with these plates. Through studying wing-related tissues in the wingless segments (such as wing serial homologs) of the beetle, Tribolium castaneum, we obtained several crucial pieces of evidence that support a third idea, the dual origin hypothesis, which proposes that wings evolved from a combination of tergal and pleural tissues. Here, we extended our analysis outside of the beetle lineage and sought to identify wing-related tissues from the wingless segments of the cockroach, Blattella germanica. Through detailed functional and expression analyses for a critical wing gene, vestigial (vg), along with re-evaluating the homeotic transformation of a wingless segment induced by an improved RNA interference protocol, we demonstrate that B. germanica possesses two distinct tissues in their wingless segments, one with tergal and one with pleural nature, that might be evolutionarily related to wings. This outcome appears to parallel the reports from other insects, which may further support a dual origin of insect wings. However, we also identified a vg-independent tissue that contributes to wing formation upon homeotic transformation, as well as vg-dependent tissues that do not appear to participate in wing formation, in B. germanica, indicating a more complex evolutionary history of the tissues that contributed to the emergence of insect wings.
Collapse
Affiliation(s)
| | | | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
23
|
Hu Y, Moczek AP. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles. Proc Biol Sci 2021; 288:20202828. [PMID: 33467999 DOI: 10.1098/rspb.2020.2828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of serially homologous structures is a common avenue towards functional innovation in developmental evolution, yet ancestral affinities among serial homologues may be obscured as structure-specific modifications accumulate over time. We sought to assess the degree of homology to wings of three types of body wall projections commonly observed in scarab beetles: (i) the dorsomedial support structures found on the second and third thoracic segments of pupae, (ii) the abdominal support structures found bilaterally in most abdominal segments of pupae, and (iii) the prothoracic horns which depending on species and sex may be restricted to pupae or also found in adults. We functionally investigated 14 genes within, as well as two genes outside, the canonical wing gene regulatory network to compare and contrast their role in the formation of each of the three presumed wing serial homologues. We found 11 of 14 wing genes to be functionally required for the proper formation of lateral and dorsal support structures, respectively, and nine for the formation of prothoracic horns. At the same time, we document multiple instances of divergence in gene function across our focal structures. Collectively, our results support the hypothesis that dorsal and lateral support structures as well as prothoracic horns share a developmental origin with insect wings. Our findings suggest that the morphological and underlying gene regulatory diversification of wing serial homologues across species, life stages and segments has contributed significantly to the extraordinary diversity of arthropod appendages and outgrowths.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
|
25
|
Bruce HS, Patel NH. Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments. Nat Ecol Evol 2020; 4:1703-1712. [PMID: 33262517 DOI: 10.1038/s41559-020-01349-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/15/2020] [Indexed: 01/06/2023]
Abstract
The origin of insect wings has long been debated. Central to this debate is whether wings are a novel structure on the body wall resulting from gene co-option, or evolved from an exite (outgrowth; for example, a gill) on the leg of an ancestral crustacean. Here, we report the phenotypes for the knockout of five leg patterning genes in the crustacean Parhyale hawaiensis and compare these with their previously published phenotypes in Drosophila and other insects. This leads to an alignment of insect and crustacean legs that suggests that two leg segments that were present in the common ancestor of insects and crustaceans were incorporated into the insect body wall, moving the proximal exite of the leg dorsally, up onto the back, to later form insect wings. Our results suggest that insect wings are not novel structures, but instead evolved from existing, ancestral structures.
Collapse
Affiliation(s)
- Heather S Bruce
- University of California, Berkeley, Berkeley, CA, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Monteiro A. Distinguishing serial homologs from novel traits: Experimental limitations and ideas for improvements. Bioessays 2020; 43:e2000162. [PMID: 33118632 DOI: 10.1002/bies.202000162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
One of the central but yet unresolved problems in evolutionary biology concerns the origin of novel complex traits. One hypothesis is that complex traits derive from pre-existing gene regulatory networks (GRNs) reused and modified to specify a novel trait somewhere else in the body. This simple explanation encounters problems when the novel trait that emerges in a body is in a region that is known to harbor a latent or repressed trait that has been silent for millions of years. Is the novel trait merely a re-emerged de-repressed trait or a truly novel trait that emerged via a novel deployment of an old GRN? A couple of new studies sided on opposite sides of this question when investigating the origin of horns in dung beetles and helmets in treehoppers that develop in the first thoracic segment (T1) of their bodies, a segment known to harbor a pair of repressed/modified wings in close relatives. Here, I point to some key limitations of the experimental approaches used and highlight additional experiments that could be done in future to resolve the developmental origin of these and other traits.
Collapse
Affiliation(s)
- Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Science Division, Yale-NUS College, Singapore, Singapore
| |
Collapse
|
27
|
Clark-Hachtel CM, Tomoyasu Y. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings. Nat Ecol Evol 2020; 4:1694-1702. [PMID: 32747770 DOI: 10.1038/s41559-020-1257-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The origin of insect wings is a biological mystery that has fascinated scientists for centuries. Identification of tissues homologous to insect wings from lineages outside of Insecta will provide pivotal information to resolve this conundrum. Here, through expression and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) functional analyses in Parhyale, we show that a gene network similar to the insect wing gene network (preWGN) operates both in the crustacean terga and in the proximal leg segments, suggesting that the evolution of a preWGN precedes the emergence of insect wings, and that from an evo-devo perspective, both of these tissues qualify as potential crustacean wing homologues. Combining these results with recent wing origin studies in insects, we discuss the possibility that both tissues are crustacean wing homologues, which supports a dual evolutionary origin of insect wings (that is, novelty through a merger of two distinct tissues). These outcomes have a crucial impact on the course of the intellectual battle between the two historically competing wing origin hypotheses.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Department of Biology, Miami University, Oxford, OH, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
28
|
Almudi I, Vizueta J, Wyatt CDR, de Mendoza A, Marlétaz F, Firbas PN, Feuda R, Masiero G, Medina P, Alcaina-Caro A, Cruz F, Gómez-Garrido J, Gut M, Alioto TS, Vargas-Chavez C, Davie K, Misof B, González J, Aerts S, Lister R, Paps J, Rozas J, Sánchez-Gracia A, Irimia M, Maeso I, Casares F. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nat Commun 2020; 11:2631. [PMID: 32457347 PMCID: PMC7250882 DOI: 10.1038/s41467-020-16284-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain.
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Christopher D R Wyatt
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS, London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Panos N Firbas
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Giulio Masiero
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Patricia Medina
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Ana Alcaina-Caro
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Louvain, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000, Louvain, Belgium
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Louvain, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000, Louvain, Belgium
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Ignacio Maeso
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Fernando Casares
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain.
| |
Collapse
|
29
|
Hu Y, Linz DM, Moczek AP. Beetle horns evolved from wing serial homologs. Science 2019; 366:1004-1007. [DOI: 10.1126/science.aaw2980] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Understanding how novel complex traits originate is a foundational challenge in evolutionary biology. We investigated the origin of prothoracic horns in scarabaeine beetles, one of the most pronounced examples of secondary sexual traits in the animal kingdom. We show that prothoracic horns derive from bilateral source tissues; that diverse wing genes are functionally required for instructing this process; and that, in the absence of Hox input, prothoracic horn primordia transform to contribute to ectopic wings. Once induced, however, the transcriptional profile of prothoracic horns diverges markedly from that of wings and other wing serial homologs. Our results substantiate the serial homology between prothoracic horns and insects wings and suggest that other insect innovations may derive similarly from wing serial homologs and the concomitant establishment of structure-specific transcriptional landscapes.
Collapse
|
30
|
Tworzydlo W, Jaglarz MK, Pardyak L, Bilinska B, Bilinski SM. Evolutionary origin and functioning of pregenital abdominal outgrowths in a viviparous insect, Arixenia esau. Sci Rep 2019; 9:16090. [PMID: 31695096 PMCID: PMC6834671 DOI: 10.1038/s41598-019-52568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
Although pregenital abdominal outgrowths occur only rarely in pterygote insects, they are interesting from the evolutionary viewpoint because of their potential homology to wings. Our previous studies of early development of an epizoic dermapteran, Arixenia esau revealed that abdominal segments of the advanced embryos and larvae, growing inside a mother’s uterus, are equipped with paired serial outgrowths. Here, we focus on the origin and functioning of these outgrowths. We demonstrate that they bud from the lateral parts of the abdominal nota, persist till the end of intrauterine development, and remain in contact with the uterus wall. We also show that the bundles of muscle fibers associated with the abdominal outgrowths may facilitate flow of the haemolymph from the outgrowths’ lumen to the larval body cavity. Following completion of the intrauterine development, abdominal outgrowths are shed together with the larval cuticle during the first molt after the larva birth. Using immunohistochemical and biochemical approaches, we demonstrate that the Arixenia abdominal outgrowths represent an evolutionary novelty, presumably related to intrauterine development, and suggest that they are not related to serial wing homologs.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
31
|
Takenaka M, Sekiné K, Tojo K. The First Establishment of "Hand-Pairing" Cross-Breeding Method for the Most Ancestral Wing Acquired Insect Group. Zoolog Sci 2019; 36:136-140. [PMID: 31120648 DOI: 10.2108/zs180169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
Abstract
Insects are the most diverse organisms in the world and have been in existence since ca. 480 Ma; given this, they can provide profound insights into evolution. Among them, the order Ephemeroptera is one of the most basal clades of winged insects. This makes Ephemeroptera a significant key taxon in understanding the macro-evolution or the insect groundplan. In the development of biological evolutionary studies of this taxon, it is important to establish a technique for cross-breeding. Furthermore, the establishment of these techniques also makes a great contribution in the fields of micro-evolution. In a non-model taxon, the mayfly, subcultivation in the laboratory has been thus far considered impossible. With the exception of some parthenogenetic strains, it is extremely difficult to mate these insects in artificial environments. In this study, we established a successful artificial mating technique, i.e., a "hand-pairing" based cross-breeding method for mayflies. Furthermore, we also succeeded in clearly verifying by a genotyping method that the offspring reproduced by hand-pairing were in fact derived from the actual male and female which were used for hand-pairing. We established a reproductive experimental technique for hand-pairing of Dipteromimus tipuliformis and verified this technique by means genotyping. This technique could allow the artificial control of fertilization timing, and result in offspring which can be verified as to their status by means of genotyping. This achievement will be extremely important in the future for both the macro- and micro-evolutionary studies of insects.
Collapse
Affiliation(s)
- Masaki Takenaka
- Department of Mountain and Environmental Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| | - Kazuki Sekiné
- Faculty of Geo-environmental Science, Rissho University, Magechi 1700, Kumagaya, Saitama 360-0194, Japan
| | - Koji Tojo
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan.,Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan,
| |
Collapse
|
32
|
Hasan J, Roy A, Chatterjee K, Yarlagadda PKDV. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomater Sci Eng 2019; 5:3139-3160. [DOI: 10.1021/acsbiomaterials.9b00217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Anindo Roy
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Prasad K. D. V. Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
33
|
Almudi I, Martín-Blanco CA, García-Fernandez IM, López-Catalina A, Davie K, Aerts S, Casares F. Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution. EvoDevo 2019; 10:6. [PMID: 30984364 PMCID: PMC6446309 DOI: 10.1186/s13227-019-0120-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
The great capability of insects to adapt to new environments promoted their extraordinary diversification, resulting in the group of Metazoa with the largest number of species distributed worldwide. To understand this enormous diversity, it is essential to investigate lineages that would allow the reconstruction of the early events in the evolution of insects. However, research on insect ecology, physiology, development and evolution has mostly focused on few well-established model species. The key phylogenetic position of mayflies within Paleoptera as the sister group of the rest of winged insects and life history traits of mayflies make them an essential order to understand insect evolution. Here, we describe the establishment of a continuous culture system of the mayfly Cloeon dipterum and a series of experimental protocols and omics resources that allow the study of its development and its great regenerative capability. Thus, the establishment of Cloeon as an experimental platform paves the way to understand genomic and morphogenetic events that occurred at the origin of winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| | | | | | | | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Fernando Casares
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| |
Collapse
|
34
|
Sharma PP. Integrating morphology and phylogenomics supports a terrestrial origin of insect flight. Proc Natl Acad Sci U S A 2019; 116:2796-2798. [PMID: 30696764 PMCID: PMC6386717 DOI: 10.1073/pnas.1822087116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
35
|
Boudinot BE. A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:563-613. [PMID: 30419291 DOI: 10.1016/j.asd.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/16/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
No consensus exists for the homology and terminology of the male genitalia of the Hexapoda despite over a century of debate. Based on dissections and the literature, genital skeletomusculature was compared across the Hexapoda and contrasted with the Remipedia, the closest pancrustacean outgroup. The pattern of origin and insertion for extrinsic and intrinsic genitalic musculature was found to be consistent among the Ectognatha, Protura, and the Remipedia, allowing for the inference of homologies given recent phylogenomic studies. The penis of the Hexapoda is inferred to be derived from medially-fused primary gonopods (gonopore-bearing limbs), while the genitalia of the Ectognatha are inferred to include both the tenth-segmental penis and the ninth-segmental secondary gonopods, similar to the genitalia of female insects which comprise gonopods of the eighth and ninth segments. A new nomenclatural system for hexapodan genitalic musculature is presented and applied, and a general list of anatomical concepts is provided. Novel and refined homologies are proposed for all hexapodan orders, and a series of groundplans are postulated. Emphasis is placed on the Endopterygota, for which fine-grained transition series are hypothesized given observed skeletomuscular correspondences.
Collapse
Affiliation(s)
- Brendon E Boudinot
- Department of Entomology & Nematology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
36
|
Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol 2018; 6:jdb6030017. [PMID: 30011921 PMCID: PMC6162442 DOI: 10.3390/jdb6030017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - David Blom-Dahl
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
37
|
Dudley R, Pass G. Wings and powered flight: Core novelties in insect evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:319-321. [PMID: 29936299 DOI: 10.1016/j.asd.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
38
|
Alexander DE. A century and a half of research on the evolution of insect flight. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:322-327. [PMID: 29169955 DOI: 10.1016/j.asd.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/07/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
The gill and paranotal lobe theories of insect wing evolution were both proposed in the 1870s. For most of the 20th century, the paranotal lobe theory was more widely accepted, probably due to the fundamentally terrestrial tracheal respiratory system; in the 1970s, some researchers advocated for an elaborated gill ("pleural appendage") theory. Lacking transition fossils, neither theory could be definitively rejected. Winged insects are abundant in the fossil record from the mid-Carboniferous, but insect fossils are vanishingly rare earlier, and all earlier fossils are from primitively wingless insects. The enigmatic, isolated mandibles of Rhyniognatha (early Devonian) hint that pterygotes may have been present much earlier, but the question remains open. In the late 20th century, researchers used models to study the interaction of body and protowing size on solar warming and gliding abilities, and stability and glide effectiveness of many tiny adjustable winglets versus a single, large pair of immobile winglets. Living stoneflies inspired the surface-skimming theory, which provides a mechanism to bridge between aquatic gills and flapping wings. The serendipitously discovered phenomenon of directed aerial descent suggests a likely route to the early origin of insect flight. It provides a biomechanically feasible sequence from guided falls to fully-powered flight.
Collapse
Affiliation(s)
- David E Alexander
- University of Kansas, Department of Ecology & Evolutionary Biology, 1200 Sunnyside Avenue, Rm. 2041 Lawrence, KS 66045-7534, USA.
| |
Collapse
|
39
|
Prokop J, Pecharová M, Nel A, Hörnschemeyer T. The wing base of the palaeodictyopteran genus Dunbaria Tillyard: Where are we now? ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:339-351. [PMID: 29635036 DOI: 10.1016/j.asd.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The structure of insect wing articulation is considered as reliable source of high level characters for phylogenetic analyses. However, the correct identification of homologous structures among the main groups of Pterygota is a hotly debated issue. Therefore, the reconstruction of the wing bases in Paleozoic extinct relatives is of great interest, but at the same time it should be treated with extreme caution due to distortions caused by taphonomic effects. The present study is focused on the wing base in Dunbaria (Spilapteridae). The articulation in Dunbaria quinquefasciata is mainly formed by a prominent upright axillary plate while the humeral plate is markedly reduced. Due to unique preservation of surface relief of the axillary plate, its composition shows a detailed pattern of three fused axillary sclerites and presumable position of the sclerite 3Ax. The obtained structures were compared among Spilapteridae and to other palaeodictyopterans Ostrava nigra (Homoiopteridae) and Namuroningxia elegans (Namuroningxiidae). The comparative study uncovered two patterns of 3Ax in Dunbaria and Namuroningxia, which correspond to their different suprafamilial classification. In contrast to previous studies these new results reveal the homologous structural elements in the wing base between Paleozoic Palaeodictyoptera and their extant relatives of Ephemeroptera, Odonata and Neoptera.
Collapse
Affiliation(s)
- Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43, Praha 2, Czech Republic.
| | - Martina Pecharová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43, Praha 2, Czech Republic
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France
| | | |
Collapse
|
40
|
Ohde T, Takehana Y, Shiotsuki T, Niimi T. CRISPR/Cas9-based heritable targeted mutagenesis in Thermobia domestica: A genetic tool in an apterygote development model of wing evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:362-369. [PMID: 29908341 DOI: 10.1016/j.asd.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Despite previous developmental studies on basally branching wingless insects and crustaceans, the evolutionary origin of insect wings remains controversial. Knowledge regarding genetic regulation of tissues hypothesized to have given rise to wings would help to elucidate how ancestral development changed to allow the evolution of true wings. However, genetic tools available for basally branching wingless species are limited. The firebrat Thermobia domestica is an apterygote species, phylogenetically related to winged insects. T. domestica presents a suitable morphology to investigate the origin of wings, as it forms the tergal paranotum, from which wings are hypothesized to have originated. Here we report the first successful CRISPR/Cas9-based germline genome editing in T. domestica. We provide a technological platform to understand the development of tissues hypothesized to have given rise to wings in an insect with a pre-wing evolution body plan.
Collapse
Affiliation(s)
- Takahiro Ohde
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan; Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Yusuke Takehana
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Takahiro Shiotsuki
- Department of Life Science and Technology, Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
41
|
Sharma PP. Chelicerates and the Conquest of Land: A View of Arachnid Origins Through an Evo-Devo Spyglass. Integr Comp Biol 2018; 57:510-522. [PMID: 28957520 DOI: 10.1093/icb/icx078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The internal phylogeny of Chelicerata and the attendant evolutionary scenario of arachnid terrestrialization have a long and contentious history. Previous studies of developmental gene expression data have suggested that respiratory systems of spiders, crustaceans, and insects are all serially homologous structures derived from the epipods (outer appendage rami) of the arthropod ancestor, corresponding to an ancestral gill. A separate body of evidence has suggested that the respiratory systems of arachnids are modified, inverted telopods (inner rami, or legs). Here I review these dissonant homology statements and compare the developmental genetic basis for respiratory system development in insects and arachnids. I show that the respiratory primordia of arachnids are not positionally homologous to those of insects. I further demonstrate that candidate genes critical to tracheal fate specification in Drosophila melanogaster are expressed very differently in arachnid exemplars. Taken together, these data suggest that mechanisms of respiratory system development are not derived from homologous structures or mechanisms in insects and arachnids, and that different terrestrial arthropod lineages have solved the challenge of aerial respiration using different developmental mechanisms.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
42
|
Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proc Natl Acad Sci U S A 2018; 115:E658-E667. [PMID: 29317537 DOI: 10.1073/pnas.1711128115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of insect wings is still a highly debated mystery in biology, despite the importance of this evolutionary innovation. There are currently two prominent, but contrasting wing origin hypotheses (the tergal origin hypothesis and the pleural origin hypothesis). Through studies in the Tribolium beetle, we have previously obtained functional evidence supporting a third hypothesis, the dual origin hypothesis. Although this hypothesis can potentially unify the two competing hypotheses, it requires further testing from various fields. Here, we investigated the genetic regulation of the tissues serially homologous to wings in the abdomen, outside of the appendage-bearing segments, in Tribolium We found that the formation of ectopic wings in the abdomen upon homeotic transformation relies not only on the previously identified abdominal wing serial homolog (gin-trap), but also on a secondary tissue in the pleural location. Using an enhancer trap line of nubbin (a wing lineage marker), we were able to visualize both of these two tissues (of tergal and pleural nature) contributing to form a complete wing. These results support the idea that the presence of two distinct sets of wing serial homologs per segment represents an ancestral state of the wing serial homologs, and can therefore further support a dual evolutionary origin of insect wings. Our analyses also uncovered detailed Hox regulation of abdominal wing serial homologs, which can be used as a foundation to elucidate the molecular mechanisms that have facilitated the evolution of bona fide insect wings, as well as the diversification of other wing serial homologs.
Collapse
|
43
|
|
44
|
Requena D, Álvarez JA, Gabilondo H, Loker R, Mann RS, Estella C. Origins and Specification of the Drosophila Wing. Curr Biol 2017; 27:3826-3836.e5. [PMID: 29225023 DOI: 10.1016/j.cub.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/18/2023]
Abstract
The insect wing is a key evolutionary innovation that was essential for insect diversification. Yet despite its importance, there is still debate about its evolutionary origins. Two main hypotheses have been proposed: the paranotal hypothesis, which suggests that wings evolved as an extension of the dorsal thorax, and the gill-exite hypothesis, which proposes that wings were derived from a modification of a pre-existing branch at the dorsal base (subcoxa) of the leg. Here, we address this question by studying how wing fates are initially specified during Drosophila embryogenesis, by characterizing a cis-regulatory module (CRM) from the snail (sna) gene, sna-DP (for dorsal primordia). sna-DP specifically marks the early primordia for both the wing and haltere, collectively referred to as the DP. We found that the inputs that activate sna-DP are distinct from those that activate Distalless, a marker for leg fates. Further, in genetic backgrounds in which the leg primordia are absent, the DP are still partially specified. However, lineage-tracing experiments demonstrate that cells from the early leg primordia contribute to both ventral and dorsal appendage fates. Together, these results suggest that the wings of Drosophila have a dual developmental origin: two groups of cells, one ventral and one more dorsal, give rise to the mature wing. We suggest that the dual developmental origins of the wing may be a molecular remnant of the evolutionary history of this appendage, in which cells of the subcoxa of the leg coalesced with dorsal outgrowths to evolve a dorsal appendage with motor control.
Collapse
Affiliation(s)
- David Requena
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Jose Andres Álvarez
- Departamento de Biología and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Hugo Gabilondo
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ryan Loker
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 701 W. 168th St., HHSC 1104, New York, NY 10032, USA
| | - Richard S Mann
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 701 W. 168th St., HHSC 1104, New York, NY 10032, USA.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
45
|
Breitkreuz LC, Winterton SL, Engel MS. Wing Tracheation in Chrysopidae and Other Neuropterida (Insecta): A Resolution of the Confusion about Vein Fusion. AMERICAN MUSEUM NOVITATES 2017. [DOI: 10.1206/3890.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Laura C.V. Breitkreuz
- Division of Entomology, Natural History Museum and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence
| | - Shaun L. Winterton
- California State Collection of Arthropods, California Department of Food and Agriculture, Sacramento
| | - Michael S. Engel
- Division of Invertebrate Zoology, American Museum of Natural History; Division of Entomology, Natural History Museum and Department of Ecology and Evolutionary Biology, University of Kansas
| |
Collapse
|
46
|
Guillermo-Ferreira R, Appel E, Urban P, Bispo PC, Gorb SN. The unusual tracheal system within the wing membrane of a dragonfly. Biol Lett 2017; 13:rsbl.2016.0960. [PMID: 28515332 DOI: 10.1098/rsbl.2016.0960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 11/12/2022] Open
Abstract
Some consider that the first winged insects had living tissue inside the wing membrane, resembling larval gills or developing wing pads. However, throughout the developmental process of the wing membrane of modern insects, cells and tracheoles in the lumen between dorsal and ventral cuticle disappear and both cuticles become fused. This process results in the rather thin rigid stable structure of the membrane. The herewith described remarkable case of the dragonfly Zenithoptera lanei shows that in some highly specialized wings, the membrane can still be supplemented by tracheae. Such a characteristic of the wing membrane presumably represents a strong specialization for the synthesis of melanin-filled nanolayers of the cuticle, nanospheres inside the wing membrane and complex arrangement of wax crystals on the membrane surface, all responsible for unique structural coloration.
Collapse
Affiliation(s)
| | - Esther Appel
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24098 Kiel, Germany
| | - Paulina Urban
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24098 Kiel, Germany
| | - Pitágoras C Bispo
- Department of Biological Sciences, São Paulo State University, Assis, Brazil
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24098 Kiel, Germany
| |
Collapse
|
47
|
Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics 2017; 18:788. [PMID: 29037153 PMCID: PMC5644175 DOI: 10.1186/s12864-017-4175-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
Background One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait’s evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. Results In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal–regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Conclusions Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the pattern to aid in eyespot origins. New transcription factors that may be providing different identities to distinct wing sectors, and genes with sexually dimorphic expression in the eyespots were also identified. Electronic supplementary material The online version of this article (10.1186/s12864-017-4175-7) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Mashimo Y, Machida R. Embryological evidence substantiates the subcoxal theory on the origin of pleuron in insects. Sci Rep 2017; 7:12597. [PMID: 28974708 PMCID: PMC5626752 DOI: 10.1038/s41598-017-12728-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022] Open
Abstract
The lateral body plate pleuron is a significant structure in insects that contributes to the development and elaboration of wings and limbs (appendages). Although the pleuron is thought to originate from the proximal-most appendicular segment, the subcoxa, details remain unclear, and the morphological boundary between the dorsal body plate tergum and appendage (BTA) has not been clearly specified. Employing low-vacuum scanning electron microscopy (SEM) and the nano-suit method for SEM, we followed, in detail, the development of the thoracic segments of the two-spotted cricket Gryllus bimaculatus and succeeded in clearly defining the BTA. This study demonstrates the subcoxal origin of the pleuron, suggests the tergal origin of spiracles, and reveals that the wing proper originates exclusively from the tergum, whereas the wing hinge and direct muscles may be appendicular in origin, suggesting the dual origin (i.e., tergal plus appendicular origin) of wings.
Collapse
Affiliation(s)
- Yuta Mashimo
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira Kogen 1278-294, Ueda, Nagano, 386-2204, Japan.,Graduate School of Symbiotic Systems Science and Technology, Fukushima University, Kanayagawa 1, Fukushima, Fukushima, 960-1296, Japan
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira Kogen 1278-294, Ueda, Nagano, 386-2204, Japan.
| |
Collapse
|
49
|
Zhang L, Qiu LY, Yang HL, Wang HJ, Zhou M, Wang SG, Tang B. Study on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene. Front Physiol 2017; 8:750. [PMID: 29033849 PMCID: PMC5627005 DOI: 10.3389/fphys.2017.00750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the regulating role of trehalase (TRE) genes on wing bud formation has been studied by RNAi. In this paper, the activity levels of TRE and the contents of the two sugars trehalose and glucose were negatively correlated indicating the potential role of TRE in the molting process. In addition, NlTRE1-1 and NlTRE2 were expressed at higher levels in wing bud tissue than in other tissues, and abnormal molting and wing deformity or curling were noted 48 h after the insect was injected with any double-stranded TRE (dsTRE), even though different TREs have compensatory functions. The expression levels of NlCHS1b, NlCht1, NlCht2, NlCht6, NlCht7, NlCht8, NlCht10, NlIDGF, and NlENGase decreased significantly 48 h after the insect was injected with a mixture of three kinds of dsTREs. Similarly, the TRE inhibitor validamycin can inhibit NlCHS1 and NlCht gene expression. However, the wing deformity was the result of the NlIDGF, NlENGase, NlAP, and NlTSH genes being inhibited when a single dsTRE was injected. These results demonstrate that silencing of TRE gene expression can lead to wing deformities due to the down-regulation of the AP and TSH genes involved in wing development and that the TRE inhibitor validamycin can co-regulate chitin metabolism and the expression of wing development-related genes in wing bud tissue. The results provide a new approach for the prevention and management of N. lugens.
Collapse
Affiliation(s)
- Lu Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Li Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
50
|
Abstract
Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings.
Collapse
Affiliation(s)
- Yoshinori Tomoyasu
- Department of Biology, Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, USA
| | - Takahiro Ohde
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Courtney Clark-Hachtel
- Department of Biology, Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, USA
| |
Collapse
|