1
|
Ferreras-Colino E, de la Fuente J, Couto J, Golovchenko M, Antunes S, Sevilla IA, Domingos A, Rudenko N, Contreras M, Martínez-Camacho R, Gortazar C, Risalde MA. Immunostimulant effect of heat-inactivated Mycobacterium bovis in mice challenged with vector-borne pathogens. Vaccine 2025; 53:127076. [PMID: 40188566 DOI: 10.1016/j.vaccine.2025.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025]
Abstract
Trained immunity is defined as an enhanced state of the innate system which leads to an improved immune response against related or non-related pathogens. Bacillus Calmette-Guérin (BCG) vaccine, a live attenuated Mycobacterium bovis strain, is currently one of the main inductors of trained immunity. The objective of the present study was to evaluate the protective effects of heat-inactivated M. bovis (HIMB) against Plasmodium berghei and Borrelia burgdorferi and characterize the immunological mechanisms involved. BALB/c and C3H/HeN mice were randomly assigned in similar number to either immunized group receiving two oral doses of HIMB with a 4-week interval, or control group treated with PBS. All the BALB/c mice were intraperitoneally infected with P. berghei while the C3H/HeN mice were subcutaneously infected with B. burgdorferi. Pathogen burden was significantly reduced in both immunized groups when compared to controls. The number of macrophages significantly decreased in the liver or in the spleen of the mice that had been immunized prior to the challenge with P. berghei or B. burgdorferi, respectively. Furthermore, the immunized groups showed an apparent upregulation of IFN-γ, TNF-α and IL-1α in the liver (P. berghei challenge) or a significant increase in IL-1α producing cells in the spleen (B. burgdorferi challenge). Our findings suggest that oral immunization with heat-inactivated mycobacteria limits pathogen burden through stimulation of the innate immune response in two vector-borne diseases in mice.
Collapse
Affiliation(s)
- Elisa Ferreras-Colino
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Iker A Sevilla
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Marinela Contreras
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - Rafael Martínez-Camacho
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain
| | - Christian Gortazar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain.
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Wu Y, Zhang X, Zhou L, Lu J, Zhu F, Li J. Research progress in the off-target effects of Bacille Calmette-Guérin vaccine. Chin Med J (Engl) 2024; 137:2065-2074. [PMID: 38092722 PMCID: PMC11374297 DOI: 10.1097/cm9.0000000000002890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 09/06/2024] Open
Abstract
ABSTRACT Bacille Calmette-Guérin (BCG) vaccine is designed to provide protection against tuberculosis (TB). However, numerous epidemiological, clinical, and immunological studies have shown that BCG vaccination affects neonatal and infant mortality, which may be related to the reduction of TB-unrelated infections and diseases by BCG vaccine. We aimed to discuss the off-target effects of BCG vaccine on un-TB infections and diseases, as well as the potential mechanism and influencing factors. Literature was retrieved mainly from PubMed using medical subject headings "BCG, variations, and non-specific, heterologous or off-target". Studies have showed that BCG vaccination can prevent various heterologous infections, including respiratory tract infections, leprosy, and malaria, treat viral infections including human papillomavirus and herpes simplex virus infection as immunotherapy, and improve the immune responses as vaccine adjuvant. Besides, BCG vaccine can reduce the recurrence rate of non-muscle-invasive bladder cancer, and may provide protection against autoimmune diseases. These off-target effects of BCG vaccine are thought to be achieved by modulating heterologous lymphocyte responses or inducing trained immunity, which were found to be sex-differentiated and affected by the BCG vaccine strains, sequence or time of vaccination.
Collapse
Affiliation(s)
- Yanfei Wu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiaoyin Zhang
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Li Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Jiayu Lu
- IB Course Center of High School Affiliated to Shanghai Jiaotong University, Shanghai 200439, China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210009, China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210009, China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
Munkwase G. Implications of vaccine non-specific effects on licensure of new vaccines. Vaccine 2024; 42:1013-1021. [PMID: 38242737 DOI: 10.1016/j.vaccine.2024.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Immune memory was for a long time thought to be an exclusive feature of the adaptive immune system. Emerging evidence has shown that the innate immune system may exhibit memory which has been termed as trained immunity or innate immune memory. Trained immunity following vaccination may produce non-specific effects leading to reduction in morbidity and mortality from heterologous pathogens. This review looked at trained immunity as a mechanism for vaccine induced non-specific effects, mechanisms underlying trained immunity and known vaccine non-specific effects. A discussion is also made on the implications these vaccine non-specific effects may have on overall risk-benefit ratio evaluation by National Medicines Regulatory Authorities (NMRAs) during licensure of new vaccines. Epigenetic remodeling and "rewiring" of cellular metabolism in the innate immune cells especially monocytes, macrophages, and Natural Killer (NK) cells have been suggested to be the mechanisms underlying trained immunity. Trained immunity in other innate cells has largely remained elusive up to date. Non-specific effects have been extensively documented with Bacille Calmette-Guerin (BCG), measles vaccine and oral polio vaccine but it remains unclear if other vaccines may exhibit similar effects. All known vaccine non-specific effects have come from observations in epidemiological studies conducted post-vaccine licensure and roll out in target populations. It remains to be seen if early identification of non-specific effects especially those with protective benefits during the clinical development of new vaccines may contribute to the overall risk-benefit ratio evaluation during licensure by NMRAs.
Collapse
Affiliation(s)
- Grant Munkwase
- National Drug Authority, Plot 93, Buganda Road, Kampala, Uganda; African Leadership in Vaccinology Expertise (ALIVE), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part I. Non-Specific Immune Boosting with BCG: History, Ligands, and Receptors. J Alzheimers Dis 2024; 98:343-360. [PMID: 38393912 PMCID: PMC10977417 DOI: 10.3233/jad-231315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Vaccines such as Bacille Calmette-Guérin (BCG) can apparently defer dementia onset with an efficacy better than all drugs known to date, as initially reported by Gofrit et al. (PLoS One14, e0224433), now confirmed by other studies. Understanding how and why is of immense importance because it could represent a sea-change in how we manage patients with mild cognitive impairment through to dementia. Given that infection and/or inflammation are likely to contribute to the development of dementias such as Alzheimer's disease (Part II of this work), we provide a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents. We review early studies in which poxvirus, herpes virus, and tuberculosis (TB) infections afford cross-protection against unrelated pathogens, a concept known as 'trained immunity'. We then focus on the attenuated TB vaccine, BCG, that was introduced to protect against the causative agent of TB, Mycobacterium tuberculosis. We trace the development of BCG in the 1920 s through to the discovery, by Freund and McDermott in the 1940 s, that extracts of mycobacteria can themselves exert potent immunostimulating (adjuvant) activity; Freund's complete adjuvant based on mycobacteria remains the most potent immunopotentiator reported to date. We then discuss whether the beneficial effects of BCG require long-term persistence of live bacteria, before focusing on the specific mycobacterial molecules, notably muramyl dipeptides, that mediate immunopotentiation, as well as the receptors involved. Part II addresses evidence that immunopotentiation by BCG and other vaccines can protect against dementia development.
Collapse
Affiliation(s)
- Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel–Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
5
|
de Araujo ACVSC, Mambelli F, Sanches RO, Marinho FV, Oliveira SC. Current Understanding of Bacillus Calmette-Guérin-Mediated Trained Immunity and Its Perspectives for Controlling Intracellular Infections. Pathogens 2023; 12:1386. [PMID: 38133271 PMCID: PMC10745672 DOI: 10.3390/pathogens12121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated bacterium derived from virulent Mycobacterium bovis. It is the only licensed vaccine used for preventing severe forms of tuberculosis in children. Besides its specific effects against tuberculosis, BCG administration is also associated with beneficial non-specific effects (NSEs) following heterologous stimuli in humans and mice. The NSEs from BCG could be related to both adaptive and innate immune responses. The latter is also known as trained immunity (TI), a recently described biological feature of innate cells that enables functional improvement based on metabolic and epigenetic reprogramming. Currently, the mechanisms related to BCG-mediated TI are the focus of intense research, but many gaps are still in need of elucidation. This review discusses the present understanding of TI induced by BCG, exploring signaling pathways that are crucial to a trained phenotype in hematopoietic stem cells and monocytes/macrophages lineage. It focuses on BCG-mediated TI mechanisms, including the metabolic-epigenetic axis and the inflammasome pathway in these cells against intracellular pathogens. Moreover, this study explores the TI in different immune cell types, its ability to protect against various intracellular infections, and the integration of trained innate memory with adaptive memory to shape next-generation vaccines.
Collapse
Affiliation(s)
- Ana Carolina V. S. C. de Araujo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Fábio Mambelli
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Rodrigo O. Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Sergio C. Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| |
Collapse
|
6
|
Singh AK, Wang R, Lombardo KA, Praharaj M, Bullen CK, Um P, Gupta M, Srikrishna G, Davis S, Komm O, Illei PB, Ordonez AA, Bahr M, Huang J, Gupta A, Psoter KJ, Creisher PS, Li M, Pekosz A, Klein SL, Jain SK, Bivalacqua TJ, Yegnasubramanian S, Bishai WR. Intravenous BCG vaccination reduces SARS-CoV-2 severity and promotes extensive reprogramming of lung immune cells. iScience 2023; 26:107733. [PMID: 37674985 PMCID: PMC10477068 DOI: 10.1016/j.isci.2023.107733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/31/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) confers heterologous immune protection against viral infections and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here, we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model. BCG vaccination conferred a modest reduction on lung SCV2 viral load, bronchopneumonia scores, and weight loss, accompanied by a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. BCG uniquely recruited immunoglobulin-producing plasma cells to the lung suggesting accelerated local antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, with a transcriptional shift away from exhaustion markers and toward antigen presentation and repair. Similarly, BCG enhanced recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, that show reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.
Collapse
Affiliation(s)
- Alok K. Singh
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Rulin Wang
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - C. Korin Bullen
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Manish Gupta
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Stephanie Davis
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Oliver Komm
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter B. Illei
- Johns Hopkins University, School of Medicine, Department of Pathology, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Melissa Bahr
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Anuj Gupta
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kevin J. Psoter
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of General Pediatrics, Baltimore, MD, USA
| | - Patrick S. Creisher
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Maggie Li
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Andrew Pekosz
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sabra L. Klein
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sanjay K. Jain
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Trinity J. Bivalacqua
- Perelman School of Medicine at the University of Pennsylvania, Division of Urology, Department of Surgery, Philadelphia, PA, USA
| | | | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| |
Collapse
|
7
|
Chen J, Gao L, Wu X, Fan Y, Liu M, Peng L, Song J, Li B, Liu A, Bao F. BCG-induced trained immunity: history, mechanisms and potential applications. J Transl Med 2023; 21:106. [PMID: 36765373 PMCID: PMC9913021 DOI: 10.1186/s12967-023-03944-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine was discovered a century ago and has since been clinically applicable. BCG can not only be used for the prevention of tuberculosis, but also has a non-specific protective effect on the human body called trained immunity that is mediated by innate immune cells such as monocytes, macrophages, and natural killer cells. Mechanisms of trained immunity include epigenetic reprogramming, metabolic reprogramming, and long-term protection mediated by hematopoietic stem cells. Trained immunity has so far shown beneficial effects on cancer, viral-infections, autoimmune diseases, and a variety of other diseases, especially bladder cancer, respiratory viruses, and type 1 diabetes. The modulation of the immune response by BCG has led to the development of a variety of recombinant vaccines. Although the specific mechanism of BCG prevention on diseases has not been fully clarified, the potential role of BCG deserves further exploration, which is of great significance for prevention and treatment of diseases.
Collapse
Affiliation(s)
- Jingjing Chen
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Li Gao
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xinya Wu
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yuxin Fan
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Meixiao Liu
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Li Peng
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Jieqin Song
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Bingxue Li
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Aihua Liu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Yunnan Health Cell Biotechnology Company, Kunming, 650041, Yunnan, China. .,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Fukai Bao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Yunnan Health Cell Biotechnology Company, Kunming, 650041, Yunnan, China. .,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
8
|
Du J, Su Y, Wang R, Dong E, Cao Y, Zhao W, Gong W. Research progress on specific and non-specific immune effects of BCG and the possibility of BCG protection against COVID-19. Front Immunol 2023; 14:1118378. [PMID: 36798128 PMCID: PMC9927227 DOI: 10.3389/fimmu.2023.1118378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) is the only approved vaccine for tuberculosis (TB) prevention worldwide. BCG has an excellent protective effect on miliary tuberculosis and tuberculous meningitis in children or infants. Interestingly, a growing number of studies have shown that BCG vaccination can induce nonspecific and specific immunity to fight against other respiratory disease pathogens, including SARS-CoV-2. The continuous emergence of variants of SARS-CoV-2 makes the protective efficiency of COVID-19-specific vaccines an unprecedented challenge. Therefore, it has been hypothesized that BCG-induced trained immunity might protect against COVID-19 infection. This study comprehensively described BCG-induced nonspecific and specific immunity and the mechanism of trained immunity. In addition, this study also reviewed the research on BCG revaccination to prevent TB, the impact of BCG on other non-tuberculous diseases, and the clinical trials of BCG to prevent COVID-19 infection. These data will provide new evidence to confirm the hypotheses mentioned above.
Collapse
Affiliation(s)
- Jingli Du
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yue Su
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Ruilan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Enjun Dong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenjuan Zhao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Hu S, Xiang D, Zhang X, Zhang L, Wang S, Jin K, You L, Huang J. The mechanisms and cross-protection of trained innate immunity. Virol J 2022; 19:210. [PMID: 36482472 PMCID: PMC9733056 DOI: 10.1186/s12985-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, the traditional cognition of immunological memory being specific to adaptive immunity has been challenged. Innate immunity can mount enhanced responsiveness upon secondary stimulation, and a phenomenon is termed trained innate immunity. Trained innate immunity is orchestrated by distinct metabolic and epigenetic reprogramming in both circulating myeloid cells and myeloid progenitor cells in bone marrow, leading to long-term resistance to related and non-related pathogens infections. The induction of trained innate immunity can also polarize innate immune cells towards a hyperresponsive phenotype in the tumor microenvironment to exert antitumor effects. This review will discuss the current understanding of innate immune memory and the mechanisms during the induction of innate immunity, including signaling pathways, metabolic changes, and epigenetic rewriting. We also provide an overview of cross-protection against infectious diseases and cancers based on trained innate immunity.
Collapse
Affiliation(s)
- Shiwei Hu
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Danhong Xiang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Xinlu Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Lan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Shengjie Wang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Keyi Jin
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Liangshun You
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Jian Huang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| |
Collapse
|
11
|
Nica V, Popp RA, Crișan TO, Joosten LAB. The future clinical implications of trained immunity. Expert Rev Clin Immunol 2022; 18:1125-1134. [PMID: 36062825 DOI: 10.1080/1744666x.2022.2120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trained Immunity (TI) refers to the long-term modulation of the innate immune response, based on previous interactions with microbes, microbial ligands or endogenous substances. Through metabolic and epigenetic reprogramming, monocytes, macrophages and neutrophils develop an enhanced capacity to mount innate immune responses to subsequent stimuli and this is persistent due to alterations at the myeloid progenitor compartment. AREAS COVERED The purpose of this article is to review the current understanding of the TI process and discuss about its potential clinical implications in the near future. We address the evidence of TI involvement in various diseases, the currently developed new therapy, and discuss how TI may lead to new clinical tools to improve existing standards of care. EXPERT OPINION The state of art in this domain has made considerable progress, linking TI-related mechanisms in multiple immune-mediated pathologies, starting with infections to autoimmune disorders and cancers. As a relatively new area of immunology, it has seen fast progress with many of its applications ready to be investigated in clinical settings.
Collapse
Affiliation(s)
- Valentin Nica
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania.,Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
13
|
Shah T, Shah Z, Yasmeen N, Baloch Z, Xia X. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol 2022; 13:909011. [PMID: 35784278 PMCID: PMC9246416 DOI: 10.3389/fimmu.2022.909011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is an infectious disease that poses severe threats to global public health and significant economic losses. The COVID-19 global burden is rapidly increasing, with over 246.53 million COVID-19 cases and 49.97 million deaths reported in the WHO 2021 report. People with compromised immunity, such as tuberculosis (TB) patients, are highly exposed to severe COVID-19. Both COVID-19 and TB diseases spread primarily through respiratory droplets from an infected person to a healthy person, which may cause pneumonia and cytokine storms, leading to severe respiratory disorders. The COVID-19-TB coinfection could be fatal, exacerbating the current COVID-19 pandemic apart from cellular immune deficiency, coagulation activation, myocardial infarction, and other organ dysfunction. This study aimed to assess the pathogenesis of SARS-CoV-2-Mycobacterium tuberculosis coinfections. We provide a brief overview of COVID19-TB coinfection and discuss SARS-CoV-2 host cellular receptors and pathogenesis. In addition, we discuss M. tuberculosis host cellular receptors and pathogenesis. Moreover, we highlight the impact of SARS-CoV-2 on TB patients and the pathological pathways that connect SARS-CoV-2 and M. tuberculosis infection. Further, we discuss the impact of BCG vaccination on SARS-CoV-2 cases coinfected with M. tuberculosis, as well as the diagnostic challenges associated with the coinfection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zahir Shah
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Gong W, Mao Y, Li Y, Qi Y. BCG Vaccination: A potential tool against COVID-19 and COVID-19-like Black Swan incidents. Int Immunopharmacol 2022; 108:108870. [PMID: 35597119 PMCID: PMC9113676 DOI: 10.1016/j.intimp.2022.108870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus
disease 2019 (COVID-19), and its variants have brought unprecedented
impacts to the global public health system, politics, economy, and other
fields. Although more than ten COVID-19 specific vaccines have been
approved for emergency use, COVID-19 prevention and control still face
many challenges. Bacille Calmette–Guérin (BCG) is the only authorized
vaccine used to fight against tuberculosis (TB), it has been hypothesized
that BCG may prevent and control COVID-19 based on BCG-induced
nonspecific immune responses. Herein, we summarized: 1) The nonspecific
protection effects of BCG, such as prophylactic protection effects of BCG
on nonmycobacterial infections, immunotherapy effects of BCG vaccine, and
enhancement effect of BCG vaccine on unrelated vaccines; 2) Recent
evidence of BCG's efficacy against SARS-COV-2 infection from ecological
studies, analytical analyses, clinical trials, and animal studies; 3)
Three possible mechanisms of BCG vaccine and their effects on COVID-19
control including heterologous immunity, trained immunity, and
anti-inflammatory effect. We hope that this review will encourage more
scientists to investigate further BCG induced non-specific immune
responses and explore their mechanisms, which could be a potential tool
for addressing the COVID-19 pandemic and COVID-19-like “Black Swan”
events to reduce the impacts of infectious disease outbreaks on public
health, politics, and economy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8(th) Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yingqing Mao
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, Jiangsu Province, China
| | - Yuexi Li
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, Jiangsu Province, China.
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
15
|
Aslan G, Alkaya D. One Hundred of Tuberculosis Vaccine: History of Bacille Calmette-Guérin - Could BCG Vaccination Induce Trained Immunity? TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.98598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Singh AK, Wang R, Lombardo KA, Praharaj M, Bullen CK, Um P, Davis S, Komm O, Illei PB, Ordonez AA, Bahr M, Huang J, Gupta A, Psoter KJ, Jain SK, Bivalacqua TJ, Yegnasubramanian S, Bishai WR. Dynamic single-cell RNA sequencing reveals BCG vaccination curtails SARS-CoV-2 induced disease severity and lung inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.15.484018. [PMID: 35313583 PMCID: PMC8936112 DOI: 10.1101/2022.03.15.484018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COVID-19 continues to exact a toll on human health despite the availability of several vaccines. Bacillus Calmette Guérin (BCG) has been shown to confer heterologous immune protection against viral infections including COVID-19 and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model together with immune profiling and single cell RNA sequencing (scRNAseq). We observed that BCG reduced both lung SCV2 viral load and bronchopneumonia. This was accompanied by an increase in lung alveolar macrophages, a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. Single cell transcriptome profiling showed that BCG uniquely recruits immunoglobulin-producing plasma cells to the lung suggesting accelerated antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, and differentially expressed gene (DEG) analysis showed a transcriptional shift away from exhaustion markers and towards antigen presentation and repair. Similarly, BCG enhanced lung recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, with both cell-types also showing reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.
Collapse
Affiliation(s)
- Alok K. Singh
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Rulin Wang
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - C. Korin Bullen
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Stephanie Davis
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Oliver Komm
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter B. Illei
- Johns Hopkins University, School of Medicine, Department of Pathology, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore MD, USA
| | - Melissa Bahr
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore MD, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Anuj Gupta
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kevin J. Psoter
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of General Pediatrics, Baltimore, MD, USA
| | - Sanjay K. Jain
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore MD, USA
| | - Trinity J. Bivalacqua
- Perelman School of Medicine at the University of Pennsylvania, Division of Urology, Department of Surgery, Philadelphia, PA, USA
| | | | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| |
Collapse
|
17
|
Gong W, Aspatwar A, Wang S, Parkkila S, Wu X. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. Expert Rev Vaccines 2021; 20:857-880. [PMID: 34078215 PMCID: PMC8220438 DOI: 10.1080/14760584.2021.1938550] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Introduction: The coronavirus disease 2019 (COVID-19) pandemic continues to spread worldwide and vaccination remains the most effective approach to control COVID-19. Currently, at least ten COVID-19 vaccines have been authorized under emergency authorization. However, these vaccines still face many challenges.Areas covered: This study reviews the concept and mechanisms of trained immunity induced by the Bacille Calmette Guérin (BCG) vaccine and identifies questions that should be answered before the BCG vaccine could be used to combat COVID-19 pandemic. Moreover, we present for the first time the details of current BCG vaccine clinical trials, which are underway in various countries, to assess its effectiveness in combating the COVID-19 pandemic. Finally, we discuss the challenges of COVID-19 vaccines and opportunities for the BCG vaccine. The literature was found by searching the PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of Science (www.webofknowledge.com), Embase (https://www.embase.com), and CNKI (https://www.cnki.net/) databases. The date was set as the default parameter for each database.Expert opinion: The advantages of the BCG vaccine can compensate for the shortcomings of other COVID-19 vaccines. If the efficacy of the BCG vaccine against COVID-19 is confirmed by these clinical trials, the BCG vaccine may be essential to resolve the challenges faced by COVID-19 vaccines.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8 Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Shuyong Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8 Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8 Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Yaghoobi R, Soghrati M, Tavakoli S, Pazyar N, Abounoori M, Abounoori A, Houshmand G. Efficacy of viable BCG vaccine paste in the treatment of common warts: a double-blind randomized control trial. J DERMATOL TREAT 2021; 33:2198-2202. [PMID: 34060416 DOI: 10.1080/09546634.2021.1937482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Treatment of common warts may be painful or leaves scars, mainly using traditional destructive methods. This study aimed to evaluate the efficacy of the viable Bacillus Calmette-Guérin (BCG) vaccine in paste formula as an immunotherapeutic modality for common warts treatment. METHODS This double-blind and randomized, parallel-group, placebo-controlled trial was conducted at the Ahvaz Imam Hospital Dermatology Department from November 2014 to 2015. Overall 80 patients with common warts in two groups (case and control) received BCG vaccine paste once weekly for eight consecutive weeks. Follow-up was done every two weeks during treatment and six months after the treatment to evaluate recurrence in patients with complete resolution. RESULTS In group A, eight patients (20%) had a complete response, 15 patients (37.5%) partial response, four patients (10%) low response, and 13 patients (32.5%) no response (p < .001). All patients in group B had no response to treatment (p < .001). After six months of follow-up, no recurrence was seen. Duration of disease less than 12 months (p = .001) and the number of lesions less than three (p = .01) were determining factors of response to treatment. CONCLUSION Topical BCG vaccine paste was an effective treatment for common warts, without recurrence and significant complications.
Collapse
Affiliation(s)
- Reza Yaghoobi
- Dermatology Department, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mehrnaz Soghrati
- Dermatology Department, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sedighe Tavakoli
- Dermatology Department, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Nader Pazyar
- Dermatology Department, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mahdi Abounoori
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Abounoori
- Student Research Committee, Department of Laboratory Sciences, Faculty of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
19
|
Singh AK, Netea MG, Bishai WR. BCG turns 100: its nontraditional uses against viruses, cancer, and immunologic diseases. J Clin Invest 2021; 131:e148291. [PMID: 34060492 DOI: 10.1172/jci148291] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
First administered to a human subject as a tuberculosis (TB) vaccine on July 18, 1921, Bacillus Calmette-Guérin (BCG) has a long history of use for the prevention of TB and later the immunotherapy of bladder cancer. For TB prevention, BCG is given to infants born globally across over 180 countries and has been in use since the late 1920s. With about 352 million BCG doses procured annually and tens of billions of doses having been administered over the past century, it is estimated to be the most widely used vaccine in human history. While its roles for TB prevention and bladder cancer immunotherapy are widely appreciated, over the past century, BCG has been also studied for nontraditional purposes, which include (a) prevention of viral infections and nontuberculous mycobacterial infections, (b) cancer immunotherapy aside from bladder cancer, and (c) immunologic diseases, including multiple sclerosis, type 1 diabetes, and atopic diseases. The basis for these heterologous effects lies in the ability of BCG to alter immunologic set points via heterologous T cell immunity, as well as epigenetic and metabolomic changes in innate immune cells, a process called "trained immunity." In this Review, we provide an overview of what is known regarding the trained immunity mechanism of heterologous protection, and we describe the current knowledge base for these nontraditional uses of BCG.
Collapse
Affiliation(s)
- Alok K Singh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - William R Bishai
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Aspatwar A, Gong W, Wang S, Wu X, Parkkila S. Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. Int Rev Immunol 2021; 41:283-296. [PMID: 33960271 PMCID: PMC8108189 DOI: 10.1080/08830185.2021.1922685] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is a live attenuated M. bovis vaccine that was developed about 100 years ago by Albert Calmette and Camille Guérin. Many countries have been using the vaccine for decades against tuberculosis (TB). The World Health Organization (WHO) recommends a single dose of BCG for infants in TB endemic as well as leprosy high risk countries, and globally almost 130 million infants are vaccinated yearly. The role of BCG is well known in reducing neonatal and childhood death rates. Epidemiological and retrospective cross-sectional studies demonstrated that the BCG vaccination protects the children against respiratory tract infections and lowers the risk of malaria in children. In addition, BCG enhances IFN-γ and IL-10 levels, thus providing immunity against respiratory tract infection even in elderly people. The BCG is also known to provide nonspecific innate immunity against viruses and parasites, through an innate immune mechanism termed ‘trained immunity’ and is defined as the immunological recall of the innate immune system by epigenetic reprogramming. Based on these studies it is suggested that the BCG has the potential to act as a protective agent against COVID-19. Further proven safety records of BCG in humans, its adjuvant activity and low-cost manufacturing make it an attractive option to stop the pandemic and reduce the COVID-19 related mortality. In this review we discuss the heterologous effects of BCG, induction of trained immunity and its implication in development of a potential vaccine against COVID-19 pandemic.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Wenping Gong
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuyong Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
21
|
Koneru G, Batiha GES, Algammal AM, Mabrok M, Magdy S, Sayed S, AbuElmagd ME, Elnemr R, Saad MM, Abd Ellah NH, Hosni A, Muhammad K, Hetta HF. BCG Vaccine-Induced Trained Immunity and COVID-19: Protective or Bystander? Infect Drug Resist 2021; 14:1169-1184. [PMID: 33790587 PMCID: PMC8001200 DOI: 10.2147/idr.s300162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
In late 2019, a new virulent coronavirus (CoV) emerged in Wuhan, China and was named as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This virus spread rapidly, causing the coronavirus disease-2019 (COVID-19) pandemic. Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis (TB) vaccine, associated with induction of non-specific cross-protection against unrelated infections. This protection is a memory-like response in innate immune cells (trained immunity), which is caused by epigenetic reprogramming via histone modification in the regulatory elements of specific genes in monocytes. COVID-19 related epidemiological studies showed an inverse relationship between national BCG vaccination policies and COVID-19 incidence and death, suggesting that BCG may induce trained immunity that could confer some protection against SARS-CoV-2. As this pandemic has put most of Earth's population under quarantine, repurposing of the old, well-characterized BCG may ensure some protection against COVID-19. This review focuses on BCG-related cross-protection and acquisition of trained immunity, as well as the correlation between BCG vaccination and COVID-19 incidence and mortality.
Collapse
Affiliation(s)
- Gopala Koneru
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutger New Jersey Medical School, Rutgers University, New Brunswick, NJ, 07103, USA
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhur, 22511, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sara Magdy
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Shrouk Sayed
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mai E AbuElmagd
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham Elnemr
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mahmoud M Saad
- Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Amal Hosni
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
22
|
Parmar K, Siddiqui A, Nugent K. Bacillus Calmette-Guerin Vaccine and Nonspecific Immunity. Am J Med Sci 2021; 361:683-689. [PMID: 33705721 PMCID: PMC7938189 DOI: 10.1016/j.amjms.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Bacillus Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world. It protects against many non-mycobacterial infections secondary to its nonspecific immune effects. The mechanism for these effects includes modification of innate and adaptive immunity. The alteration in innate immunity is through histone modifications and epigenetic reprogramming of monocytes to develop an inflammatory phenotype, a process called “trained immunity.” The memory T cells of adaptive immunity are also responsible for resistance against secondary infections after administration of BCG vaccine, a process called “heterologous immunity.” Bacillus Calmette-Guerin vaccine is known to not only boosts immune responses to many vaccines when they are co-administered but also decrease severity of these infections when used alone. The BCG vaccine by itself induces a TH1 type response, and its use as a vector has also shown promising results. This review article summarizes the studies showing effects of BCG vaccines on various viral infections, its role in enhancing vaccine responses, the mechanisms for this protective effect, and information on its effect on COVID-19.
Collapse
Affiliation(s)
- Kanak Parmar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Afzal Siddiqui
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
23
|
Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, Nistal-Villan E, Ochando J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front Immunol 2021; 12:632478. [PMID: 33763077 PMCID: PMC7982405 DOI: 10.3389/fimmu.2021.632478] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Despite of the rapid development of the vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it will take several months to have enough doses and the proper infrastructure to vaccinate a good proportion of the world population. In this interim, the accessibility to the Bacille Calmette-Guerin (BCG) may mitigate the pandemic impact in some countries and the BCG vaccine offers significant advantages and flexibility in the way clinical vaccines are administered. BCG vaccination is a highly cost-effective intervention against tuberculosis (TB) and many low-and lower-middle-income countries would likely have the infrastructure, and health care personnel sufficiently familiar with the conventional TB vaccine to mount full-scale efforts to administer novel BCG-based vaccine for COVID-19. This suggests the potential for BCG to overcome future barriers to vaccine roll-out in the countries where health systems are fragile and where the effects of this new coronavirus could be catastrophic. Many studies have reported cross-protective effects of the BCG vaccine toward non-tuberculosis related diseases. Mechanistically, this cross-protective effect of the BCG vaccine can be explained, in part, by trained immunity, a recently discovered program of innate immune memory, which is characterized by non-permanent epigenetic reprogramming of macrophages that leads to increased inflammatory cytokine production and consequently potent immune responses. In this review, we summarize recent work highlighting the potential use of BCG for the treatment respiratory infectious diseases and ongoing SARS-CoV-2 clinical trials. In situations where no other specific prophylactic tools are available, the BCG vaccine could be used as a potential adjuvant, to decrease sickness of SARS-CoV-2 infection and/or to mitigate the effects of concurrent respiratory infections.
Collapse
Affiliation(s)
- Maria Gonzalez-Perez
- Transplant Immunology Unit, Department of Immunology, National Center of Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Rodrigo Sanchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Boris Shor
- Manhattan BioSolutions, New York, NY, United States
| | - Estanislao Nistal-Villan
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Jordi Ochando
- Transplant Immunology Unit, Department of Immunology, National Center of Microbiology, Instituto De Salud Carlos III, Madrid, Spain
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Exploration of Association Between Respiratory Vaccinations With Infection and Mortality Rates of COVID-19. Disaster Med Public Health Prep 2021; 17:e14. [PMID: 33588980 PMCID: PMC8129690 DOI: 10.1017/dmp.2021.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Respiratory disease vaccines may affect coronavirus disease 2019 (COVID-19) - associated infection and mortality rates due to vaccine nonspecific effects against viral infections. We compared the infection and mortality rates in relation to COVID-19 between countries with and without universal respiratory disease vaccine policies. METHODS In this ecological study, 186 countries with COVID-19 statistics from the World Health Organization (WHO) were included. RESULTS The study found that countries with universal BCG (bacillus Calmette Guérin) vaccine had significantly lower total infection and mortality rates, 0.2979 and 0.0077 versus 3.7445, and 0.0957/1000 people and confirmed cases (P < 0.001). The countries with universal pneumococcal vaccine (PCV), including PCV1, PCV2, and PCV3 vaccines, had significantly higher total mortality, 0.0111 versus 0.0080, respectively (P = 0.032). Higher income was associated with increasing total infection and mortality rates. Whereas, BCG vaccination was associated with a lower total mortality rate only (P = 0.030). The high-income countries were more likely to not receive universal BCG and receive second dose of meningococcal conjugate vaccine (MCV2) and third dose of PCV3 vaccination coverage. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates increased with increasing years of the second dose of measles-containing vaccine (P = 0.026) and pneumococcal conjugate third dose (PCV3). CONCLUSIONS This study suggests that BCG vaccination could reduce the infection caused by COVID-19, and MCV2 vaccine years increases the total infection rate. This study identified high economic characteristics and not having universal BCG coverage as the independent risk factors of mortality by multivariate analysis.
Collapse
|
25
|
Adesanya OA, Uche-Orji CI, Adedeji YA, Joshua JI, Adesola AA, Chukwudike CJ. Bacillus Calmette-Guerin (BCG): the adroit vaccine. AIMS Microbiol 2021; 7:96-113. [PMID: 33659771 PMCID: PMC7921379 DOI: 10.3934/microbiol.2021007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/31/2021] [Indexed: 12/27/2022] Open
Abstract
Background The Bacillus Calmette-Guerin (BCG) vaccine has been in use for 99 years, and is regarded as one of the oldest human vaccines known today. It is recommended primarily due to its effect in preventing the most severe forms of tuberculosis, including disseminated tuberculosis and meningeal tuberculosis in children; however, its efficacy in preventing pulmonary tuberculosis and TB reactivation in adults has been questioned. Several studies however have found that asides from its role in tuberculosis prevention, the BCG vaccine also has protective effects against a host of other viral infections in humans, an effect which has been termed: heterologous, non-specific or off-target. Objectives As we approach 100 years since the discovery of the BCG vaccine, we review the evidence of the non-specific protection offered by the vaccine against viral infections, discuss the possible mechanisms of action of these effects, highlight the implications these effects could have on vaccinology and summarize the recent epidemiological correlation between the vaccine and the on-going COVID-19 pandemic. Results Several epidemiological studies have established that BCG does reduce all-cause mortality in infants, and also the time of vaccination influences this effect significantly. This effect has been attributed to the protective effect of the vaccine in preventing unrelated viral infections during the neonatal period. Some of such viral infections that have been investigated include: herpes simplex virus (HSV), human Papilloma virus (HPV), yellow fever virus (YFV), respiratory syncytial virus (RSV) and influenza virus type A (H1N1). These effects are thought to be mediated via induction of innate immune memory as well as heterologous lymphocytic activation. While epidemiological studies have suggested a correlation, the potential protection of the BCG vaccine against COVID-19 transmission and mortality rates is currently unclear. Ongoing clinical trials and further research may shed more light on the subject in the future. Conclusion BCG is a multifaceted vaccine, with many numerous potential applications to vaccination strategies being employed for current and future viral infections. There however is a need for further studies into the immunologic mechanisms behind these non-specific effects, for these potentials to become reality, as we usher in the beginning of the second century since the vaccine's discovery.
Collapse
Affiliation(s)
- Oluwafolajimi A Adesanya
- Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Yeshua A Adedeji
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John I Joshua
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeniyi A Adesola
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
26
|
The double-sided effects of Mycobacterium Bovis bacillus Calmette-Guérin vaccine. NPJ Vaccines 2021; 6:14. [PMID: 33495451 PMCID: PMC7835355 DOI: 10.1038/s41541-020-00278-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG), the only vaccine proven to be effective against tuberculosis (TB), is the most commonly used vaccine globally. In addition to its effects on mycobacterial diseases, an increasing amount of epidemiological and experimental evidence accumulated since its introduction in 1921 has shown that BCG also exerts non-specific effects against a number of diseases, such as non-mycobacterial infections, allergies and certain malignancies. Recent Corona Virus Disease 2019 (COVID-19) outbreak has put BCG, a classic vaccine with significant non-specific protection, into the spotlight again. This literature review briefly covers the diverse facets of BCG vaccine, providing new perspectives in terms of specific and non-specific protection mechanisms of this old, multifaceted, and controversial vaccine.
Collapse
|
27
|
Covián C, Ríos M, Berríos-Rojas RV, Bueno SM, Kalergis AM. Induction of Trained Immunity by Recombinant Vaccines. Front Immunol 2021; 11:611946. [PMID: 33584692 PMCID: PMC7873984 DOI: 10.3389/fimmu.2020.611946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 01/24/2023] Open
Abstract
Vaccines represent an important strategy to protect humans against a wide variety of pathogens and have even led to eradicating some diseases. Although every vaccine is developed to induce specific protection for a particular pathogen, some vaccine formulations can also promote trained immunity, which is a non-specific memory-like feature developed by the innate immune system. It is thought that trained immunity can protect against a wide variety of pathogens other than those contained in the vaccine formulation. The non-specific memory of the trained immunity-based vaccines (TIbV) seems beneficial for the immunized individual, as it may represent a powerful strategy that contributes to the control of pathogen outbreaks, reducing morbidity and mortality. A wide variety of respiratory viruses, including respiratory syncytial virus (hRSV) and metapneumovirus (hMPV), cause serious illness in children under 5 years old and the elderly. To address this public health problem, we have developed recombinant BCG vaccines that have shown to be safe and immunogenic against hRSV or hMPV. Besides the induction of specific adaptive immunity against the viral antigens, these vaccines could generate trained immunity against other respiratory pathogens. Here, we discuss some of the features of trained immunity induced by BCG and put forward the notion that recombinant BCGs expressing hRSV or hMPV antigens have the capacity to simultaneously induce specific adaptive immunity and non-specific trained immunity. These recombinant BCG vaccines could be considered as TIbV capable of inducing simultaneously the development of specific protection against hRSV or hMPV, as well as non-specific trained-immunity-based protection against other pathogenic viruses.
Collapse
Affiliation(s)
- Camila Covián
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berríos-Rojas
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
28
|
Tapela K, Ochieng’ Olwal C, Quaye O. Parallels in the pathogenesis of SARS-CoV-2 and M. tuberculosis: a synergistic or antagonistic alliance? Future Microbiol 2020; 15:1691-1695. [PMID: 33404259 PMCID: PMC7789731 DOI: 10.2217/fmb-2020-0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles Ochieng’ Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Safar HA, Mustafa AS, McHugh TD. COVID-19 vaccine development: What lessons can we learn from TB? Ann Clin Microbiol Antimicrob 2020; 19:56. [PMID: 33256750 PMCID: PMC7702199 DOI: 10.1186/s12941-020-00402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.
Collapse
Affiliation(s)
- Hussain A Safar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
30
|
Basak P, Sachdeva N, Dayal D. Can BCG vaccine protect against COVID-19 via trained immunity and tolerogenesis? Bioessays 2020; 43:e2000200. [PMID: 33169410 DOI: 10.1002/bies.202000200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
As the number of infections and mortalities from the SARS-CoV-2 pandemic continues to rise, the development of an effective therapy against COVID-19 becomes ever more urgent. A few reports showing a positive correlation between BCG vaccination and reduced COVID-19 mortality have ushered in some hope. BCG has been suggested to confer a broad level of nonspecific protection against several pathogens, mainly via eliciting "trained immunity" in innate immune cells. Secondly, BCG has also been proven to provide benefits in autoimmune diseases by inducing tolerogenicity. Being an acute inflammatory disease, COVID-19 requires a therapy that induces early priming of anti-viral immune responses and regulates aberrant hyperactivity of innate-immune cells. Here, we hypothesize that BCG can offer reliable spatiotemporal protection from COVID-19 by triggering trained immunity and tolerogenesis, through multiple cellular pathways. We propose further research on BCG-mediated immunoprotection, especially in vulnerable individuals, as a strategy to halt the progress of the SARS-CoV-2 pandemic. Also see the video abstract here https://youtu.be/P2D2RXfq6Vg.
Collapse
Affiliation(s)
- Preetam Basak
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
31
|
Soenjoyo KR, Chua BWB, Wee LWY, Koh MJA, Ang SB. Treatment of cutaneous viral warts in children: A review. Dermatol Ther 2020; 33:e14034. [PMID: 32683782 DOI: 10.1111/dth.14034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Viral warts or verruca are very common skin infections in children. Although benign, lesions can be extensive, painful, bleed, or lead to cosmetic disfigurement. Although spontaneous resolution can occur, parents often bring their children for treatment, especially when they are symptomatic. Many publications have assessed the efficacy and safety of treatment of warts in adults. However, treatment in children can be challenging due to their immune responses and lower threshold for pain. We review the current literature on the methods, efficacy, and side effect profile of common treatment modalities for cutaneous viral warts in children. There is evidence that salicylic acid and cryotherapy are effective, and although cryotherapy is more effective, there is a higher risk of side effects such as pain and blistering. Combination treatment with salicylic acid and cryotherapy may reduce these side effects. Although there is limited data, other treatment options such as cantharidin, immunotherapy and other mechanical therapies, for example, carbon dioxide lasers, may also be considered, especially for recalcitrant lesions.
Collapse
Affiliation(s)
| | | | - Lynette Wei Yi Wee
- Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mark Jean Aan Koh
- Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Seng Bin Ang
- Duke-NUS Medical School, Singapore, Singapore.,Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore.,Family Medicine Service, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
32
|
Al-Yassen AQ, Al-Maliki SK, Al-Asadi JN. The Bacillus Calmette-Guérin (BCG) Vaccine: Is it a better choice for the treatment of viral warts? Sultan Qaboos Univ Med J 2020; 20:e330-e336. [PMID: 33110649 PMCID: PMC7574799 DOI: 10.18295/squmj.2020.20.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives This study aimed to compare the effectiveness of the bacillus Calmette-Guérin (BCG) vaccine with topical salicylic acid (SA) in the treatment of viral warts. Methods This non-randomised controlled trial was conducted at the Al-Sader Teaching Hospital, Basrah, Iraq, from January 2016 to April 2017. A total of 201 patients with viral warts were injected with an intradermal purified protein derivative. Subsequently, those with negative tuberculin test results received an intradermal BCG vaccination, while those with positive results underwent conventional treatment with topical SA. Patients were assessed for any signs of improvement at one, two and three months. Results Overall, 190 patients completed the trial; of these, 133 (70%) received the BCG vaccine and 57 (30%) were treated with topical SA. Complete response to treatment was observed in 9.8% and 5.3% of patients in the BCG and SA groups, respectively (P <0.001). Cure rates were significantly higher for patients with genital (22.2% versus 7.7%; P = 0.002) and common warts (8.5% versus 0%; P = 0.001) treated with the BCG vaccine; however, the reverse was true for flat warts (12.9% versus 25%; P = 0.041). A binary logistic regression analysis indicated that BCG therapy was the only significant independent predictor of positive treatment response (odds ratio: 7.56, 95% confidence interval: 3.72-15.36; P <0.001). Conclusion The BCG vaccine was more effective than topical SA for treating viral warts, with the best response noted in the treatment of genital warts, followed by flat warts. However, plantar warts demonstrated least response to this treatment.
Collapse
Affiliation(s)
- Asaad Q Al-Yassen
- Department of Family & Community Medicine, College of Medicine, Basrah University, Basrah, Iraq
| | - Shukrya K Al-Maliki
- Department of Family & Community Medicine, College of Medicine, Basrah University, Basrah, Iraq
| | - Jasim N Al-Asadi
- Department of Family & Community Medicine, College of Medicine, Basrah University, Basrah, Iraq
| |
Collapse
|
33
|
Maheshwari N, Jain A. Is There a Rationale for Using Bacillus Calmette-Guerin Vaccine in Coronavirus Infection? Viral Immunol 2020; 34:300-306. [PMID: 32857679 DOI: 10.1089/vim.2020.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic in 2020. The pathogen responsible for the COVID-19 has been found to be coronavirus (2019-nCoV) with human transmission through droplets, airway secretions, and even direct contact with host. Currently multiple drugs and their combinations are being tried for the treatment of the COVID-19 disease, but none approved. In absence of definitive and approved treatment, it is imperative that prevention of COVID-19 infection is of utmost importance. For the same, face masks, hand hygiene, isolation, and quarantine are being practiced all over the world. However much successful these methods be, they cannot be used for a very long time. Thus, it becomes necessary that a vaccine be developed for the disease so that the further spread could be halted. Some reports suggest the use of Bacillus Calmette-Guerin (BCG) vaccine as the prophylaxis for coronavirus. BCG vaccine is a live attenuated vaccine, used for prophylaxis of Mycobacterium tuberculosis and is present in the essential list of the World Health Organization as well as immunization programs of many countries. Immunostimulatory antiviral effects of BCG vaccine are well known. At present, there are no published evidence available to support the use of BCG vaccine for the prevention of coronavirus infection. However, there have been speculations on enhanced immunity with BCG vaccine, which might be useful in prevention of coronavirus infection. Results from the clinical studies of BCG vaccine in vulnerable population are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Nidhi Maheshwari
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India
| | - Ayush Jain
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
34
|
Ohadian Moghadam S. A Review on Currently Available Potential Therapeutic Options for COVID-19. Int J Gen Med 2020; 13:443-467. [PMID: 32801840 PMCID: PMC7387864 DOI: 10.2147/ijgm.s263666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
A series of unexplained pneumonia cases currently were first reported in December 2019 in Wuhan, China. Official names have been announced for the virus responsible, previously known as "2019 novel coronavirus" and the diseases it causes are, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19), respectively. Despite great efforts worldwide to control SARS-CoV-2, the spread of the virus has reached a pandemic. Infection prevention and control of this virus is the primary concern of public health officials and professionals. Currently, several therapeutic options for COVID-19 are proposed and vaccine development has been initiated for prevention purposes. In this review, we will discuss the most recent evidence about the current potential treatment options including anti-inflammatory drugs, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, nucleoside analogs, protease inhibitors, monoclonal antibodies, and convalescent plasma therapy. Some other agents such as vitamin D and melatonin, which were recommended as potential adjuvant treatments for COVID-19 infection are also presented. Moreover, the potential use of convalescent plasma for treatment of COVID-19 infection was described. Furthermore, in the next part of the current review, various vaccination approaches against COVID-19 including whole virus vaccines, recombinant subunit vaccine, DNA vaccines, and mRNA vaccines are discussed.
Collapse
|
35
|
A Retrospective Study of a Chinese Traditional Medicine YIKEER in the Treatment of Verruca Patients in Liaoning District. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9896148. [PMID: 31976004 PMCID: PMC6955137 DOI: 10.1155/2019/9896148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022]
Abstract
Background There are many possible ways to treat verruca, but no one is the single perfect treatment. YIKEER is a kind of compound preparation of Chinese traditional medicine, which has been used in the treatment of verruca for several years. Aim To confirm the effects of YIKEER for verruca. Method Patients with verruca vulgaris, verruca plantaris, or verruca plana were instructed to apply YIKEER stock solution or diluent to the lesions once or twice daily for 5–7 days. Then, the YIKEER was ceased for 3–4 days, and sea buckthorn oil was used for wound repairing. The total procession was defined as one session. Result Respective 88.05% verruca vulgaris patients, 86.03% verruca plantaris patients, and 82.42% verruca plana patients achieved complete response. Most patients gained complete or partial responses after 4 treatment sessions. The percentage of patients who achieved at least 50% improvement was 90.34% for verruca vulgaris, 90.60% for verruca plantaris, and 80.91% for verruca plana after 4-session treatment. The efficacy of verruca vulgaris or verruca plantaris was better than that of verruca plana. Conclusion YIKEER is an effective, safe, and well-tolerated agent for treating verruca including verruca vulgaris, verruca plantaris, and verruca plana.
Collapse
|
36
|
Moorlag SJCFM, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect 2019; 25:1473-1478. [PMID: 31055165 DOI: 10.1016/j.cmi.2019.04.020] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Some strains of Bacillus Calmette-Guérin (BCG) vaccine not only confer protection against disseminated forms of tuberculosis, but also reduce all-cause mortality by the induction of protection against infections with non-related pathogens. OBJECTIVES We review evidence for non-specific protection induced by BCG vaccination against viral infections, discuss possible mechanisms of action, and summarize implications for vaccination policies and vaccine discovery. SOURCES Relevant studies retrieved from PubMed and clinicaltrials.gov. CONTENT Numerous epidemiological, clinical and immunological studies demonstrate that BCG vaccination impacts the immune response to subsequent infections, resulting in reduced morbidity and mortality. Important lines of evidence indicating that BCG protects against viral pathogens comes from experimental studies in mice showing that BCG offers protection against various DNA and RNA viruses, including herpes and influenza viruses. Recently, the effect of BCG on an experimental viral infection in humans has been demonstrated. These effects are thought to be mediated via the induction of innate immune memory and heterologous lymphocyte activation, resulting in enhanced cytokine production, macrophage activity, T-cell responses and antibody titres. IMPLICATIONS The discovery of innate immune memory has greatly improved our understanding of the mechanisms underlying the non-specific effects induced by BCG vaccination. However, a full understanding of the molecular mechanisms that underlie this phenomenon is still evolving. By identifying the factors that impact the non-specific effects of BCG, we will take an important step towards novel therapeutic options and vaccination strategies, which might lead to a reduction in severe morbidity and mortality associated with viral infections.
Collapse
Affiliation(s)
- S J C F M Moorlag
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - R J W Arts
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - R van Crevel
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Jaisinghani AK, Dey VK, Suresh MS, Saxena A. Bacillus Calmette-Guerin Immunotherapy for Recurrent Multiple Warts: An Open-Label Uncontrolled Study. Indian J Dermatol 2019; 64:164. [PMID: 30983619 PMCID: PMC6440180 DOI: 10.4103/ijd.ijd_558_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Cutaneous warts present a therapeutic challenge because of recurrence and multiplicity and may become a frustrating condition for both patients and physicians. In the past few years, there has been an increase in intralesional immunotherapy for recurrent multiple warts not only because of its encouraging results in the treatment but also due to its ability to clear distant warts and preventing recurrence. Objective: The objective of this study was to evaluate the efficacy and safety of intralesional bacillus Calmette–Guerin (BCG) vaccine immunotherapy in the treatment of recurrent multiple warts. Materials and Methods: This study included 40 adult patients with multiple recurrent extragenital warts of different sizes, numbers, and duration, with or without distant warts. Patients were injected intralesionally with 0.1 ml BCG vaccine into the largest wart at a 3-week interval, directly without a pre-sensitization skin test, until complete clearance or for a maximum of three sessions. Follow-up was done every month for 3 months to detect any recurrence. Results: Out of the 40 patients enrolled in the study, 34 patients completed the treatment protocol of three injections and 3 months of follow-up and six patients discontinued for various reasons. Complete clearance of the lesions was achieved in 25 (73.53%) patients, partial clearance in 8 (23.53%) patients, and no response in 1 (2.94%) patient. Complete response was demonstrated in 75% of those presenting with distant warts. Therapy-related side effects were mild in the form of pain during injection, itching, erythema at the site of injection, and flu-like symptoms. None of the patients with complete response showed recurrence of lesions in a 3-month follow-up period. Conclusion: Intralesional BCG immunotherapy is a safe, effective, and promising treatment modality for recurrent multiple warts.
Collapse
Affiliation(s)
- Avtar Kishan Jaisinghani
- Department of Dermatology, People's College of Medical Sciences and Research Centre, Bhopal, Madhya Pradesh, India
| | - Vivek Kumar Dey
- People's College of Medical Sciences and Research Centre, Bhopal, Madhya Pradesh, India
| | - M S Suresh
- People's College of Medical Sciences and Research Centre, Bhopal, Madhya Pradesh, India
| | - Animesh Saxena
- People's College of Medical Sciences and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
38
|
Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Rep 2017; 17:2562-2571. [PMID: 27926861 PMCID: PMC5177620 DOI: 10.1016/j.celrep.2016.11.011] [Citation(s) in RCA: 459] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/11/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
The protective effects of the tuberculosis vaccine Bacillus Calmette-Guerin (BCG) on unrelated infections are thought to be mediated by long-term metabolic changes and chromatin remodeling through histone modifications in innate immune cells such as monocytes, a process termed trained immunity. Here, we show that BCG induction of trained immunity in monocytes is accompanied by a strong increase in glycolysis and, to a lesser extent, glutamine metabolism, both in an in-vitro model and after vaccination of mice and humans. Pharmacological and genetic modulation of rate-limiting glycolysis enzymes inhibits trained immunity, changes that are reflected by the effects on the histone marks (H3K4me3 and H3K9me3) underlying BCG-induced trained immunity. These data demonstrate that a shift of the glucose metabolism toward glycolysis is crucial for the induction of the histone modifications and functional changes underlying BCG-induced trained immunity. The identification of these pathways may be a first step toward vaccines that combine immunological and metabolic stimulation. Cellular metabolism undergoes major shifts in BCG-trained monocytes The Akt-mTOR signaling pathway is essential for these shifts in metabolism Induction of glucose and glutamine metabolism are crucial in trained immunity The metabolic changes are the result of rewiring of chromatin modifications
Collapse
|
39
|
Thappa DM, Chiramel MJ. Evolving role of immunotherapy in the treatment of refractory warts. Indian Dermatol Online J 2016; 7:364-370. [PMID: 27730031 PMCID: PMC5038096 DOI: 10.4103/2229-5178.190487] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cutaneous and genital warts are common dermatological conditions caused by the human papilloma virus (HPV). Although it is a benign condition, it causes disfigurement, has a tendency to koebnerize, and can be transmitted to others. This makes adequate and timely treatment important. There are several conventional treatments available with variable response. Topical and systemic immunotherapy has now found a significant place in the treatment of warts because of its nondestructive action, ease of use, and promising results. Through this review, we would like to present a brief overview of the various immunotherapeutic agents used. These include more established agents such as imiquimod, Mycobacterium w vaccine, bacillus Calmette-Guérin vaccine, measles, mumps, and rubella vaccine, Candida antigen, trichophyton antigen, tuberculin, zinc, cimetidine, levamisole, HPV vaccine, and autoimplantation therapy. Other agents such as contact immunotherapy which is sparsely used now than before and newer agents such as Corynebacterium parvum, sinecatechins, echinacea, propolis, glycyrrizinic acid, and Vitamin D have also been discussed. The mechanism of action of these agents, along with their dosage, mode of administration, duration of use, expected outcomes and comparative efficacy, evidence for their use, and expected side effects, if any, are reviewed.
Collapse
Affiliation(s)
- Devinder M Thappa
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Minu J Chiramel
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
40
|
Blok BA, Arts RJW, van Crevel R, Benn CS, Netea MG. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 2015; 98:347-56. [DOI: 10.1189/jlb.5ri0315-096r] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
|
41
|
Abstract
Cutaneous warts are known to be recurrent and often resistant to therapy. Resistant warts may reflect a localized or systemic cell mediated immune (CMI) deficiency to HPV. Many modalities of treatment are in use; most of the provider-administered therapies are destructive and cause scarring, such as cryotherapy, chemical cauterisation, curettage, electrodessication and laser removal. Most patient-applied agents like podophyllotoxin have the risk of application-site reactions and recurrence. Thus immunotherapy is a promising modality which could lead to resolution of warts without any physical changes or scarring and in addition would augment the host response against the causative agent, thereby leading to complete resolution and decreased recurrences. Immunomodulators can be administered systemically, intralesionally or intradermally, and topically. A few agents have been tried and studied extensively such as cimetidine and interferons; others are new on the horizon, such as Echinacea, green tea catechins and quadrivalent HPV vaccine, and their efficacy is yet to be completely established. Though some like levamisole have shown no efficacy as monotherapy and are now used only in combination, other more recent agents require large and long term randomized placebo-controlled trials to clearly establish their efficacy or lack of it. In this review, we focus on the immunomodulators that have been used for the treatment of warts and the studies that have been conducted on them.
Collapse
Affiliation(s)
- Surabhi Sinha
- Department of Dermatology, Dr. Ram Manohar Lohia Hospital and PGIMER, New Delhi, India
| | - Vineet Relhan
- Department of Dermatology, Maulana Azad Medical College, New Delhi, India
| | - Vijay K Garg
- Department of Dermatology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
42
|
BCG-induced protection: Effects on innate immune memory. Semin Immunol 2014; 26:512-7. [DOI: 10.1016/j.smim.2014.09.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 01/23/2023]
|
43
|
Sterling JC, Gibbs S, Haque Hussain SS, Mohd Mustapa MF, Handfield-Jones SE. British Association of Dermatologists' guidelines for the management of cutaneous warts 2014. Br J Dermatol 2014; 171:696-712. [PMID: 25273231 DOI: 10.1111/bjd.13310] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- J C Sterling
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 OQQ, U.K
| | | | | | | | | |
Collapse
|
44
|
Nofal A, Nofal E, Yosef A, Nofal H. Treatment of recalcitrant warts with intralesional measles, mumps, and rubella vaccine: a promising approach. Int J Dermatol 2014; 54:667-71. [DOI: 10.1111/ijd.12480] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmad Nofal
- Department of Dermatology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Eman Nofal
- Department of Dermatology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Ayman Yosef
- Department of Dermatology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Hager Nofal
- Department of Dermatology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
45
|
Doudi M, Setorki M. Miraculous Effect of Smoke of Pine Tree Fruit on Human Wart Treatment: A
Case Series. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.381.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Nofal A, Salah E, Nofal E, Yosef A. Intralesional antigen immunotherapy for the treatment of warts: current concepts and future prospects. Am J Clin Dermatol 2013; 14:253-60. [PMID: 23813361 DOI: 10.1007/s40257-013-0018-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many destructive and immunotherapeutic modalities have been used for the management of warts; however, an optimal treatment with high efficacy and absent or low recurrence has not been explored to date. Recently, the use of intralesional immunotherapy with different antigens has shown promising efficacy in the treatment of warts. We review the different aspects of this new modality, including candidates, types of warts treated, dosage, number and interval between treatment sessions, mode of action, efficacy, adverse effects, recurrence rate, advantages, disadvantages, current place and future prospects. A literature review revealed that healthy immune subjects are the best candidates, and a pre-sensitization test is usually done before the start of therapy. The dosage, the number and interval between sessions, and the success rates varied among the different studies. The mode of action is still uncertain, but is essentially mediated through stimulation of T helper-1 cell cytokine response. Adverse effects are mild and generally insignificant, and the recurrence rate is absent or low. Intralesional antigen immunotherapy seems to be a promising, effective and safe treatment modality for viral warts. Future well-designed and controlled studies would help to more clearly define its place in the challenging field of wart therapy.
Collapse
Affiliation(s)
- Ahmad Nofal
- Dermatology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|