1
|
Tzounakas VL, Anastasiadi AT, Arvaniti VZ, Lelli V, Fanelli G, Paronis EC, Apostolidou AC, Balafas EG, Kostomitsopoulos NG, Papageorgiou EG, Papassideri IS, Stamoulis K, Kriebardis AG, Rinalducci S, Antonelou MH. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol 2022; 57:102477. [PMID: 36155342 PMCID: PMC9513173 DOI: 10.1016/j.redox.2022.102477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Efthymios C Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Anastasia C Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Evangelos G Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
2
|
A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism. Processes (Basel) 2022. [DOI: 10.3390/pr10071288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A modification of the ABTS• decolorization assay for plate readers is presented. In our modification, 200 µL of ABTS solution of absorbance 1.0 at 734 nm was added with an antioxidant and decreased absorbance resulted. For comparison of antioxidant activities in the kinetic assay of absorbance decrease, concentration dependence of absorbance decrease and of area under curve are recommended. “Fast” and “slow” antioxidants were distinguished: while the reactions of “fast” antioxidants ABTS• were completed within seconds, the reactions of “slow” antioxidants were not finished after 6 min. We recommend reaction time of 60 min for assays of such antioxidants, blood plasma and plant extracts. Sub-additive interactions between some antioxidants (ascorbate and Trolox, hispidulin and Trolox, and glutathione and ascorbate) were found in the ABTS• decolorization; possible reasons for such interactions are discussed.
Collapse
|
3
|
Alburaidi BS, Alsenaidy AM, Al Hasan M, Siddiqi NJ, Alrokayan SH, Odeibat HA, Abdulnasir AJ, Khan HA. Comparative evaluation of cadmium-induced oxidative stress in camel and bovine erythrocytes. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101772. [DOI: 10.1016/j.jksus.2021.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Abstract
Costunolide, a natural sesquiterpene lactone, has multiple pharmacological activities such as neuroprotection or induction of apoptosis and eryptosis. However, the effects of costunolide on pro-survival factors and enzymes in human erythrocytes, e.g. glutathione and glucose-6-phosphate dehydrogenase (G6PDH) respectively, have not been studied yet. Our aim was to determine the mechanisms underlying costunolide-induced eryptosis and to reverse this process. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry, and intracellular glutathione [GSH]i from high performance liquid chromatography. The oxidized status of intracellular glutathione and enzyme activities were measured by spectrophotometry. Treatment of erythrocytes with costunolide dose-dependently enhanced the percentage of annexin-V-binding cells, decreased the cell volume, depleted [GSH]i and completely inhibited G6PDH activity. The effects of costunolide on annexin-V-binding and cell volume were significantly reversed by pre-treatment of erythrocytes with the specific PKC-α inhibitor chelerythrine. The latter, however, had no effect on costunolide-induced GSH depletion. Costunolide induces eryptosis, depletes [GSH]i and inactivates G6PDH activity. Furthermore, our study reveals an inhibitory effect of chelerythrine on costunolide-induced eryptosis, indicating a relationship between costunolide and PKC-α. In addition, chelerythrine acts independently of the GSH depletion. Understanding the mechanisms of G6PDH inhibition accompanied by GSH depletion should be useful for development of anti-malarial therapeutic strategies or for synthetic lethality-based approaches to escalate oxidative stress in cancer cells for their sensitization to chemotherapy and radiotherapy.
Collapse
|
5
|
Abstract
In this mini-reflection, I explain how during my doctoral work in a Botany Department I first became interested in H2O2 and later in my career in other reactive oxygen species, especially the role of "catalytic" iron and haem compounds (including leghaemoglobin) in promoting oxidative damage. The important roles that H2O2, other ROS and dietary plants play in respect to humans are discussed. I also review the roles of diet-derived antioxidants in relation to human disease, presenting reasons why clinical trials using high doses of natural antioxidants have generally given disappointing results. Iron chelators and ergothioneine are reviewed as potential cytoprotective agents with antioxidant properties that may be useful therapeutically. The discovery of ferroptosis may also lead to novel agents that can be used to treat certain diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
6
|
Zumberg M, Gorlin J, Griffiths EA, Schwartz G, Fletcher BS, Walsh K, Dao KH, Vansandt A, Lynn M, Shander A. A case study of 10 patients administered HBOC-201 in high doses over a prolonged period: outcomes during severe anemia when transfusion is not an option. Transfusion 2020; 60:932-939. [PMID: 32358832 DOI: 10.1111/trf.15778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/26/2020] [Accepted: 02/25/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hemoglobin-Based Oxygen Carriers (HBOCs) can act as an "oxygen bridge" in acute severe anemia when transfusion is indicated, but not possible. We present data on 10 Expanded Access (EA) patients treated with high cumulative doses of Hemopure (HBOC-201), to assess the ability of HBOC-201 to safely treat life threatening anemia in situations where high volumes of product were administered over an extended period of time. STUDY DESIGN AND METHODS Inclusion in this study required that the patient receive at least 10 units of HBOC-201 between 2014 and 2017 under the FDA-sanctioned EA program. Depending on a patient's geographical location, treatment with HBOC-201 was obtained through either a single patient emergency Investigational New Drug (IND) application, or an intermediate size population IND. Of the 41 patients who were treated during this period, 10 patients received 10 or more units of the product. Data were obtained from medical records. RESULTS Treatments with HBOC-201 started within 24 hours of signing consent and were administered at an average rate of 1.99 (SD 0.17) units per day over a mean of 8.2 days (SD 2.9), during which patients received on average 16.2 units (SD 5.7 units) of HBOC-201. The median pre-treatment nadir corpuscular hemoglobin (Hb) concentration was 3.3 (SD 0.9) g/dL and post-treatment Hemoglobin was 7.3 (SD 1.7) g/dL. Common side effects included methemoglobinemia, gastrointestinal symptoms, and hypertension. However, no product-related serious adverse events (SAEs) were noted. All patients survived. CONCLUSIONS Administration of HBOC-201 over an extended period is a feasible and safe oxygen bridge for severely anemic patients who cannot be transfused with RBC.
Collapse
Affiliation(s)
- Marc Zumberg
- Division of Hematology/Oncology, University of Florida Shands Cancer Hospital, Gainesville, Florida, USA
| | - Jed Gorlin
- Transfusion Service, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth A Griffiths
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | - Bradley S Fletcher
- Division of Hematology and Oncology, University of Florida Shands Cancer Hospital, Gainesville, Florida, USA
| | - Katherine Walsh
- Division of Hematology, The Ohio State University Comprehensive Cancer Center Columbus, Columbus, Ohio, USA
| | - Kim-Hien Dao
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda Vansandt
- Department of Pathology, Oregon Health & Science University Portland, Portland, Oregon, USA
| | - Mauricio Lynn
- Ryder Trauma Center, Jackson Memorial Hospital, University of Miami Medical School, Miami, Florida, USA
| | - Aryeh Shander
- Department of Anesthesiology, Critical Care Medicine, Pain Management and Hyperbaric Medicine, Team Health Research Institute, Englewood Medical Center, Englewood, New Jersey, USA
| |
Collapse
|
7
|
Chen G, Chang TMS. Dual effects include antioxidant and pro-oxidation of ascorbic acid on the redox properties of bovine hemoglobin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:983-992. [PMID: 29961345 DOI: 10.1080/21691401.2018.1476374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The oxidation reactions have become the main obstacle of development of bovine hemoglobin-derivates products. Herein, the effects of vitamin C (Vc), a easily available natural antioxidant reagent, on the redox reaction of bovine hemoglobin were systematically investigated through methemoglobin (MetHb) formation and spectrophotometric analysis and oxygen affinity monitoring of hemoglobin. The results showed that Vc presented antioxidant effects in the initial stage of reaction and then could accelerated the MetHb content increasing by production of hydrogen peroxide, which can be indirectly characterized by the formation of choleglobin in the following side reactions. The dual effects of Vc include antioxidant and pro-oxidant effects could be confirmed by the spectrophotometric spectrums analysis in this research. The results of this research supplied the novel insight into understanding of redox properties of bovine hemoglobin and also revealed the main obstacle in exploration of Vc application in the future development of bovine hemoglobin-derivates products.
Collapse
Affiliation(s)
- Gang Chen
- a Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College , Chengdu City , Sichuan Province , PR China.,b Artificial Cells and Organs Research Centre, Department of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine , McGill University , Montreal , QC , Canada
| | - T M S Chang
- b Artificial Cells and Organs Research Centre, Department of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine , McGill University , Montreal , QC , Canada
| |
Collapse
|
8
|
Brunauer LS, Chen JY, Koontz MZ, Davis KK, O'Brien LE, Wright EM, Huestis WH. Extraction of Phospholipids from Human Erythrocyte Membranes by Hemoglobin Oxidation Products. J Membr Biol 2016; 249:305-17. [PMID: 26762383 DOI: 10.1007/s00232-016-9869-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Abstract
This investigation examines oxidation conditions under which hemoglobin extracts membrane phospholipid from erythrocytes and model membranes. In erythrocytes made echinocytic with exogenous phospholipid, addition of hemoglobin oxidized with hydrogen peroxide (H2O2) or Vitamin C (conditions that result in the formation of significant quantities of choleglobin), but not ferricyanide (which produces predominantly methemoglobin), induced dose-dependent shape reversion to less echinocytic forms, consistent with extraction of phospholipids from the exofacial side of the membrane. Erythrocytes preloaded with radiolabeled phosphatidylcholine or NBD-labeled phosphatidylcholine, phosphatidylglycerol or phosphatidic acid, exhibited greatest extraction of radiolabel or fluorescence signal with exogenous hemoglobin oxidized via H2O2 or Vitamin C, but not ferricyanide. However, with NBD-phosphatidylserine (a preferential inner monolayer intercalator), significantly less extraction of labeled lipid occurred with oxidized hemoglobin prepared under all three oxidizing conditions. In dimyristoylphosphatidylcholine liposomes containing radiolabeled phosphatidylcholine, phosphatidylserine or phosphatidylethanolamine, subsequent addition of hemoglobin oxidized with H2O2 or Vitamin C extracted radiolabeled lipid with significantly greater efficiency than ferricyanide-treated hemoglobin, with enhanced extraction detectable at levels approaching physiological plasma oxidant concentrations. Radiolabeled lipid extraction was comparable for phospholipids containing saturated acyl chains between 12 and 18 carbons but diminished significantly for oleoyl-containing phospholipids. Hemoglobin dimerization occurred at very low levels with H2O2 treatment, and even lower levels with Vitamin C treatment, and thus did not correlate to the high efficiency and consistent levels of lipid extraction observed with these treatments. These findings indicate that choleglobin extracts lipids from cell membranes regardless of headgroup or acyl chain length, through a process of direct hydrophobic interaction with the membrane surface.
Collapse
Affiliation(s)
- Linda S Brunauer
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - James Y Chen
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.,Natural and Applied Sciences Division, South Puget Sound Community College, Olympia, WA, 98512, USA
| | - M Zachary Koontz
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Kathryn K Davis
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Laura E O'Brien
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Emily M Wright
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Wray H Huestis
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L, Khalooghi K, Kazemi Ashtiani M, Farrokhi A, Aghdami N, Sadr Hashemi Nejad A, Larijani MB, De Leu N, Heimberg H, Luo X, Baharvand H. THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endocrinol 2015; 173:R165-R183. [PMID: 26036437 DOI: 10.1530/eje-15-0094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
Over the past decades, tremendous efforts have been made to establish pancreatic islet transplantation as a standard therapy for type 1 diabetes. Recent advances in islet transplantation have resulted in steady improvements in the 5-year insulin independence rates for diabetic patients. Here we review the key challenges encountered in the islet transplantation field which include islet source limitation, sub-optimal engraftment of islets, lack of oxygen and blood supply for transplanted islets, and immune rejection of islets. Additionally, we discuss possible solutions for these challenges.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Leila Montazeri
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Keynoosh Khalooghi
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Ali Farrokhi
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohammad-Bagher Larijani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Nico De Leu
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Harry Heimberg
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Xunrong Luo
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| |
Collapse
|
10
|
White CW, Hasanally D, Mundt P, Li Y, Xiang B, Klein J, Müller A, Ambrose E, Ravandi A, Arora RC, Lee TW, Hryshko LV, Large S, Tian G, Freed DH. A whole blood–based perfusate provides superior preservation of myocardial function during ex vivo heart perfusion. J Heart Lung Transplant 2015; 34:113-121. [DOI: 10.1016/j.healun.2014.09.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/04/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022] Open
|
11
|
Bareket L, Waiskopf N, Rand D, Lubin G, David-Pur M, Ben-Dov J, Roy S, Eleftheriou C, Sernagor E, Cheshnovsky O, Banin U, Hanein Y. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. NANO LETTERS 2014; 14:6685-92. [PMID: 25350365 PMCID: PMC4367200 DOI: 10.1021/nl5034304] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/25/2014] [Indexed: 05/22/2023]
Abstract
We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.
Collapse
Affiliation(s)
- Lilach Bareket
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Nir Waiskopf
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Rand
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Gur Lubin
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Jacob Ben-Dov
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Soumyendu Roy
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Cyril Eleftheriou
- Institute
of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Evelyne Sernagor
- Institute
of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Ori Cheshnovsky
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Uri Banin
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Simoni J, Simoni G, Moeller JF, Feola M, Wesson DE. Artificial oxygen carrier with pharmacologic actions of adenosine-5'-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions. Artif Organs 2014; 38:684-90. [PMID: 24980041 DOI: 10.1111/aor.12337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Effective artificial oxygen carriers may offer a solution to tackling current transfusion medicine challenges such as blood shortages, red blood cell storage lesions, and transmission of emerging pathogens. These products, could provide additional therapeutic benefits besides oxygen delivery for an array of medical conditions. To meet these needs, we developed a hemoglobin (Hb)-based oxygen carrier, HemoTech, which utilizes the concept of pharmacologic cross-linking. It consists of purified bovine Hb cross-linked intramolecularly with open ring adenosine-5'-triphosphate (ATP) and intermolecularly with open ring adenosine, and conjugated with reduced glutathione (GSH). In this composition, ATP prevents Hb dimerization, and adenosine promotes formation of Hb polymers as well as counteracts the vasoconstrictive and pro-inflammatory properties of Hb via stimulation of adenosine receptors. ATP also serves as a regulator of vascular tone through activation of purinergic receptors. GSH blocks Hb's extravasation and glomerular filtration by lowering the isoelectric point, as well as shields heme from nitric oxide and reactive oxygen species. HemoTech and its manufacturing technology have been broadly tested, including viral and prion clearance validation studies and various nonclinical pharmacology, toxicology, genotoxicity, and efficacy tests. The clinical proof-of-concept was carried out in sickle cell anemia subjects. The preclinical and clinical studies indicate that HemoTech works as a physiologic oxygen carrier and has efficacy in treating: (i) acute blood loss anemia by providing a temporary oxygen bridge while stimulating an endogenous erythropoietic response; (ii) sickle cell disease by counteracting vaso-occlusive/inflammatory episodes and anemia; and (iii) ischemic vascular diseases particularly thrombotic and restenotic events. The pharmacologic cross-linking of Hb with ATP, adenosine, and GSH showed usefulness in designing an artificial oxygen carrier for multiple therapeutic indications.
Collapse
Affiliation(s)
- Jan Simoni
- Division of Artificial Oxygen Carriers, Texas HemoBioTherapeutics & BioInnovation Center (THBBC), Lubbock, TX, USA; School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | | | | |
Collapse
|
13
|
Zhao L, Zhou W, Wang J, Li S, Chen G, Liu J, Yang C. The properties research of polymerized human placenta hemoglobin before and after lyophilization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:78-82. [PMID: 24295107 DOI: 10.3109/21691401.2013.769001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, lyophilization was applied to polymerized human placenta hemoglobin (PolyPHb) solution. The lyophilization process was carried out with freezing at - 70°C for 5 h and two phases of drying: the first phase of drying was carried out at -35°C-35°C for 16 h and the second phase at 35°C for 8 h. Hemoglobin (Hb) concentration, methemoglobin (MetHb) content, oxygen-carrying capacity, Fe(3+) content, pH, UV spectrum, average molecular weight and its distribution, circular dichroism, SDS-PAGE, P50, crystal osmotic pressure, colloid osmotic pressure, zeta potential, average particle size, and other indicators were measured before and after lyophilization. Residual water content and rehydration time of the lyophilized products were also evaluated. All the indicators of lyophilized samples showed that the physical and biochemical properties of PolyPHb are not markedly changed before and after lyophilization. In this light, lyophilization may be a promising method for the preservation of PolyPHb solution.
Collapse
Affiliation(s)
- Lanzhen Zhao
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin , P. R. China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang D, Piknova B, Solomon SB, Cortes-Puch I, Kern SJ, Sun J, Kanias T, Gladwin MT, Helms C, Kim-Shapiro DB, Schechter AN, Natanson C. In vivo reduction of cell-free methemoglobin to oxyhemoglobin results in vasoconstriction in canines. Transfusion 2013; 53:3149-63. [PMID: 23488474 PMCID: PMC3686899 DOI: 10.1111/trf.12162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cell-free hemoglobin (Hb) in the vasculature leads to vasoconstriction and injury. Proposed mechanisms have been based on nitric oxide (NO) scavenging by oxyhemoglobin (oxyHb) or processes mediated by oxidative reactions of methemoglobin (metHb). To clarify this, we tested the vascular effect and fate of oxyHb or metHb infusions. STUDY DESIGN AND METHODS Twenty beagles were challenged with 1-hour similar infusions of (200 μmol/L) metHb (n = 5), oxyHb (n = 5), albumin (n = 5), or saline (n = 5). Measurements were taken over 3 hours. RESULTS Infusions of the two pure Hb species resulted in increases in mean arterial blood pressure (MAP), systemic vascular resistance index, and NO consumption capacity of plasma (all p < 0.05) with the effects of oxyHb being greater than that from metHb (MAP; increase 0 to 3 hr; 27 ± 6% vs. 7 ± 2%, respectively; all p < 0.05). The significant vasoconstrictive response of metHb (vs. albumin and saline controls) was related to in vivo autoreduction of metHb to oxyHb, and the vasoactive Hb species that significantly correlated with MAP was always oxyHb, either from direct infusion or after in vivo reduction from metHb. Clearance of total Hb from plasma was faster after metHb than oxyHb infusion (p < 0.0001). CONCLUSION These findings indicate that greater NO consumption capacity makes oxyHb more vasoactive than metHb. Additionally, metHb is reduced to oxyHb after infusion and cleared faster or is less stable than oxyHb. Although we found no direct evidence that metHb itself is involved in acute vascular effects, in aggregate, these studies suggest that metHb is not inert and its mechanism of vasoconstriction is due to its delayed conversion to oxyHb by plasma-reducing agents.
Collapse
Affiliation(s)
- Dong Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Anesthesia and Critical Care Medicine Department, West China Hospital of Sichuan University, Cheng Du, China
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Irene Cortes-Puch
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Critical Care Medicine Department, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Steven J. Kern
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tamir Kanias
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark T. Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine Helms
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Alan. N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Su X, Guo S, Huang X, Wang X, Qi D, Yang C. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the Vc, NAC, TEMPO and their reductant system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:222-8. [PMID: 24053379 DOI: 10.3109/21691401.2013.834907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative reactions of hemoglobin (Hb) are still a serious problem for Hb-based blood substitute development. Although varieties of antioxidant strategies have been suggested, this in vitro study examined the ability of the ascorbate, N-Acetyl-L-Cysteine (NAC), 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-1-oxygen free radicals (TEMPO) and their reductant system in preventing Hb oxidation. The content of ferric Hb is monitored in the process of vitamin C (Vc), NAC, TEMPO and their reductant system. The results suggest that ascorbate is effective in reducing ferryl Hb, and TEMPO with Vc/NAC could obviously shorten the reaction time, but it does not play the role of Met-Hb reductases. It demonstrates that TEMPO did little to recover Hb under oxidative stress.
Collapse
Affiliation(s)
- Xiulan Su
- School of Environment and Chemical Engineering, Tianjin Polytechnic University , Tianjin , P. R. China
| | | | | | | | | | | |
Collapse
|
16
|
Protein-based blood substitutes: recent attempts at controlling pro-oxidant reactivity with and beyond hemoglobin. Pharmaceuticals (Basel) 2013; 6:867-80. [PMID: 24276319 PMCID: PMC3816705 DOI: 10.3390/ph6070867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
Reviewed here are recent attempts to produce protein-based artificial oxygen carriers (“blood substitutes”). Most of these involve chemical or physical modifications on hemoglobin, although a recent line of research using hemerythrin instead of hemoglobin is also described. The focus is set on the extent to which these modifications alter the redox reactivity of the proteins, and on ways in which this can be done systematically and purposefully, within the framework of a working hypothesis where redox side-reactions hold an important role in the physiological outcome of experimental transfusions with artificial oxygen carriers.
Collapse
|
17
|
Raval JS, Fontes J, Banerjee U, Yazer MH, Mank E, Palmer AF. Ascorbic acid improves membrane fragility and decreases haemolysis during red blood cell storage. Transfus Med 2013; 23:87-93. [PMID: 23406333 DOI: 10.1111/tme.12013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/15/2012] [Accepted: 01/12/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Changes that occur to red blood cells (RBCs) during routine blood bank storage include decreased deformability, increased haemolysis and oxidative damage. Oxidative injury to the RBC membrane and haemoglobin can affect changes in shape and deformability. Ascorbic acid (AA) is an antioxidant that maintains haemoglobin in a reduced state and minimises RBC oxidative injury. We hypothesised that AA would improve membrane fragility and decrease haemolysis during storage. METHODS Whole blood derived, AS-5 preserved, pre-storage leucoreduced RBC units were exposed to either AA or saline control solutions. Several rheological and biochemical parameters were measured serially during storage, including RBC membrane mechanical fragility, percent haemolysis and methaemoglobin levels. RESULTS AA exposure significantly reduced mechanical fragility and haemolysis over the entire storage period. The highest two concentrations of AA affected the greatest reductions in mechanical fragility and percent haemolysis. Addition of AA to the RBCs did not significantly alter their biochemical parameters compared to control RBCs incubated with saline. CONCLUSION AA reduced RBC membrane fragility and decreased haemolysis during storage without adversely affecting other RBC biochemical parameters. The clinical significance of these findings needs to be determined.
Collapse
Affiliation(s)
- J S Raval
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
18
|
Awasthi V, Yadav VR, Goins B, Phillips WT. Modulation of oxidative stability of haemoglobin inside liposome-encapsulated haemoglobin. J Microencapsul 2012; 30:471-8. [PMID: 23231644 DOI: 10.3109/02652048.2012.752535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The major hurdle in the formulation of liposome-encapsulated haemoglobin (LEH) is the oxidation of haemoglobin (Hb) into methaemoglobin during storage and after administration. In order to reduce this oxidative degradation, we tested various reducing conditions in the presence of catalase. We found that at 37°C more than 50% of Hb oxidized to methaemoglobin within 24 h, whereas in presence of catalase, the oxidation was significantly reduced. The effect of catalase was further enhanced by a reduction mixture containing β-NAD, d-glucose, adenine, inosine, MgCl2, KCl, KH2PO4 and Na2HPO4; only 14% methaemoglobin was generated in the presence of catalase and reduction mixture. Contrary to the expectation, glutathione, deferoxamine and homocysteine enhanced Hb oxidation. The presence of CRM inside liposomes (250 nm) significantly decreased Hb oxidation. The results suggest that catalase and a well-defined mixture of co-factors may help control Hb oxidation for improvement in the functional life of LEH.
Collapse
Affiliation(s)
- Vibhudutta Awasthi
- College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | | | | | | |
Collapse
|
19
|
Application of polyhydroxylated fullerene derivatives in hemoglobin biosensors with enhanced antioxidant capacity. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Nadithe V, Mishra D, Bae YH. Poly(ethylene glycol) cross-linked hemoglobin with antioxidant enzymes protects pancreatic islets from hypoxic and free radical stress and extends islet functionality. Biotechnol Bioeng 2012; 109:2392-401. [PMID: 22447333 DOI: 10.1002/bit.24501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 02/07/2023]
Abstract
The objective of this study was to investigate the efficiency of multifunctional poly(ethylene glycol)-based hemoglobin conjugates crosslinked with antioxidant enzymes for their ability to protect an oxygen carrier (hemoglobin) and insulin secreting islets from the combination of hypoxic and free radical stress under simulated transplantation conditions. In this study, RINm5F cells and isolated pancreatic islets were challenged with oxidants (H(2)O(2) or xanthine and xanthine oxidase) and incubated with conjugates (hemoglobin-hemoglobin or superoxide dismutase-catalase-hemoglobin) in normoxia (21% oxygen) or hypoxia (6% or 1% oxygen). Hemoglobin protection, intracellular free radical activity and cell viability in RINm5F cells measured by methemoglobin, dichlorofluorescein-diacetate, and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, respectively, showed that cells were better protected by conjugates containing antioxidant enzymes. Insulin secretion from islets and qualitative confocal evaluation of viability showed beta cells were protected by conjugates containing antioxidant enzymes when exposed to induced stress. Our study suggested that antioxidant enzymes play a significant role in hemoglobin protection and thus extended cell protection.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
21
|
Simoni J. Artificial Oxygen Carriers: Renewed Commercial Interest and Scientific/Technological Advances. Artif Organs 2012; 36:123-6. [DOI: 10.1111/j.1525-1594.2011.01430.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
|
23
|
Zhang W, Yan K, Dai P, Tian J, Zhu H, Chen C. A novel hemoglobin-based oxygen carrier, polymerized porcine hemoglobin, inhibits H₂O₂-induced cytotoxicity of endothelial cells. Artif Organs 2011; 36:151-60. [PMID: 21951161 DOI: 10.1111/j.1525-1594.2011.01305.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemoglobin-based oxygen carriers (HBOCs), with their capacity for delivering oxygen, could potentially function as red blood cell substitutes or primary resuscitation solutions. However, there has been some concern regarding redox-related safety issues of HBOCs. The present study describes a novel function of polymerized porcine hemoglobin (pPolyHb) in protecting a human umbilical vein endothelial cell line from H₂O₂-induced cytotoxicity. Through the examination of H₂O₂ consumption and ferrylhemoglobin formation, we found that pPolyHb exhibits antioxidant activity, suggesting that pPolyHb may protect cells from free radical-induced cell damage. Additionally, we investigated the effect of pPolyHb on H₂O₂-induced cell cytotoxicity, and found that pPolyHb significantly inhibits H₂O₂-mediated endothelial cell damage as well as apoptosis. Thus, pPolyHb may be developed as a new HBOC in the future.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Science, Northwest University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
24
|
Szaroma W, Dziubek K. Changes in the amount of reduced glutathione and activity of antioxidant enzymes in chosen mouse organs influenced by zymosan and melatonin administration. ACTA BIOLOGICA HUNGARICA 2011; 62:133-41. [PMID: 21555265 DOI: 10.1556/abiol.62.2011.2.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPx) are vital components of the antioxidative barrier in animal cells. It is suggested more often now that the effectiveness of the protection of cells against the oxidative stress caused by the inflammation process depends on the amount of GSH and the activity of SOD, CAT and GSHPx. That is why the effect of zymosan A (40 mg/kg body mass) and the combined treatment with zymosan A (at the same dose) and melatonin (50 mg/kg body mass) on the amount of GSH in the blood and the amount of GSH and activity of SOD, CAT and GSHPx in the brain, liver and kidneys of male mice was estimated. Animals (n = 108) were decapitated after 3, 6 and 24 hours since the moment of the administration of only zymosan A, and combined zymosan A and after one hour melatonin. After the injection of zymosan A it was found that the amount of GSH is significantly lower after 3 and 6 hours in the blood and studied organs. The administration of zymosan A, followed by the administration of melatonin limited the decrease in the amount of this tripeptide in the same time. Simultaneously, the decrease in the amount of GSH in the studied organs was accompanied by a similar decrease in the activity of SOD, CAT and GSHPx after the injection of only zymosan A and a limited decrease in the activity after the administration of both zymosan A and melatonin. It is suggested that a decreased content of GSH and a decrease in the activity of the studied antioxidative enzymes is caused by the oxidative stress accompanying the inflammation process.
Collapse
Affiliation(s)
- W Szaroma
- Department of Biochemistry and Animal Physiology, Pedagogical University of Cracow, Podbrzezie 3 31-054 Cracow Poland.
| | | |
Collapse
|
25
|
Lui FE, Kluger R. Reviving artificial blood: meeting the challenge of dealing with NO scavenging by hemoglobin. Chembiochem 2011; 11:1816-24. [PMID: 20661989 DOI: 10.1002/cbic.201000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francine E Lui
- Department of Chemistry, Davenport Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | |
Collapse
|
26
|
Abstract
A viable blood substitute is still of great necessity throughout the world. Perfluorocarbon-based oxygen carriers (PFCOCs) are emulsions that take advantage of the high solubility of respiratory gases in perfluorocarbons (PFCs). Despite attractive characteristics, no PFCOC is currently approved for clinical uses. Some PFCOCs have failed due to secondary effects of the surfactants employed, like Fluosol DA, whereas others to adverse cerebrovascular effects on cardiopulmonary bypass, such as Oxygent. Further in-depth, rigorous work is needed to overcome the annotated failures and to obtain a safe PFCOC approved for human use. The aim of this study is to review in detail the most-used PFCOCs, their formulation, and preclinical and clinical trials, and to reflect upon causes of failure and strategies to overcome such failures.
Collapse
Affiliation(s)
- Camila Irene Castro
- Blood Substitutes Laboratory, Fundación Cardio Infantil-Universidad de los Andes, Bogota, Colombia
| | | |
Collapse
|
27
|
Nadithe V, Bae YH. Synthesis and characterization of hemoglobin conjugates with antioxidant enzymes via poly(ethylene glycol) cross-linker (Hb-SOD-CAT) for protection from free radical stress. Int J Biol Macromol 2010; 47:603-13. [PMID: 20723561 DOI: 10.1016/j.ijbiomac.2010.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/27/2022]
Abstract
Hemoglobin (Hb) conjugated with the antioxidant enzymes (SOD and CAT), by employing dicarboxymethylated poly(ethylene glycol), was designed for protection of hemoglobin against free radicals. In this study, the conjugation process was confirmed by employing SDS-PAGE and SEC techniques. The average molecular weight of the conjugates was estimated to be around 1000 kDa. The enzymatic activities of the SOD and CAT in the conjugates (Hb-SOD-CAT) after conjugation were found to retain greater than 70% and 90% of the original bioactivity. Results show that antioxidant enzymes helped minimize methemoglobin (non-carrier of oxygen) formation during the conjugation process and also during storage at 4°C over a period of 1 month. In summary, the optimized (1:10 Hb/PEG) crosslinked conjugates with antioxidant enzymes showed protective properties from severe free radical stresses when incubated with hydrogen peroxide (0.1 and 1 mM) and xanthine (1 mM)/xanthine oxidase (10 and 20 mU/ml) system.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way, Suite 315, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
28
|
|
29
|
|
30
|
Fukumoto D, Kawaguchi AT, Haida M, Yamano M, Ogata Y, Tsukada H. Liposome-Encapsulated Hemoglobin Reduces the Size of Cerebral Infarction in Rats: Effect of Oxygen Affinity. Artif Organs 2009; 33:159-63. [DOI: 10.1111/j.1525-1594.2008.00701.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|