1
|
Serafini RA, Farzinpour Z, Patel V, Kelley AM, Estill M, Pryce KD, Sakloth F, Teague CD, Torres-Berrio A, Nestler EJ, Shen L, Akbarian S, Karkhanis AN, Blitzer RD, Zachariou V. Nucleus accumbens myocyte enhancer factor 2C mediates the maintenance of peripheral nerve injury-induced physiological and behavioral maladaptations. Pain 2024; 165:2733-2748. [PMID: 38985454 DOI: 10.1097/j.pain.0000000000003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
ABSTRACT Preclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling. Mef2c overexpression also reversed SNI-induced potentiation of phasic dopamine release and neuronal hyperexcitability in the NAc. Transcriptional changes induced by Mef2c overexpression were different than those observed after desipramine treatment, suggesting a mechanism of action different from antidepressants. Overall, we show that interventions in MEF2C-regulated mechanisms in the NAc are sufficient to disrupt the maintenance of chronic pain states, providing potential new treatment avenues for neuropathic pain.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Zahra Farzinpour
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Vishwendra Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abigail M Kelley
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kerri D Pryce
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farhana Sakloth
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angelica Torres-Berrio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| |
Collapse
|
2
|
Velasco E, Flores-Cortés M, Guerra-Armas J, Flix-Díez L, Gurdiel-Álvarez F, Donado-Bermejo A, van den Broeke EN, Pérez-Cervera L, Delicado-Miralles M. Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehav Rev 2024; 167:105886. [PMID: 39278607 DOI: 10.1016/j.neubiorev.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Chronic pain causes disability and loss of health worldwide. Yet, a mechanistic explanation for it is still missing. Frequently, neural phenomena, and among them, Central Sensitization (CS), is presented as causing chronic pain. This narrative review explores the evidence substantiating the relationship between CS and chronic pain: four expert researchers were divided in two independent teams that reviewed the available evidence. Three criteria were established for a study to demonstrate a causal relationship: (1) confirm presence of CS, (2) study chronic pain, and (3) test sufficiency or necessity of CS over chronic pain symptoms. No study met those criteria, failing to demonstrate that CS can cause chronic pain. Also, no evidence reporting the occurrence of CS in humans was found. Worryingly, pain assessments are often confounded with CS measures in the literature, omitting that the latter is a neurophysiological and not a perceptual phenomenon. Future research should avoid this misconception to directly interrogate what is the causal contribution of CS to chronic pain to better comprehend this problematic condition.
Collapse
Affiliation(s)
- Enrique Velasco
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. Department of Cellular and Molecular Medicine, KU Leuven, Belgium; Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain.
| | - Mar Flores-Cortés
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Javier Guerra-Armas
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Laura Flix-Díez
- Department of Otorrinolaryngology, Clínica Universidad de Navarra, University of Navarra, Madrid, Spain
| | - Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | - Aser Donado-Bermejo
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | | | - Laura Pérez-Cervera
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain
| | - Miguel Delicado-Miralles
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain; Department of Pathology and Surgery. Physiotherapy Area. Faculty of Medicine, Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
3
|
Oweidat A, Kalagara H, Sondekoppam RV. Current concepts and targets for preventing the transition of acute to chronic postsurgical pain. Curr Opin Anaesthesiol 2024; 37:588-596. [PMID: 39087396 DOI: 10.1097/aco.0000000000001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW It is estimated that approximately a third of patients undergoing certain surgeries may report some degree of persistent pain postoperatively. Chronic postsurgical pain (CPSP) reduces quality of life, is challenging to treat, and has significant socio-economic impact. RECENT FINDINGS From an epidemiological perspective, factors that predispose patients to the development of CPSP may be considered in relation to the patient, the procedure or, the care environment. Prevention or management of transition from acute to chronic pain often need a multidisciplinary approach beginning early in the preoperative period and continuing beyond surgical admission. The current concepts regarding the role of central and peripheral nervous systems in chronification of pain may provide targets for future therapies but, the current evidence seems to suggest that a multimodal analgesic approach of preventive analgesia along with a continued follow-up and treatment after hospital discharge may hold the key to identify and manage the transitioning of acute to chronic pain. SUMMARY A comprehensive multidisciplinary approach with prior identification of risk factors, minimizing the surgical insult and a culture of utilizing multimodal analgesia and continued surveillance beyond the period of hospitalization is an important step towards reducing the development of chronic pain. A transitional pain service model may accomplish many of these goals.
Collapse
Affiliation(s)
- Adeeb Oweidat
- Department of Anesthesia, University of Iowa Healthcare, Iowa City, Iowa
| | - Hari Kalagara
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
4
|
Kodila ZN, Shultz SR, Yamakawa GR, Mychasiuk R. Critical Windows: Exploring the Association Between Perinatal Trauma, Epigenetics, and Chronic Pain. Neuroscientist 2024; 30:574-596. [PMID: 37212380 PMCID: PMC11439237 DOI: 10.1177/10738584231176233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.
Collapse
Affiliation(s)
- Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, Canada
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Yuan Y, Zhang L, Zhang Y, Shen L, Huang Y. Intraoperative nitrous oxide inhalation to prevent chronic postsurgical pain in video-assisted thoracoscopic surgery: a prospective observational cohort study. J Thorac Dis 2024; 16:5110-5121. [PMID: 39268125 PMCID: PMC11388209 DOI: 10.21037/jtd-24-556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 09/15/2024]
Abstract
Background Chronic postsurgical pain (CPSP) is a significant detriment to postsurgical recovery. Previous studies have shown that nitrous oxide (N2O) may produce long-term analgesia and may benefit the prevention of CPSP in Chinese patients. We tested the hypothesis that N2O is a protective factor against chronic pain after video-assisted thoracoscopic surgery (VATS). Methods Two groups of patients with and without N2O inhalation during VATS in Peking Union Medical College Hospital were recruited. Perioperative information was documented, and postsurgical pain was followed up by telephone. The primary outcome was the presence of CPSP at 6 months postoperatively. Odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated using a multivariate logistic regression model adjusted for relevant confounding factors. Results A total of 833 patients were eligible, among whom 33.6% were male and 66.4% were female, with an average age of 56.3±11.1 years. A total of 387 (46.5%) patients reported incision-related pain at 6 months after surgery, and 160 (40.0%) out of 400 patients with N2O inhalation during surgery and 227 (52.4%) out of 433 patients without N2O inhalation during surgery developed CPSP. After adjusting for confounding factors, N2O inhalation during surgery was associated with lower odds of CPSP (OR =0.654; 95% CI: 0.480-0.890; P=0.007). Conclusions N2O inhalation during surgery was associated with lower odds of CPSP in VATS patients, and N2O may benefit the prevention of chronic pain after thoracoscopic surgery.
Collapse
Affiliation(s)
- Yuchen Yuan
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Zhang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelun Zhang
- Medical Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
7
|
McNearney TA, Westlund KN. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. Int J Mol Sci 2023; 24:13196. [PMID: 37686003 PMCID: PMC10488196 DOI: 10.3390/ijms241713196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.
Collapse
Affiliation(s)
- Terry A. McNearney
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA;
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
| | - Karin N. Westlund
- Department of Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
8
|
Chau A, Steib S, Whitaker E, Kohns D, Quinter A, Craig A, Chiodo A, Chandran S, Laidlaw A, Schott Z, Farlow N, Yarjanian J, Omwanghe A, Wasserman R, O’Neill C, Clauw D, Bowden A, Marras W, Carey T, Mehling W, Hunt CA, Lotz J. Theoretical Schemas to Guide Back Pain Consortium (BACPAC) Chronic Low Back Pain Clinical Research. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:S13-S35. [PMID: 36562563 PMCID: PMC10403312 DOI: 10.1093/pm/pnac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic low back pain (cLBP) is a complex with a heterogenous clinical presentation. A better understanding of the factors that contribute to cLBP is needed for accurate diagnosis, optimal treatment, and identification of mechanistic targets for new therapies. The Back Pain Consortium (BACPAC) Research Program provides a unique opportunity in this regard, as it will generate large clinical datasets, including a diverse set of harmonized measurements. The Theoretical Model Working Group was established to guide BACPAC research and to organize new knowledge within a mechanistic framework. This article summarizes the initial work of the Theoretical Model Working Group. It includes a three-stage integration of expert opinion and an umbrella literature review of factors that affect cLBP severity and chronicity. METHODS During Stage 1, experts from across BACPAC established a taxonomy for risk and prognostic factors (RPFs) and preliminary graphical depictions. During Stage 2, a separate team conducted a literature review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to establish working definitions, associated data elements, and overall strength of evidence for identified RPFs. These were subsequently integrated with expert opinion during Stage 3. RESULTS The majority (∼80%) of RPFs had little strength-of-evidence confidence, whereas seven factors had substantial confidence for either a positive association with cLBP (pain-related anxiety, serum C-reactive protein, diabetes, and anticipatory/compensatory postural adjustments) or no association with cLBP (serum interleukin 1-beta / interleukin 6, transversus muscle morphology/activity, and quantitative sensory testing). CONCLUSION This theoretical perspective will evolve over time as BACPAC investigators link empirical results to theory, challenge current ideas of the biopsychosocial model, and use a systems approach to develop tools and algorithms that disentangle the dynamic interactions among cLBP factors.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sharis Steib
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Evans Whitaker
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - David Kohns
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Quinter
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anita Craig
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Chiodo
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - SriKrishan Chandran
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Laidlaw
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary Schott
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan Farlow
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - John Yarjanian
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Omwanghe
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Ronald Wasserman
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Conor O’Neill
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Dan Clauw
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anton Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - William Marras
- Department of Integrated Systems Engineering, Ohio State University, Columbus, Ohio, USA
| | - Tim Carey
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolf Mehling
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, California, USA
| | - C Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Jeffrey Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Jackson P, Spector AL, Strath LJ, Antoine LH, Li P, Goodin BR, Hidalgo BA, Kempf MC, Gonzalez CE, Jones AC, Foster TC, Peterson JA, Quinn T, Huo Z, Fillingim R, Cruz-Almeida Y, Aroke EN. Epigenetic age acceleration mediates the relationship between neighborhood deprivation and pain severity in adults with or at risk for knee osteoarthritis pain. Soc Sci Med 2023; 331:116088. [PMID: 37473540 PMCID: PMC10407756 DOI: 10.1016/j.socscimed.2023.116088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/08/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
An estimated 250 million people worldwide suffer from knee osteoarthritis (KOA), with older adults having greater risk. Like other age-related diseases, residents of high-deprivation neighborhoods experience worse KOA pain outcomes compared to their more affluent neighbors. The purpose of this study was to examine the relationship between neighborhood deprivation and pain severity in KOA and the influence of epigenetic age acceleration (EpAA) on that relationship. The sample of 128 participants was mostly female (60.9%), approximately half non-Hispanic Black (49.2%), and had a mean age of 58 years. Spearman bivariate correlations revealed that pain severity positively correlated with EpAA (ρ = 0.47, p ≤ 0.001) and neighborhood deprivation (ρ = 0.25, p = 0.004). We found a positive significant relationship between neighborhood deprivation and EpAA (ρ = 0.47, p ≤ 0.001). Results indicate a mediating relationship between neighborhood deprivation (predictor), EpAA (mediator), and pain severity (outcome variable). There was a significant indirect effect of neighborhood deprivation on pain severity through EpAA, as the mediator accounted for a moderate portion of the total effect, PM = 0.44. Epigenetic age acceleration may act as a mechanism through which neighborhood deprivation leads to worse KOA pain outcomes and may play a role in the well-documented relationship between the neighborhood of residence and age-related diseases.
Collapse
Affiliation(s)
- Pamela Jackson
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Antoinette L Spector
- School of Rehabilitation Sciences and Technology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Larissa J Strath
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Lisa H Antoine
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Burel R Goodin
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, USA.
| | - Bertha A Hidalgo
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Mirjam-Colette Kempf
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Cesar E Gonzalez
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Alana C Jones
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL, 32610, USA.
| | - Jessica A Peterson
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Tammie Quinn
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL, 32603, USA.
| | - Roger Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA; Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL, 32610, USA.
| | - Edwin N Aroke
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Huang N, Liao P, Zuo Y, Zhang L, Jiang R. Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2-BRD4 Inhibitor for the Treatment of Some Solid Tumors. J Med Chem 2023; 66:2646-2662. [PMID: 36774555 DOI: 10.1021/acs.jmedchem.2c01607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) mediates the trimethylation of histone 3 lysine 27 (H3K27) to promote gene silencing. Inhibition of EZH2 is a viable strategy for cancer treatment; however, only a small subset of hematological malignancies are sensitive to small-molecule EZH2 inhibitors. EZH2 inhibitors cause H3K27 acetylation in most solid tumors, leading to drug resistance. Bromodomain-containing protein 4 (BRD4) inhibitors were reported to enhance the sensitivity of solid tumors to EZH2 inhibitors. Thus, we designed and evaluated a series of dual EZH2-BRD4 inhibitors. ZLD-2, the most promising compound, exhibited potent inhibitory activity against EZH2 and BRD4. Compared to the EZH2 inhibitor GSK126, ZLD-2 displayed potent antiproliferation activity against breast, lung, bladder, and pancreatic cancer cells. In vivo, ZLD-2 exhibited antitumor activity in a BxPC-3 mouse xenograft model, whereas GSK126 promoted tumor growth. Thus, ZLD-2 may be a lead compound for treating solid tumors.
Collapse
Affiliation(s)
- Niannian Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
11
|
Giordano R, Kjær-Staal Petersen K, Arendt-Nielsen L. The link between epigenetics, pain sensitivity and chronic pain. Scand J Pain 2022; 22:664-666. [PMID: 36149940 DOI: 10.1515/sjpain-2022-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
Increasing evidence suggests an association between gene expression and clinical pain. Epigenetic modifications are the main modulators of gene expression or protein translation in response to environmental stimuli and pathophysiological conditions. Preclinical and clinical studies indicate that epigenetic modifications could also impact the development of pain, the transition from acute to chronic pain, and the maintenance hereof.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
12
|
Elma Ö, Brain K, Dong HJ. The Importance of Nutrition as a Lifestyle Factor in Chronic Pain Management: A Narrative Review. J Clin Med 2022; 11:5950. [PMID: 36233817 PMCID: PMC9571356 DOI: 10.3390/jcm11195950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
In everyday clinical practice, healthcare professionals often meet chronic pain patients with a poor nutritional status. A poor nutritional status such as malnutrition, unhealthy dietary behaviors, and a suboptimal dietary intake can play a significant role in the occurrence, development, and prognosis of chronic pain. The relationship between nutrition and chronic pain is complex and may involve many underlying mechanisms such as oxidative stress, inflammation, and glucose metabolism. As such, pain management requires a comprehensive and interdisciplinary approach that includes nutrition. Nutrition is the top modifiable lifestyle factor for chronic non-communicable diseases including chronic pain. Optimizing one's dietary intake and behavior needs to be considered in pain management. Thus, this narrative review reports and summarizes the existing evidence regarding (1) the nutrition-related health of people experiencing pain (2) the underlying potential mechanisms that explain the interaction between nutrition and chronic pain, and (3) the role of nutrition screening, assessment and evaluation for people experiencing pain and the scope of nutrition practice in pain management. Future directions in the nutrition and chronic pain field are also discussed.
Collapse
Affiliation(s)
- Ömer Elma
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
| | - Katherine Brain
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia
| | - Huan-Ji Dong
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
13
|
Nirvanie-Persaud L, Millis RM. Epigenetics and Pain: New Insights to an Old Problem. Cureus 2022; 14:e29353. [PMID: 36159345 PMCID: PMC9487372 DOI: 10.7759/cureus.29353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Physicians and neuroscientists have long observed that factors such as thoughts, emotions, and expectations can influence the perception of pain. Pain can be described as an unpleasant sensation that causes physical discomfort and emotional distress. It alerts an individual to seek help and is the main complaint that brings individuals to physicians. Though it is associated with probable tissue damage, such damage may be subtle, sometimes involving the release of algesic chemicals, and also influenced by attitudes, beliefs, personality, and social factors. The perception of pain may vary due to a multitude of these factors influencing the ascending sensory impulse propagation to the primary somatosensory cortex. The genetics and epigenetics of pain modulators have been previously studied, but there is a lack of application in the everyday management and treatment of pain due to the paucity of valid evidence-based data. We used the PubMed database as our primary tool for researching current literature on this topic. The MeSH terms used included: gene modification, epigenetics, genes, pain, analgesia, “types of pain, and theories of pain. The results were filtered as follows: publications within the last 10 years, generalized pain studies regarding the biopsychosocial aspect of pain, pertinent genes, and epigenetic modulation of those genes; 52 publications were selected for review. By addressing the external factorial causes and the appropriate application of epigenetic principles which affect pain perception, it is hoped that this review will motivate future advancements in the management of acute and/or chronic pain.
Collapse
|
14
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
15
|
Sun Z, Waybright JM, Beldar S, Chen L, Foley CA, Norris‐Drouin JL, Lyu T, Dong A, Min J, Wang Y, James LI, Wang Y. Cdyl Deficiency Brakes Neuronal Excitability and Nociception through Promoting Kcnb1 Transcription in Peripheral Sensory Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104317. [PMID: 35119221 PMCID: PMC8981457 DOI: 10.1002/advs.202104317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Indexed: 05/24/2023]
Abstract
Epigenetic modifications are involved in the onset, development, and maintenance of pain; however, the precise epigenetic mechanism underlying pain regulation remains elusive. Here it is reported that the epigenetic factor chromodomain Y-like (CDYL) is crucial for pain processing. Selective knockout of CDYL in sensory neurons results in decreased neuronal excitability and nociception. Moreover, CDYL facilitates histone 3 lysine 27 trimethylation (H3K27me3) deposition at the Kcnb1 intron region thus silencing voltage-gated potassium channel (Kv ) subfamily member Kv 2.1 transcription. Loss function of CDYL enhances total Kv and Kv 2.1 current density in dorsal root ganglia and knockdown of Kv 2.1 reverses the pain-related phenotypes of Cdyl deficiency mice. Furthermore, focal administration of a novel potent CDYL antagonist blunts nociception and attenuates neuropathic pain. These findings reveal that CDYL is a critical regulator of pain sensation and shed light on the development of novel analgesics targeting epigenetic mechanisms.
Collapse
Affiliation(s)
- Zhao‐Wei Sun
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
- Institute of Military Cognitive and Brain SciencesAcademy of Military Medical SciencesBeijing100039China
| | - Jarod M. Waybright
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Serap Beldar
- Structural Genomics ConsortiumUniversity of Toronto101 College StreetTorontoOntarioM5G 1L7Canada
| | - Lu Chen
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Caroline A. Foley
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jacqueline L. Norris‐Drouin
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Tian‐Jie Lyu
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Aiping Dong
- Structural Genomics ConsortiumUniversity of Toronto101 College StreetTorontoOntarioM5G 1L7Canada
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of Toronto101 College StreetTorontoOntarioM5G 1L7Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative BiologySchool of Life SciencesCentral China Normal UniversityWuhanHubei430079China
- Department of PhysiologyUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Yu‐Pu Wang
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Yun Wang
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
16
|
Marchand S. Mechanisms Challenges of the Pain Phenomenon. FRONTIERS IN PAIN RESEARCH 2022; 1:574370. [PMID: 35295689 PMCID: PMC8915747 DOI: 10.3389/fpain.2020.574370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Serge Marchand
- Pain Neurophysiology Laboratories, Department of Surgery, Sherbrooke Hospital Research Center, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Santiago V. Painful Truth: The Need to Re-Center Chronic Pain on the Functional Role of Pain. J Pain Res 2022; 15:497-512. [PMID: 35210849 PMCID: PMC8859280 DOI: 10.2147/jpr.s347780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Pain is undesirable, whether it is a symptom of mild or severe illness or instead indicates disorder in the nervous system’s ability to perceive and process sensory information. Nonetheless, pain is part of the body’s ability to defend itself and promote its own survival—this is its fundamental evolutionary function. This normal expression of pain is not limited to what is considered useful because it alerts us to the initiation of illness. It also applies to pain that continues when illness or noxious stimuli persist. However, the parameters of what is here termed functional pain are not fully understood and are seldom explicitly the focus of research. This paper posits that failure to appreciate the functional role of pain in research has had significant unintended consequences and may be contributing to inconsistent research findings. To that end, the paper describes the misclassification issue at the core of chronic pain research—whether a given pain reflects functional or pathological processes—and discusses research areas where reconsidering the functional role of pain may lead to advancements.
Collapse
Affiliation(s)
- Vivian Santiago
- Department of Oral & Maxillofacial Pathology, Radiology & Medicine, New York University College of Dentistry, New York, NY, USA
- Correspondence: Vivian Santiago, Email
| |
Collapse
|
18
|
López-Muñoz E, Mejía-Terrazas GE. Epigenetics and Postsurgical Pain: A Scoping Review. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:246-262. [PMID: 34314508 DOI: 10.1093/pm/pnab234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Multiple factors are involved in the physiology and variability of postsurgical pain, a great part of which can be explained by genetic and environmental factors and their interaction. Epigenetics refers to the mechanism by which the environment alters the stability and expression of genes. We conducted a scoping review to examine the available evidence in both animal models and clinical studies on epigenetic mechanisms involved in the regulation of postsurgical and chronic postsurgical pain. METHODS The Arksey and O'Malley framework and the PRISMA-ScR (Preferred Reporting Items for Systematic Review and Meta-Analysis, scoping reviews extension) guidelines were used. The PubMed, Web of Science, and Google Scholar databases were searched, and the original articles cited in reviews located through the search were also reviewed. English-language articles without time limits were retrieved. Articles were selected if the abstract addressed information on the epigenetic or epigenomic mechanisms, histone, or DNA methylation and microribonucleic acids involved in postsurgical and chronic postsurgical pain in animal models and clinical studies. RESULTS The initial search provided 174 articles, and 95 were used. The available studies to date, mostly in animal models, have shown that epigenetics contributes to the regulation of gene expression in the pathways involved in postsurgical pain and in maintaining long-term pain. CONCLUSION Research on possible epigenetic mechanisms involved in postsurgical pain and chronic postsurgical pain in humans is scarce. In view of the evidence available in animal models, there is a need to evaluate epigenetic pain mechanisms in the context of human and clinical studies.
Collapse
Affiliation(s)
- Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gabriel Enrique Mejía-Terrazas
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Anaesthesiology Service and Pain Clinic, Hospital Angeles México, Mexico City, Mexico
| |
Collapse
|
19
|
Eller OC, Glidden N, Knight B, McKearney N, Perry M, Bernier Carney KM, Starkweather A, Young EE, Baumbauer KM. A Role for Global DNA Methylation Level and IL2 Expression in the Transition From Acute to Chronic Low Back Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:744148. [PMID: 35295525 PMCID: PMC8915771 DOI: 10.3389/fpain.2021.744148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The transition from acute low back pain (aLBP) to chronic LBP (cLBP) results from a variety of factors, including epigenetic modifications of DNA. The aim of this study was to (1) compare global DNA (gDNA) methylation and histone acetylation at LBP onset between the aLBP and cLBP participants, (2) compare mRNA expression of genes with known roles in the transduction, maintenance, and/or modulation of pain between the aLBP and cLBP participants, (3) compare somatosensory function and pain ratings in our participants, and (4) determine if the aforementioned measurements were associated.Methods: A total of 220 participants were recruited for this prospective observational study following recent onset of an episode of LBP. We retained 45 individuals whose gDNA was of sufficient quality for analysis. The final sample included 14 participants whose pain resolved within 6 weeks of onset (aLBP),15 participants that reported pain for 6 months (cLBP), and 16 healthy controls. Participants were subjected to quantitative sensory testing (QST), blood was drawn via venipuncture, gDNA isolated, and global DNA methylation and histone acetylation, as well as mRNA expression of 84 candidate genes, were measured.Results: Individuals that develop cLBP display multimodal somatosensory hypersensitivity relative to aLBP participants. cLBP participants also had significantly lower global DNA methylation, which was negatively correlated with interleukin-2 (IL2) mRNA expression.Discussion: cLBP is characterized by somatosensory hypersensitivity, lower global DNA methylation, and higher IL2 expression level compared to those whose pain will resolve quickly (aLBP). These results suggest potential diagnostic and therapeutic relevance for global DNA methylation and IL2 expression in the pathology underlying the transition from acute to chronic LBP.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nicole Glidden
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Brittany Knight
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Noelle McKearney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Mallory Perry
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Katherine M. Bernier Carney
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Angela Starkweather
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Erin E. Young
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
20
|
Brenner D, Shorten GD, O'Mahony SM. Postoperative pain and the gut microbiome. NEUROBIOLOGY OF PAIN 2021; 10:100070. [PMID: 34409198 PMCID: PMC8361255 DOI: 10.1016/j.ynpai.2021.100070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Poorly controlled postoperative pain remains a major unresolved challenge globally. The gut microbiome impacts on inflammatory pain and neuropathic pain. Microbiota metabolites can regulate peripheral and central sensitisation. Stress is linked to both postoperative pain and an altered gut microbiome.
In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications. As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - George D Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Mechanistic Insight into the Effects of Curcumin on Neuroinflammation-Driven Chronic Pain. Pharmaceuticals (Basel) 2021; 14:ph14080777. [PMID: 34451874 PMCID: PMC8397941 DOI: 10.3390/ph14080777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic pain is a persistent and unremitting condition that has immense effects on patients' quality of life. Studies have shown that neuroinflammation is associated with the induction and progression of chronic pain. The activation of microglia and astrocytes is the major hallmark of spinal neuroinflammation leading to neuronal excitability in the projection neurons. Excessive activation of microglia and astrocytes is one of the major contributing factors to the exacerbation of pain. However, the current chronic pain treatments, mainly by targeting the neuronal cells, remain ineffective and unable to meet the patients' needs. Curcumin, a natural plant product found in the Curcuma genus, improves chronic pain by diminishing the release of inflammatory mediators from the spinal glia. This review details the role of curcumin in microglia and astrocytes both in vitro and in vivo and how it improves pain. We also describe the mechanism of curcumin by highlighting the major glia-mediated cascades in pain. Moreover, the role of curcumin on inflammasome and epigenetic regulation is discussed. Furthermore, we discuss the strategies used to improve the efficacy of curcumin. This review illustrates that curcumin modulating microglia and astrocytes could assure the treatment of chronic pain by suppressing spinal neuroinflammation.
Collapse
|
23
|
Kroma RB, Giordano NA, Highland KB, Bedocs P, McDuffie M, Buckenmaier CC. Implementation of the Uniformed Services University Pain Registry Biobank: A Military and Veteran Population Focused Biobank and Registry. PAIN MEDICINE 2021; 22:2950-2963. [PMID: 33983447 DOI: 10.1093/pm/pnab166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The objective of this overview is to discuss the development, implementation, data content, and structure of the Uniformed Services University Pain Registry Biobank. Additionally, procedures and policies for accessing samples for pain-related research purposes are detailed. DESIGN Cross-sectional overview. SETTING Multiple military treatment facilities. SUBJECTS Adult beneficiaries seeking care within the Military Health System. METHODS Participants complete a baseline battery of biopsychosocial survey measures, including PROMIS® measures, provide biologic samples (e.g. blood and saliva), and relevant health history, including medications and surgical history, is extracted from medical records. During the course of the next year, enrolled participants complete surveys and provide biologic samples at 3-months, 6-months, and 12-months. Thereafter, participants are contacted once annually to complete self-reported assessments and provide biologic samples. RESULTS In the first year alone 86 subjects have participated in the Uniformed Services University Pain Registry Biobank and provided 390 observations (e.g. biological samples and biopsychosocial patient-reported outcomes). The Uniformed Services University Pain Registry Biobank's integration of biological samples, patient-reported outcomes, and health record data over a longitudinal period across a diverse sample recruited from multiple military facilities addresses many of the limitations faced by other pain-related registries or biorepositories. CONCLUSIONS The Uniformed Services University Pain Registry Biobank will serve as a platform for conducting research closely aligned with the Federal Pain Research Strategy. The inclusion of active duty service members, beneficiaries, and civilians living with and without acute or chronic pain provides a unique data repository for all investigators interested in advancing pain science.
Collapse
Affiliation(s)
- Raymond B Kroma
- Defense and Veterans Center for Integrative Pain Management, Uniformed Services University, Rockville, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Nicholas A Giordano
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Krista B Highland
- Defense and Veterans Center for Integrative Pain Management, Uniformed Services University, Rockville, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Peter Bedocs
- Defense and Veterans Center for Integrative Pain Management, Uniformed Services University, Rockville, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Mary McDuffie
- Defense and Veterans Center for Integrative Pain Management, Uniformed Services University, Rockville, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Chester C Buckenmaier
- Defense and Veterans Center for Integrative Pain Management, Uniformed Services University, Rockville, Maryland, USA
| |
Collapse
|
24
|
Bhatt RR, Gupta A, Mayer EA, Zeltzer LK. Chronic pain in children: structural and resting-state functional brain imaging within a developmental perspective. Pediatr Res 2020; 88:840-849. [PMID: 31791045 PMCID: PMC7263945 DOI: 10.1038/s41390-019-0689-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
Chronic pain is a major public health problem in the United States costing $635 billion annually. Hospitalizations for chronic pain in childhood have increased almost tenfold in the past decade, without breakthroughs in novel treatment strategies. Findings from brain imaging studies using structural and resting-state fMRI could potentially help personalize treatment to address this costly and prevalent health problem by identifying the underlying brain pathways that contribute, facilitate, and maintain chronic pain. The aim of this review is to synthesize structural and resting-state network pathology identified by recent brain imaging studies in pediatric chronic pain populations and discuss the potential impact of chronic pain on cortical development. Sex differences as well as treatment effects on these cortical alterations associated with symptom changes are also summarized. This area of research is still in its infancy with currently limited evidence available from a small number of studies, some of which suffer from limitations such as small sample size and suboptimal methodology. The identification of brain signatures of chronic pain in children may help to develop new pathways for future research as well as treatment strategies.
Collapse
Affiliation(s)
- Ravi R Bhatt
- UCLA Pediatric Pain Program, Department of Pediatrics, David Geffen School of Medicine at UCLA, 650 Charles E. Young South #12-096 CHS, Los Angeles, CA, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, CA, USA.
| | - Arpana Gupta
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukin Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emeran A Mayer
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukin Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lonnie K Zeltzer
- UCLA Pediatric Pain Program, Department of Pediatrics, David Geffen School of Medicine at UCLA, 650 Charles E. Young South #12-096 CHS, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
25
|
Bai G, Ross H, Zhang Y, Lee K, Ro JY. The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia. Epigenet Insights 2020; 13:2516865720938677. [PMID: 32974606 PMCID: PMC7495519 DOI: 10.1177/2516865720938677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Epigenetic modulation by DNA methylation is associated with aberrant gene
expression in sensory neurons, which consequently leads to pathological pain
responses. In this study, we sought to investigate whether peripheral
inflammation alters global DNA methylation in trigeminal ganglia (TG) and
results in abnormal expression of pro-nociceptive genes. Our results show that
peripheral inflammation remotely reduced the level of global DNA methylation in
rat TG with a concurrent reduction in DNMT1 and
DNMT3a expression. Using unbiased steps, we selected the
following pro-nociceptive candidate genes that are potentially regulated by DNA
methylation: TRPV1, TRPA1, P2X3, and PIEZO2.
Inhibition of DNMT with 5-Aza-dC in dissociated TG cells produced dose-dependent
upregulation of TRPV1, TRPA1, and P2X3.
Systemic treatment of animals with 5-Aza-dC significantly increased the
expression of TRPV1, TRPA1, and PIEZO2 in TG.
Furthermore, the overexpression of DNMT3a, as delivered by a lentiviral vector,
significantly downregulated TRPV1 and PIEZO2
expression and also reliably decreased TRPA1 and
P2X3 transcripts. MeDIP revealed that this overexpression
also significantly enhanced methylation of CGIs associated with
TRPV1 and TRPA1. In addition, bisulfite
sequencing data indicated that the CGI associated with TRPA1
was methylated in a pattern catalyzed by DNMT3a. Taken together, our results
show that all 4 pro-nociceptive genes are subject to epigenetic modulation via
DNA methylation, likely via DNMT3a under inflammatory conditions. These findings
provide the first evidence for the functional importance of DNA methylation as
an epigenetic factor in the transcription of pro-nociceptive genes in TG that
are implicated in pathological orofacial pain responses.
Collapse
Affiliation(s)
- Guang Bai
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Holly Ross
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Youping Zhang
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - KiSeok Lee
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Jin Y Ro
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| |
Collapse
|
26
|
Machine-learned analysis of the association of next-generation sequencing-based genotypes with persistent pain after breast cancer surgery. Pain 2020; 160:2263-2277. [PMID: 31107411 DOI: 10.1097/j.pain.0000000000001616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer and its surgical treatment are among the most important triggering events for persistent pain, but additional factors need to be present for the clinical manifestation, such as variants in pain-relevant genes. In a cohort of 140 women undergoing breast cancer surgery, assigned based on a 3-year follow-up to either a persistent or nonpersistent pain phenotype, next-generation sequencing was performed for 77 genes selected for known functional involvement in persistent pain. Applying machine-learning and item categorization techniques, 21 variants in 13 different genes were found to be relevant to the assignment of a patient to either the persistent pain or the nonpersistent pain phenotype group. In descending order of importance for correct group assignment, the relevant genes comprised DRD1, FAAH, GCH1, GPR132, OPRM1, DRD3, RELN, GABRA5, NF1, COMT, TRPA1, ABHD6, and DRD4, of which one in the DRD4 gene was a novel discovery. Particularly relevant variants were found in the DRD1 and GPR132 genes, or in a cis-eCTL position of the OPRM1 gene. Supervised machine-learning-based classifiers, trained with 2/3 of the data, identified the correct pain phenotype group in the remaining 1/3 of the patients at accuracies and areas under the receiver operator characteristic curves of 65% to 72%. When using conservative classical statistical approaches, none of the variants passed α-corrected testing. The present data analysis approach, using machine learning and training artificial intelligences, provided biologically plausible results and outperformed classical approaches to genotype-phenotype association.
Collapse
|
27
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
28
|
Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, Bao S, Wang F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain 2020; 15:1744806919847366. [PMID: 30977423 PMCID: PMC6509976 DOI: 10.1177/1744806919847366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. GABAergic inhibitory changes that occur in the interneurons along descending modulatory and nociceptive pathways in the central nervous system are believed to generate neuronal plasticity, such as synaptic plasticity or functional plasticity of the related genes or proteins, that is the foundation of persistent neuropathic pain. The primary GABAergic plasticity observed in neuropathic pain includes GABAergic synapse homo- and heterosynaptic plasticity, decreased synthesis of GABA, down-expression of glutamic acid decarboxylase and GABA transporter, abnormal expression of NKCC1 or KCC2, and disturbed function of GABA receptors. In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.
Collapse
Affiliation(s)
- Caijuan Li
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanying Lei
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Tian
- 3 Department of Anesthesiology, Haikou Affiliated Hospital of Xiangya Medical School, Central South University, Haikou People's Hospital, Haikou, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Senzhu Bao
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Kober KM, Lee MC, Olshen A, Conley YP, Sirota M, Keiser M, Hammer MJ, Abrams G, Schumacher M, Levine JD, Miaskowski C. Differential methylation and expression of genes in the hypoxia-inducible factor 1 signaling pathway are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors and with preclinical models of chemotherapy-induced neuropathic pain. Mol Pain 2020; 16:1744806920936502. [PMID: 32586194 PMCID: PMC7322824 DOI: 10.1177/1744806920936502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Paclitaxel is an important chemotherapeutic agent for the treatment of breast cancer. Paclitaxel-induced peripheral neuropathy (PIPN) is a major dose-limiting toxicity that can persist into survivorship. While not all survivors develop PIPN, for those who do, it has a substantial negative impact on their functional status and quality of life. No interventions are available to treat PIPN. In our previous studies, we identified that the HIF-1 signaling pathway (H1SP) was perturbed between breast cancer survivors with and without PIPN. Preclinical studies suggest that the H1SP is involved in the development of bortezomib-induced and diabetic peripheral neuropathy, and sciatic nerve injury. The purpose of this study was to identify H1SP genes that have both differential methylation and differential gene expression between breast cancer survivors with and without PIPN. METHODS A multi-staged integrated analysis was performed. In peripheral blood, methylation was assayed using microarray and gene expression was assayed using RNA-seq. Candidate genes in the H1SP having both differentially methylation and differential expression were identified between survivors who received paclitaxel and did (n = 25) and did not (n = 25) develop PIPN. Then, candidate genes were evaluated for differential methylation and differential expression in public data sets of preclinical models of PIPN and sciatic nerve injury. RESULTS Eight candidate genes were identified as both differential methylation and differential expression in survivors. Of the eight homologs identified, one was found to be differential expression in both PIPN and "normal" mice dorsal root ganglia; three were differential methylation in sciatic nerve injury versus sham rats in both pre-frontal cortex and T-cells; and two were differential methylation in sciatic nerve injury versus sham rats in the pre-frontal cortex. CONCLUSIONS This study is the first to evaluate for methylation in cancer survivors with chronic PIPN. The findings provide evidence that the expression of H1SP genes associated with chronic PIPN in cancer survivors may be regulated by epigenetic mechanisms and suggests genes for validation as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of
California, San Francisco, CA, USA
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
| | - Man-Cheung Lee
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
- Department of Epidemiology and
Biostatistics, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing,
University
of Pittsburgh, Pittsburgh, PA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Michael Keiser
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
- School of Medicine, University of
California, San Francisco, CA, USA
- Institute for Neurodegenerative
Diseases, University of California, San Francisco, CA, USA
| | - Marilyn J Hammer
- Phyllis F. Cantor Center,
Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gary Abrams
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Christine Miaskowski
- School of Nursing, University of
California, San Francisco, CA, USA
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Nijs J, D'Hondt E, Clarys P, Deliens T, Polli A, Malfliet A, Coppieters I, Willaert W, Tumkaya Yilmaz S, Elma Ö, Ickmans K. Lifestyle and Chronic Pain across the Lifespan: An Inconvenient Truth? PM R 2019; 12:410-419. [PMID: 31437355 DOI: 10.1002/pmrj.12244] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
Chronic pain has a tremendous personal and socioeconomic impact and remains difficult to treat. Therefore, it is important to provide an update on the current understanding regarding lifestyle factors in people with chronic pain across the lifespan. Lifestyle factors such as physical (in)activity, sedentary behavior, stress, poor sleep, unhealthy diet, and smoking are associated with chronic pain severity and sustainment. This applies to all age categories, that is, chronic pain across the lifespan. Yet current treatment options often do not or only partly address the many lifestyle factors associated with chronic pain or attempt to address them in a standard format rather than providing an individually tailored multimodal lifestyle intervention. The evidence regarding lifestyle factors is available in adults, but limited in children and older adults having chronic pain, providing important avenues for future research. In conclusion, it is proposed that treatment approaches for people with chronic pain should address all relevant lifestyle factors concomitantly in an individually-tailored multimodal intervention. Ultimately, this should lead to improved outcomes and decrease the psychological and socioeconomic burden of chronic pain. Level of Evidence: IV.
Collapse
Affiliation(s)
- Jo Nijs
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Eva D'Hondt
- Motor Skills and Didactics Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Deliens
- Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Polli
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Anneleen Malfliet
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Research Foundation - Flanders (FWO), Brussels, Belgium.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Iris Coppieters
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Ward Willaert
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sevilay Tumkaya Yilmaz
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ömer Elma
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kelly Ickmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Research Foundation - Flanders (FWO), Brussels, Belgium
| |
Collapse
|
32
|
|
33
|
Abstract
OBJECTIVE This study investigated whether childhood adversity would be associated with hypersensitivity on two measures of central pain facilitation: area of secondary allodynia and temporal summation of second pain (TSSP), and whether pain facilitation would be explained by adult posttraumatic stress disorder (PTSD) symptoms. METHOD Participants endorsing high (n = 31) and low (n = 31) childhood adversity underwent capsaicin-induced secondary allodynia and TSSP testing. The tests were conducted a week apart with test order counterbalanced. RESULTS Larger areas of secondary allodynia were observed in the high adversity group compared with the low adversity group (F(1,60) = 4.81, p = .032). This group difference was largely (62%) explained by greater PTSD symptoms in the high adversity group. Although no overall difference was found in TSSP slopes (p = .886), this was attributed to an order by group interaction (F(1,58) = 5.07, p = .028) and low power. Subsequent analyses revealed positive TSSP slopes in the high adversity group when TSSP testing was performed first, and this order effect was associated with blunted sympathetic responses to TSSP on the first visit. The two facilitation measures were unrelated (p = .631). CONCLUSIONS Larger areas of secondary allodynia were observed in the high adversity group, which was explained largely by PTSD symptoms. This suggests that adversity-related changes in pain facilitation may underlie the association between childhood adversity and generalized widespread pain. Although TSSP was affected by previous testing, adversity-related pain facilitation was observed when TSSP testing occurred first. Finally, adversity was not associated with a consistent pattern of hypersensitivity across the two measures of central pain facilitation.
Collapse
|
34
|
Chidambaran V, Zhang X, Geisler K, Stubbeman BL, Chen X, Weirauch MT, Meller J, Ji H. Enrichment of Genomic Pathways Based on Differential DNA Methylation Associated With Chronic Postsurgical Pain and Anxiety in Children: A Prospective, Pilot Study. THE JOURNAL OF PAIN 2019; 20:771-785. [PMID: 30639570 PMCID: PMC6616015 DOI: 10.1016/j.jpain.2018.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
We have reported child anxiety sensitivity (Child Anxiety Sensitivity Index [CASI]) predicts chronic postsurgical pain (CPSP). Herein, we evaluated DNA methylation profiles to understand the gene-environment interactions underlying CPSP and CASI, to identify shared, enriched, genomic pathways. In 73 prospectively recruited adolescents undergoing spine fusion, preoperative CASI and pain data over 12 months after surgery were collected. DNA from the peripheral blood of evaluable subjects with (n = 16) and without CPSP (n = 40) were analyzed using MethylationEPIC arrays. We identified 637 and 2,445 differentially DNA methylated positions (DMPs) associated with CPSP and CASI, respectively (P ≤ .05). Ingenuity pathway analysis of 39 genes with DMPs for both CPSP and CASI revealed enrichment of several canonical pathways, including GABA receptor (P = .00016 for CPSP; P =.0008 for CASI) and dopamine-DARPP32 feedback in cyclic adenosine monophosphate (P = .004 for CPSP and P =.00003 for CASI) signaling. Gene-gene interaction network enrichment analysis revealed participation of pathways in cell signaling, molecular transport, metabolism, and neurologic diseases (P < 10-8). Bioinformatic approaches to identify histone marks and transcription factor (TF) binding events underlying DMPs, showed their location in active regulatory regions in pain pathway relevant brain cells. Using Enrichr/Pinet enrichment and Library of Integrated Network-Based Cellular Signatures knockdown signatures, we identified TFs regulating genes with DMPs in association with CPSP and CASI. In conclusion, we identified epigenetically enriched pathways associated with CPSP and anxiety sensitivity in children undergoing surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward and pain. This pilot study provides new epigenetic insights into the pathophysiology of CPSP and a basis for future studies in biomarker development and targetable interventions. PERSPECTIVE: Differential DNA methylation in regulatory genomic regions enriching shared neural pathways were associated with CPSP and CASI in adolescents undergoing spine surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward contributing to behavioral maintenance of pain 10 to 12 months after surgery.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Xue Zhang
- Pyrosequencing core for genomic and epigenomic research, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Kristie Geisler
- Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Bobbie L Stubbeman
- Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jarek Meller
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hong Ji
- Department of Environmental Health, University of Cincinnati; Division of Asthma Research, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
35
|
Polli A, Ickmans K, Godderis L, Nijs J. When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity. Arch Phys Med Rehabil 2019; 100:1153-1161. [DOI: 10.1016/j.apmr.2018.09.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
36
|
Chidambaran V, Gang Y, Pilipenko V, Ashton M, Ding L. Systematic Review and Meta-Analysis of Genetic Risk of Developing Chronic Postsurgical Pain. THE JOURNAL OF PAIN 2019; 21:2-24. [PMID: 31129315 DOI: 10.1016/j.jpain.2019.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Chronic postsurgical pain (CPSP) is a significant detriment to postsurgical recovery and a risk factor for prolonged opioid use. Emerging evidence suggests the estimated heritability for chronic pain is 45% and that genetic factors partially explain individual susceptibility to CPSP. The aim of this study was to systematically review, assess quality, and summarize the studies in humans that have investigated genetic factors associated with CPSP. We also conducted a meta-analysis to derive a single effect size for evaluable genetic associations with CPSP. Our comprehensive literature search included review of 21 full-text articles evaluating variants of 69 genes for association with CPSP. We found significant gene variant associations reported for variants/haplotypes of 26 genes involved in neurotransmission, pain signaling, immune responses and neuroactive ligand-receptor interaction, with CPSP. Six variants of 5 genes (COMT: rs4680 and rs6269, OPRM1: rs1799971, GCH1: rs3783641, KCNS1: rs734784 and TNFA: rs1800629), were evaluated by more than one study and were included in the meta-analysis. At rs734784 (A>G) of KCNS1, presence of G allele marginally increased risk of CPSP (Additive genetic model; Odds ratio: 1.511; 95% CI 1-2.284; P value: .050), while the other variants did not withstand meta-analyses criteria. Our findings demonstrate the role of genetic factors with different functions in CPSP, and also emphasize that single genetic factors have small effect sizes in explaining complex conditions like CPSP. Heterogeneity in surgical cohorts, population structure, and outcome definitions, as well as small number of available studies evaluating same variants, limit the meta-analysis. There is a need for large-scale, homogenous, replication studies to validate candidate genes, and understand the underlying biological networks underpinning CPSP. PERSPECTIVE: Our systematic review comprehensively describes 21 studies evaluating genetic association with CPSP, and limitations thereof. A meta-analysis of 6 variants (5 genes) found marginally increased risk for CPSP associated with rs734784 A>G of the potassium voltage-gated channel gene (KCNS1). Understanding genetic predisposition for CPSP will enable prediction and personalized management.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.
| | - Yang Gang
- Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria Ashton
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lili Ding
- Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
37
|
Elsherbiny NM, Ahmed E, Kader GA, Abdel-Mottaleb Y, ElSayed MH, Youssef AM, Zaitone SA. Inhibitory effect of valproate sodium on pain behavior in diabetic mice involves suppression of spinal histone deacetylase 1 and inflammatory mediators. Int Immunopharmacol 2019; 70:16-27. [PMID: 30785087 DOI: 10.1016/j.intimp.2019.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
Anti-epileptic medications are included in the international guidelines for managing neuropathic pain. Valproate sodium (VPS) was recently described as "the forgotten analgesic" and has been reported to relief pain in various models of neuropathic pain. Some studies reported anti-inflammatory and histone deacetylase 1 (HDA1) inhibitory properties for sodium valproate. The aim of the current study was to investigate the modulatory effect of VPS on pain behavior and inflammatory reactions in alloxan-induced diabetic neuropathy focusing on HDA1 inhibition and glia reactivity. 28 Male Swiss albino mice were allocated into four groups, (1) vehicle group, (2) alloxan-diabetic group, (3 & 4) alloxan+VPS (25 or 50 mg/kg) groups. VPS was given daily for 5 weeks by oral gavage. Pain behavior demonstrated increased allodynia (von-Frey filaments) and hyperalgesia (hot-plate test) in alloxan-diabetic mice that was reduced significantly by at least one of VPS doses. Sciatic nerves in diabetic mice showed increased histopathology score, increased silver staining for the nerves-indicating myelopathy- and a decrease in immunostaining for nerve growth factor. Spinal cord of diabetic mice showed greater histopathologic score, increased CD11b and glia fibrillary acidic protein (GFAP) immunostaining than vehicle treated mice. Molecular investigations highlighted greater content of spinal histone deacetylases, tumor necrosis factor-α (TNF-α) and interlukin-1β (IL1β) that were favorably modified by VPS. Overall, the current data confirmed that the pain killing and anti-inflammatory activity of VPS is at least partly mediated through inhibition of spinal HDA1 and glia reactivity. These findings support the view of inviting antiepileptics for treating neuropathies.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghada Abdel Kader
- Department of Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Yousra Abdel-Mottaleb
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal M Youssef
- Department of Physiology, College of Medicine, Taibah University, Medinah, Saudi Arabia; Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
38
|
Louwies T, Ligon CO, Johnson AC, Greenwood-Van Meerveld B. Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterol Motil 2019; 31:e13500. [PMID: 30393913 PMCID: PMC7924309 DOI: 10.1111/nmo.13500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/21/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic visceral pain is persistent pain emanating from thoracic, pelvic, or abdominal origin that is poorly localized with regard to the specific organ affected. The prevalence can range up to 25% in the adult population as chronic visceral pain is a common feature of many visceral disorders, which may or may not be accompanied by distinct structural or histological abnormalities within the visceral organs. Mounting evidence suggests that changes in epigenetic mechanisms are involved in the top-down or bottom-up sensitization of pain pathways and the development of chronic pain. Epigenetic changes can lead to long-term alterations in gene expression profiles of neurons and consequently alter functionality of peripheral neurons, dorsal root ganglia, spinal cord, and brain neurons. However, epigenetic modifications are dynamic, and thus, detrimental changes may be reversible. Hence, external factors/therapeutic interventions may be capable of modulating the epigenome and restore normal gene expression for extended periods of time. PURPOSE The goal of this review is to highlight the latest discoveries made toward understanding the epigenetic mechanisms that are involved in the development or maintenance of chronic visceral pain. Furthermore, this review will provide evidence supporting that targeting these epigenetic mechanisms may represent a novel approach to treat chronic visceral pain.
Collapse
Affiliation(s)
- Tijs Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Casey O. Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
39
|
Comparison of Different Histone Deacetylase Inhibitors in Attenuating Inflammatory Pain in Rats. Pain Res Manag 2019; 2019:1648919. [PMID: 30809320 PMCID: PMC6369477 DOI: 10.1155/2019/1648919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACIs), which interfere with the epigenetic process of histone acetylation, have shown analgesic effects in animal models of persistent pain. The HDAC family comprises 18 genes; however, the different effects of distinct classes of HDACIs on pain relief remain unclear. The aim of this study was to determine the efficacy of these HDACIs on attenuating thermal hyperalgesia in persistent inflammatory pain. Persistent inflammatory pain was induced by injecting Complete Freund's Adjuvant (CFA) into the left hind paw of rats. Then, HDACIs targeting class I (entinostat (MS-275)) and class IIa (sodium butyrate, valproic acid (VPA), and 4-phenylbutyric acid (4-PBA)), or class II (suberoylanilide hydoxamic acid (SAHA), trichostatin A (TSA), and dacinostat (LAQ824)) were administered intraperitoneally once daily for 3 or 4 days. We found that the injection of SAHA once a day for 3 days significantly attenuated CFA-induced thermal hyperalgesia from day 4 and lasted 7 days. In comparison with SAHA, suppression of hyperalgesia by 4-PBA peaked on day 2, whereas that by MS-275 occurred on days 5 and 6. Fatigue was a serious side effect seen with MS-275. These findings will be beneficial for optimizing the selection of specific HDACIs in medical fields such as pain medicine and neuropsychiatry.
Collapse
|
40
|
A Systematic Review of Behavioral and Environmental Interventions for Procedural Pain Management in Preterm Infants. J Pediatr Nurs 2019; 44:22-30. [PMID: 30683278 DOI: 10.1016/j.pedn.2018.10.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022]
Abstract
PROBLEM Current research suggests behavioral and environmental interventions to prevent neonatal pain prior to an invasive procedure are rarely administered and seldom documented. The aim of this study was to systematically review findings from published randomized controlled trials that tested the effects of behavioral and environmental procedural pain management interventions on behavioral pain response in preterm infants. ELIGIBILITY CRITERIA Randomized controlled trials examining the effects of behavioral and environmental pain management interventions on behavioral pain response in preterm infants were identified. Articles accepted for inclusion met the following criteria: English language, original, peer refereed, randomized controlled clinical trials published within the past 5 years, study sample: preterm infants, setting: neonatal intensive care units, study intervention behavioral and environmental, outcome pain measurement score from valid and reliable pain scale. SAMPLE Fourteen randomized controlled trials from a literature search of PubMed and Medline databases were included in this review. RESULTS Across all age groups, facilitated tucking, oral sucrose, and kangaroo care decreased behavioral and physiologic pain response alone and in combination with other behavioral and environmental interventions. CONCLUSION Among preterm infants, facilitated tucking, oral sucrose, and kangaroo care significantly mitigates biobehavioral pain response associated with acutely painful procedures. IMPLICATIONS Evidence suggests that behavioral and environmental interventions can decrease biobehavioral pain response associated with acutely painful procedures in preterm infants. This review highlights the need for rigorous studies to help healthcare providers to build a tailored pain treatment plan for preterm infants.
Collapse
|
41
|
Kringel D, Kaunisto MA, Lippmann C, Kalso E, Lötsch J. Development of an AmpliSeq TM Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain. Front Pharmacol 2018; 9:1008. [PMID: 30283335 PMCID: PMC6156278 DOI: 10.3389/fphar.2018.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Many gene variants modulate the individual perception of pain and possibly also its persistence. The limited selection of single functional variants is increasingly being replaced by analyses of the full coding and regulatory sequences of pain-relevant genes accessible by means of next generation sequencing (NGS). Methods: An NGS panel was created for a set of 77 human genes selected following different lines of evidence supporting their role in persisting pain. To address the role of these candidate genes, we established a sequencing assay based on a custom AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian ethnicity. To identify the systems biology of the genes, the biological functions associated with these genes were assessed by means of a computational over-representation analysis. Results: Sequencing generated a median of 2.85 ⋅ 106 reads per run with a mean depth close to 200 reads, mean read length of 205 called bases and an average chip loading of 71%. A total of 3,185 genetic variants were called. A computational functional genomics analysis indicated that the proposed NGS gene panel covers biological processes identified previously as characterizing the functional genomics of persisting pain. Conclusion: Results of the NGS assay suggested that the produced nucleotide sequences are comparable to those earned with the classical Sanger sequencing technique. The assay is applicable for small to large-scale experimental setups to target the accessing of information about any nucleotide within the addressed genes in a study cohort.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Catharina Lippmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
42
|
Abstract
Abstract
The development of chronic pain is considered a major complication after surgery. Basic science research in animal models helps us understand the transition from acute to chronic pain by identifying the numerous molecular and cellular changes that occur in the peripheral and central nervous systems. It is now well recognized that inflammation and nerve injury lead to long-term synaptic plasticity that amplifies and also maintains pain signaling, a phenomenon referred to as pain sensitization. In the context of surgery in humans, pain sensitization is both responsible for an increase in postoperative pain via the expression of wound hyperalgesia and considered a critical factor for the development of persistent postsurgical pain. Using specific drugs that block the processes of pain sensitization reduces postoperative pain and prevents the development of persistent postoperative pain. This narrative review of the literature describes clinical investigations evaluating different preventative pharmacologic strategies that are routinely used by anesthesiologists in their daily clinical practices for preventing persistent postoperative pain. Nevertheless, further efforts are needed in both basic and clinical science research to identify preclinical models and novel therapeutics targets. There remains a need for more patient numbers in clinical research, for more reliable data, and for the development of the safest and the most effective strategies to limit the incidence of persistent postoperative pain.
Collapse
|
43
|
Morlion B, Coluzzi F, Aldington D, Kocot-Kepska M, Pergolizzi J, Mangas AC, Ahlbeck K, Kalso E. Pain chronification: what should a non-pain medicine specialist know? Curr Med Res Opin 2018. [PMID: 29513044 DOI: 10.1080/03007995.2018.1449738] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Pain is one of the most common reasons for an individual to consult their primary care physician, with most chronic pain being treated in the primary care setting. However, many primary care physicians/non-pain medicine specialists lack enough awareness, education and skills to manage pain patients appropriately, and there is currently no clear, common consensus/formal definition of "pain chronification". METHODS This article, based on an international Change Pain Chronic Advisory Board meeting which was held in Wiesbaden, Germany, in October 2016, provides primary care physicians/non-pain medicine specialists with a narrative overview of pain chronification, including underlying physiological and psychosocial processes, predictive factors for pain chronification, a brief summary of preventive strategies, and the role of primary care physicians and non-pain medicine specialists in the holistic management of pain chronification. RESULTS Based on currently available evidence, we propose the following consensus-based definition of pain chronification which provides a common framework to raise awareness among non-pain medicine specialists: "Pain chronification describes the process of transient pain progressing into persistent pain; pain processing changes as a result of an imbalance between pain amplification and pain inhibition; genetic, environmental and biopsychosocial factors determine the risk, the degree, and time-course of chronification." CONCLUSIONS Early intervention plays an important role in preventing pain chronification and, as key influencers in the management of patients with acute pain, it is critical that primary care physicians are equipped with the necessary awareness, education and skills to manage pain patients appropriately.
Collapse
Affiliation(s)
- Bart Morlion
- a Leuven Centre for Algology & Pain Management , University Hospitals Leuven , KU Leuven , Belgium
| | - Flaminia Coluzzi
- b Department of Medical and Surgical Sciences and Biotechnologies Unit of Anaesthesia, Intensive Care and Pain Medicine , Sapienza University of Rome , Rome , Italy
| | | | - Magdalena Kocot-Kepska
- d Department of Pain Research and Treatment , Jagiellonian University Medical College , Kraków , Poland
| | - Joseph Pergolizzi
- e Global Pain Initiative, Golden, CO, USA and Naples Anesthesia and Pain Associates , Naples , FL , USA
| | | | | | - Eija Kalso
- h Pain Clinic, Departments of Anaesthesiology , Intensive Care, and Pain Medicine, Helsinki University Central Hospital , Helsinki , Finland
| |
Collapse
|
44
|
Capossela S, Pavlicek D, Bertolo A, Landmann G, Stoyanov JV. Unexpectedly decreased plasma cytokines in patients with chronic back pain. J Pain Res 2018; 11:1191-1198. [PMID: 29950891 PMCID: PMC6016579 DOI: 10.2147/jpr.s153872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Chronic back pain is one of the most important socioeconomic problems that affects the global population. Elevated levels of inflammatory mediators, such as cytokines, have been correlated with pain, but their role in chronic back pain remains unclear. The effectiveness of anti-inflammatory drugs seems to be limited for chronic back pain. The authors wanted to investigate the levels of inflammatory mediators in long-term medically treated patients with persistent chronic back pain. Methods Cytokine plasma levels of patients with chronic back pain (n=23), compared to pain-free healthy controls (n=30), were investigated by immunoassay. Patients with chronic back pain were exposed to long-term conservative medical therapy with physiotherapy and anti-inflammatories, also combined with antidepressants and/or muscle-relaxants. Results The patients with chronic back pain expressed lower levels of the chemokines MCP1, CCL5, and CXCL6 compared to pain-free healthy controls. Significantly lower concentrations of the anti-inflammatory cytokines, interleukin (IL)-4 and granulocyte-colony stimulating factor were also found. Interestingly, levels of proinflammatory cytokines (IL-2, IL-6, IL-1β, tumor necrosis factor alpha), IL-10, granulocyte-macrophage colony-stimulating factor, and stromal cell-derived factor 1 alpha showed no significant differences between both groups. Conclusion This decrease of inflammatory mediators in medically treated patients with chronic back pain is of unclear origin and might be either a long-term side effect of medical therapy or related to chronic pain. Further longitudinal research is necessary to elucidate the underlying cause of these findings.
Collapse
Affiliation(s)
| | | | | | - Gunther Landmann
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | | |
Collapse
|
45
|
|
46
|
DosSantos MF, Moura BDS, DaSilva AF. Reward Circuitry Plasticity in Pain Perception and Modulation. Front Pharmacol 2017; 8:790. [PMID: 29209204 PMCID: PMC5702349 DOI: 10.3389/fphar.2017.00790] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 10/19/2017] [Indexed: 12/30/2022] Open
Abstract
Although pain is a widely known phenomenon and an important clinical symptom that occurs in numerous diseases, its mechanisms are still barely understood. Owing to the scarce information concerning its pathophysiology, particularly what is involved in the transition from an acute state to a chronic condition, pain treatment is frequently unsatisfactory, therefore contributing to the amplification of the chronic pain burden. In fact, pain is an extremely complex experience that demands the recruitment of an intricate set of central nervous system components. This includes cortical and subcortical areas involved in interpretation of the general characteristics of noxious stimuli. It also comprises neural circuits that process the motivational-affective dimension of pain. Hence, the reward circuitry represents a vital element for pain experience and modulation. This review article focuses on the interpretation of the extensive data available connecting the major components of the reward circuitry to pain suffering, including the nucleus accumbens, ventral tegmental area, and the medial prefrontal cortex; with especial attention dedicated to the evaluation of neuroplastic changes affecting these structures found in chronic pain syndromes, such as migraine, trigeminal neuropathic pain, chronic back pain, and fibromyalgia.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda de Souza Moura
- Programa de Pós-Graduação em Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences, School of Dentistry, Center for Human Growth and Development, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
47
|
miRNAs: Important Targets for Oral Cancer Pain Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4043516. [PMID: 29214166 PMCID: PMC5682905 DOI: 10.1155/2017/4043516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Pain is a symptom shared by an incredible number of diseases. It is also one of the primary conditions that prompt individuals to seek medical treatment. Head and neck squamous cell carcinoma (HNSCC) corresponds to a heterogeneous disease that may arise from many distinct structures of a large, highly complex, and intricate region. HNSCC affects a great number of patients worldwide and is directly associated with chronic pain, which is especially prominent during the advanced stages of oral squamous cell carcinoma (OSCC), an anatomical and clinical subtype that corresponds to the great majority oral cancers. Although the cellular and molecular bases of oral cancer pain have not been fully established yet, the results of recent studies suggest that different epigenetic mechanisms may contribute to this process. For instance, there is strong scientific evidence that microRNAs (miRNAs), small RNA molecules that do not encode proteins, might act by regulating the mechanisms underlying cancer-related pain. Among the miRNAs that could possibly interfere in pain-signaling pathways, miR-125b, miR-181, and miR-339 emerge as some of the most promising candidates. In fact, such molecules apparently contribute to inflammatory pain. Moreover, these molecules possibly influence the activity of endogenous pain control systems (e.g., opioidergic and serotonergic systems), which could ultimately result in peripheral and central sensitization, central nervous system (CNS) phenomena innately associated with chronic pain. This review paper focuses on the current scientific knowledge regarding the involvement of miRNAs in cancer pain, with special attention dedicated to OSCC-related pain.
Collapse
|
48
|
Brown M, Farquhar-Smith P. Pain in cancer survivors; filling in the gaps. Br J Anaesth 2017; 119:723-736. [DOI: 10.1093/bja/aex202] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Abstract
Persistent or chronic postsurgical pain (CPSP) has been defined as 'pain persisting beyond 2 months'. The cut-off limit of 2 months has been controversial, and some researchers argue for a 3-month period for the definition of CPSP. Multiple mechanisms, including both patient and surgical, have been shown to influence this transition. Patient factors include age, gender, anxiety, depression, somatisation, catastrophising, pre-existing pain anywhere and pain at the site of surgery. The various surgical factors include site and nature of surgery, infection, inflammation and repeat surgery. There is evidence that pre- or post-op chemotherapy and radiotherapy can also contribute towards the chronification of pain after surgery. The question of why pain following surgery or trauma persists long after the normal healing time is not yet fully explained by current evidence. This is frustrating to healthcare providers and intensely disappointing to the patients, many of whom suffer in silence for years. Genetics is now being shown to influence both the onset and the perpetuation of chronic pain in the susceptible patient. The main mechanisms are believed to be 'single nucleotide polymorphisms' (SNPs) and 'epigenetics', both of which will be discussed, with current and ongoing research and evidence, in this review. The influence of SNPs has not been replicated in recent studies and researchers advise caution in interpreting past studies. More research is needed to demonstrate the involvement of epigenetics as well as linking SNPs to the susceptible patient's journey.
Collapse
|
50
|
Abstract
More than 20% of adults worldwide experience different types of chronic pain, which are frequently associated with several comorbidities and a decrease in quality of life. Several approved painkillers are available, but current analgesics are often hampered by insufficient efficacy and/or severe adverse effects. Consequently, novel strategies for safe, highly efficacious treatments are highly desirable, particularly for chronic pain. Epigenetic mechanisms such as DNA methylation, histone modifications and microRNAs (miRNAs) strongly affect the regulation of gene expression, potentially for long periods over years or even generations, and have been associated with pathophysiological pain. Several studies, mostly in animals, revealed that inhibitors of DNA methylation, activators and inhibitors of histone modification and modulators of miRNAs reverse a number of pathological changes in the pain epigenome, which are associated with altered expression of pain-relevant genes. This epigenetic modulation might then reduce the nociceptive response and provide novel therapeutic options for analgesic therapy of chronic pain states. However, a number of challenges, such as nonspecific effects and poor delivery to target cells and tissues, hinder the rapid development of such analgesics. In this Review, we critically summarize data on epigenetics and pain, focusing on challenges in clinical development as well as possible new approaches to the drug modulation of the pain epigenome.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|