1
|
Blázquez AB, Mingo-Casas P, Quesada E, Priego EM, Pérez-Perez MJ, Martín-Acebes MA. Lipid-targeting antiviral strategies: Current state and future perspectives. Antiviral Res 2025; 236:106103. [PMID: 39947433 DOI: 10.1016/j.antiviral.2025.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
There is an urgent need for antiviral compounds effective against currently known and future viral threats. The development of host-targeting antivirals (HTAs) appears as an alternative strategy to fight viral infections minimizing the potential of resistant mutant development and potentially leading to the identification of broad-spectrum antiviral agents. Among the host factors explored for HTA strategy, lipids constitute an attractive target as many viruses, even genetically diverse, hijack specific lipids during their lifecycle. Multiple repurposing efforts have been performed to analyze the antiviral properties of lipid-targeting compounds. These studies include the analysis of the effects of cholesterol lowering drugs such as statins, cholesterol transport inhibitors, sphingolipid modulators, de novo lipogenesis inhibitors blocking fatty acid synthesis, compounds targeting glycerophospholipids or drugs interfering with lipid droplet metabolism. This review is focused on the current status of lipid-based or lipid-targeting antiviral strategies and their potential for the development of antiviral therapies, with special emphasis on those studies that have reached advanced stages of development such as efficacy studies in animal models or clinical trials. Whereas there is still a long way to go, multiple proof-of-concept studies and clinical evidence reinforce the therapeutic potential of these strategies warranting their further development into effective antiviral therapies.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain.
| | - Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain; Universidad Autónoma de Madrid (UAM, Escuela de Doctorado), Spain
| | | | | | | | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
3
|
Mastrodomenico V, LoMascolo NJ, Cruz-Pulido YE, Cunha CR, Mounce BC. Polyamine-Linked Cholesterol Incorporation in Rift Valley Fever Virus Particles Promotes Infectivity. ACS Infect Dis 2022; 8:1439-1448. [PMID: 35786847 PMCID: PMC9549488 DOI: 10.1021/acsinfecdis.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses rely on an array of cellular metabolites to replicate and form progeny virions. One set of these molecules, polyamines, are small aliphatic molecules, which are abundant in most cells, that support virus infection; however, the precise roles of polyamines in virus infection remain incompletely understood. Recent work demonstrated that polyamine metabolism supports cellular cholesterol synthesis through translation of the key transcription factor SREBP2. Here, we show that the bunyavirus Rift Valley fever virus (RVFV) relies on both cholesterol and polyamines for virus infection. Depletion of cellular cholesterol or interruption of cholesterol trafficking negatively impacts RVFV infection. Cholesterol is incorporated into RVFV virions and mediates their infectivity in a polyamine-dependent manner; we find that the virus derived from polyamine-depleted cells lacks cholesterol within the virion membrane. Conversely, we find that virion-associated cholesterol is linked to the incorporation of spermidine within the virion. Our prior work demonstrated that polyamines facilitate pH-mediated fusion and genome release, which may be a consequence of cholesterol depletion within virions. Thus, our work highlights the metabolic connection between polyamines and cholesterol synthesis to impact bunyavirus infection. These data demonstrate the connectedness between cellular metabolic pathways and reveal potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Vincent Mastrodomenico
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Natalie J LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
- Infectious Diseases and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Christina R Cunha
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
- Infectious Diseases and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| |
Collapse
|
4
|
Li G, Su B, Fu P, Bai Y, Ding G, Li D, Wang J, Yang G, Chu B. NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry. SCIENCE CHINA-LIFE SCIENCES 2021; 65:341-361. [PMID: 34047913 PMCID: PMC8160554 DOI: 10.1007/s11427-021-1929-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.
Collapse
Affiliation(s)
- Guoli Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Bingqian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Pengfei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guangxu Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Dahua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Doki T, Tarusawa T, Hohdatsu T, Takano T. In Vivo Antiviral Effects of U18666A Against Type I Feline Infectious Peritonitis Virus. Pathogens 2020; 9:pathogens9010067. [PMID: 31963705 PMCID: PMC7169457 DOI: 10.3390/pathogens9010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.
Collapse
Affiliation(s)
| | | | | | - Tomomi Takano
- Correspondence: ; Tel.: +81-176-23-4371; Fax: +81-176-23-8703
| |
Collapse
|
6
|
Karahan H, Lüle S, Kelicen-Uğur P. Aromatase/Seladin-1 Interactions in Human Neuronal Cell Culture, the Hippocampus of Healthy Rats and Transgenic Alzheimer’s Disease Mice. Pharmacology 2018; 102:42-52. [DOI: 10.1159/000488765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/15/2023]
Abstract
Background/Aims: Decreasing levels of aromatase and seladin-1 could be one of the molecular mechanisms of Alzheimer’s disease (AD). Aromatase is an enzyme that catalyzes estrogen biosynthesis from androgen precursors, and seladin-1 is an enzyme that converts desmosterol to cholesterol, which is the precursor of all hormones. Verifying the potential relationship between these proteins and accordingly determining new therapeutic targets constitute the aims of this study. Methods: Changes in protein levels were compared in vitro in aromatase and seladin-1 inhibitor-administered human neuroblastoma (SH-SY5Y) cells in vivo in intracerebroventricular (icv) aromatase or seladin-1 inhibitor-administered rats, as well as in transgenic AD mice in which the genes encoding these proteins were knocked out. Results and Conclusions: In the cell cultures, we observed that seladin-1 protein levels increased after aromatase enzyme inhibition. The hippocampal aromatase protein levels decreased following chronic seladin-1 inhibition in icv inhibitor-administered rats; however, the aromatase levels in the dentate gyrus of seladin-1 knockout (SelKO) AD male mice increased. These findings indicate a partial relationship between these proteins and their roles in AD pathology.
Collapse
|
7
|
Quan X, Chen X, Sun D, Xu B, Zhao L, Shi X, Liu H, Gao B, Lu X. The mechanism of the effect of U18666a on blocking the activity of 3β-hydroxysterol Δ-24-reductase (DHCR24): molecular dynamics simulation study and free energy analysis. J Mol Model 2016; 22:46. [DOI: 10.1007/s00894-016-2907-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/07/2016] [Indexed: 11/28/2022]
|
8
|
Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009; 44:477-87. [PMID: 19440746 DOI: 10.1007/s11745-009-3305-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/16/2023]
Abstract
The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney's recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum's recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann-Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer's disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.
Collapse
|
9
|
Abstract
This paper gives an account of the global evolution of (neuro-)chemistry in epileptology with an emphasis on the role of the International League Against Epilepsy (ILAE), which declared in its constitution a mission "to make the epilepsy-problem the object of special study and to make practical use of the results of such study." As Epilepsia is the scientific journal of the ILAE, the review emphasizes papers published in the journal.
Collapse
Affiliation(s)
- Clementina Van Rijn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Hagiwara K, Nakamura Y, Nishijima M, Yamakawa Y. Prevention of prion propagation by dehydrocholesterol reductase inhibitors in cultured cells and a therapeutic trial in mice. Biol Pharm Bull 2007; 30:835-8. [PMID: 17409533 DOI: 10.1248/bpb.30.835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In prion diseases, the normal cellular form of prion protein (PrP(C)) is converted into the disease-associated isoforms (PrP(Sc)) which accumulate in the infected tissues. Although the precise mechanism of this conversion remains unsolved, drugs of various categories have been reported to reduce the accumulation of PrP(Sc) in prion-infected cultured cells. We here show that AY-9944 (a 7-dehydrocholesterol reductase inhibitor) and U18666A (a 24-dehydrocholesterol reductase inhibitor) prevent PrP(Sc) from accumulating in prion-infected mouse neuroblastoma cells (ScN2a), with an ED50 of about 0.5 microM and 10 nM, respectively. In order to evaluate the efficacy of these two inhibitors in vivo, C57BL/6J mice inoculated with mouse-adapted scrapie-prion received repetitive intraperitoneal injections of U18666A (10 mg/kg) or a mixture of U18666A (10 mg/kg) and AY-9944 (12 mg/kg). By contrast to the potent anti-prion effects observed in ScN2a cells, the in vivo trial was abortive with neither drug halting the progression of the disease.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Japan.
| | | | | | | |
Collapse
|
11
|
Koh CHV, Cheung NS. Cellular mechanism of U18666A-mediated apoptosis in cultured murine cortical neurons: bridging Niemann-Pick disease type C and Alzheimer's disease. Cell Signal 2006; 18:1844-53. [PMID: 16797161 DOI: 10.1016/j.cellsig.2006.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Neuronal cell death can occur by means of either necrosis or apoptosis. Both necrosis and apoptosis are generally believed to be distinct mechanisms of cell death with different characteristic features distinguished on the basis of their morphological and biochemical properties. The brain is the most cholesterol-rich organ in the body but not much is known about the mechanisms that regulate cholesterol homeostasis in the brain. Recently, several clinical and biochemical studies suggest that cholesterol imbalance in the brain may be a risk factor related to the development of neurological disorders such as Niemann-Pick disease type C (NPC) and Alzheimer's disease (AD). NPC is a fatal juvenile neurodegenerative disorder characterized by premature neuronal death and somatically altered cholesterol metabolism. The main biochemical manifestation in NPC is elevated intracellular accumulation of free cholesterol caused by a genetic deficit in cholesterol trafficking. The pharmacological agent, U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), is a well-known class-2 amphiphile which inhibits cholesterol transport. Cells treated with this agent accumulate intracellular cholesterol to massive levels, similar to that observed in cells from NPC patients. NPC and AD have some pathological similarities which may share a common underlying cause. AD is one of the most common types of dementia affecting the elderly. However, the molecular mechanisms of neurodegeneration in NPC and AD are largely unknown. This review provides a consolidation of work done using U18666A in the past half century and focuses on the implications of our research findings on the mechanism of U18666A-mediated neuronal apoptosis in primary cortical neurons, which may provide an insight to elucidate the mechanisms of neurodegenerative diseases, particularly NPC and AD, where apoptosis might occur through a similar mechanism.
Collapse
Affiliation(s)
- Chor Hui Vivien Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
12
|
Cenedella RJ, Sexton PS, Krishnan K, Covey DF. Comparison of effects of U18666A and enantiomeric U18666A on sterol synthesis and induction of apoptosis. Lipids 2005; 40:635-40. [PMID: 16149744 DOI: 10.1007/s11745-005-1426-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatment of animals or cells with the amphipathic tertiary amine U18666A {3beta-[2-(diethylamino) ethoxy]androst-5-en-17-one} provides models for several human diseases (e.g., cataracts, Niemann-Pick disease, and epilepsy). Although U18666A can inhibit several enzymes in the cholesterol synthesis pathway, we hypothesized that induction of these varied conditions was due to physical effects of the amine rather than to inhibition of specific proteins. To test this possibility we compared the capacity of U18666A and its enantiomer, ent-U18666A, to inhibit net sterol synthesis and induce apoptosis in cultured bovine lens epithelial cells. Nonenantiospecific actions dependent on the physical properties of these mirror image molecules would be identical, but effects dependent upon enantiospecific interactions would be different for the enantiomers. At the same concentrations, both forms of the compound equally inhibited sterol synthesis and induced apoptosis. These observations supported a generalized mechanism of enzyme inhibition such as perturbation of the microenvironment of endoplasmic enzymes and alteration of membrane order, perhaps of the mitochondrial membrane, to explain induction of apoptosis.
Collapse
Affiliation(s)
- Richard J Cenedella
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, Kirksville, Missouri 63501, USA.
| | | | | | | |
Collapse
|
13
|
Cenedella RJ, Jacob R, Borchman D, Tang D, Neely AR, Samadi A, Mason RP, Sexton P. Direct perturbation of lens membrane structure may contribute to cataracts caused by U18666A, an oxidosqualene cyclase inhibitor. J Lipid Res 2004; 45:1232-41. [PMID: 15102886 DOI: 10.1194/jlr.m300469-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of cataracts in experimental animals is a common toxic feature of oxidosqualene cyclase (OSC) inhibitors. U18666A has been shown to produce irreversible lens damage within a few weeks of treatment. Drug actions, besides reducing the availability of cholesterol, could contribute to cataract formation. Cholesterol added to cultures of lens epithelial cells could only partially overcome the growth-inhibiting effects of U18666A. In view of this finding and the fact that U18666A and other OSC inhibitors are highly lipophilic cationic tertiary amines, we tested the hypothesis that the cataractogenic effect of U18666A is related to direct perturbation of lens membrane structure and function. Based on changes in the anisotropy of fluorescent probes, U18666A incorporated into bovine lens lipid model membranes increased membrane structural order and, using small-angle x-ray diffraction, U18666A was shown to intercalate into the lens lipid model membranes and produce a broad condensing effect on membrane structure. Also, exposure of cultured lens epithelial cells and intact rat lenses to U18666A induced apoptosis. Induction of apoptosis may begin by intercalation of U18666A into cell membranes. By increasing membrane structural order, U18666A may also increase light scatter, thus directly contributing to lens opacification.
Collapse
Affiliation(s)
- Richard J Cenedella
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Persad V, Cortez MA, Snead OC. A chronic model of atypical absence seizures: studies of developmental and gender sensitivity. Epilepsy Res 2002; 48:111-9. [PMID: 11823115 DOI: 10.1016/s0920-1211(01)00319-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Treatment of Long Evans hooded rats during post-natal brain development with the cholesterol synthesis inhibitor, AY-9944 (AY) results in the occurrence of atypical absence seizures, which are frequent, recurrent, and life-long. AY induced slow spike-and-wave discharges (SSWD) are significantly more frequent and prolonged in female Long Evans rats than males. Three groups of experiments were performed in order to characterize further the AY model of atypical absence seizures, (1) a developmental study was performed to ascertain whether AY-induced seizures appear before or after the onset of puberty; (2) male/female differences in severity of response to AY was determined in order to answer the question whether the gender specificity was a pre- or postpubertal phenomenon; (3) a time course study was done to determine the minimum number of postnatal AY doses needed to induce the life-long atypical absence seizure state. The data indicate that AY-induced atypical absence seizures emerge before the onset of puberty. Further, we show that the gender difference in severity of AY-induced seizures also is a pre-pubertal phenomenon. Finally, a single dose of AY (7.5 mg/kg) administered on post-natal day (P) 5 was sufficient to induce SSWD on the electrocorticogram (ECoG). Our results suggest that sex hormones are important in the AY model, although the exact role of cholesterol derived steroid hormones in the regulation and maintenance of AY induced atypical absence seizures remains to be determined.
Collapse
Affiliation(s)
- Vasan Persad
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada
| | | | | |
Collapse
|
15
|
Cenedella RJ, Sarkar CP. Mechanism of depression of brain phospholipid levels by an epileptogenic drug. Biochem Pharmacol 1984; 33:591-8. [PMID: 6704175 DOI: 10.1016/0006-2952(84)90313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Treatment of the rat with U18666A [3 beta-(2-diethylaminoethoxy) androst-5-en-17-one HCl] resulted in development of a chronic seizure state and 20-40% reductions in the concentration of all major phospholipid in whole brain. The mechanism of the phospholipid changes was explored in the present study. Incorporation of intracerebrally injected [1,3-3H]glycerol and [32P]orthophosphate into glycerolipids was decreased by 30-40% in treated rats. U18666A added in vitro to brain slices totally blocked glycerolipid synthesis at a high drug level (10(-3) M) but stimulated incorporation into diacylglycerol, phosphatidic acid and phosphatidylinositol at a lower level (10(-4) M). When added in vitro to cell fractions from liver or brain, U18666A readily inhibited phosphatidate phosphohydrolase and the acyltransferase enzymes which convert glycerolphosphate to phosphatidic acid and which convert diacylglycerol to triacylglycerol. Fifty percent inhibition of all three enzymes occurred at drug concentrations of between 0.4 and 1.0 mM. Phosphatidate cytidylyltransferase, an enzyme important to formation of phosphatidylinositol, was comparatively resistant to inhibition. Taken together, the results indicate that the marked reduction in the concentration of brain phospholipids caused by treatment of the young rat with U18666A is likely due to decreased phospholipid synthesis secondary to inhibition of several key enzymes in glycerolipid synthesis and, particularly, to inhibition of glycerolphosphate acyltransferase and phosphatidate phosphohydrolase.
Collapse
|
16
|
Cenedella RJ. Source of cholesterol for the ocular lens, studied with U18666A: a cataract-producing inhibitor of lipid metabolism. Exp Eye Res 1983; 37:33-43. [PMID: 6873203 DOI: 10.1016/0014-4835(83)90147-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is the major lipid component of the ocular lens. The source of lens cholesterol during the first month of post-natal life of the rat was investigated by use of U18666A, a potent inhibitor of cholesterol biosynthesis which can also produce cataracts. Lenses from rats treated with U18666A at a level known to produce cataracts were of smaller size and accumulated total sterol at about one-half the rate of untreated controls. The lens content of phospholipid also lagged behind that of controls. Desmosterol accounted for 50-75% of the total sterol in lens of all treated rats, this paralleled the percent content of desmosterol in liver and serum of these animals. Lenses taken from 20-day-old treated rats and incubated in vitro synthesized little digitonide-precipitable sterol (DPS) from 3H2O as compared to lenses from age-matched controls. The steady state concentration of U18666A in lens was found to be 1-2 X 10(-6) M; this concentration almost completely blocked sterol synthesis in vitro when added to normal lenses. Although U18666A inhibited lens synthesis in vitro of phospholipids from 1,3-[3H]-glycerol and 32Pi, it did so only at levels much higher than those encountered in vivo. Thus, the changes seen in lens phospholipids appear secondary to the decreases in sterols. Since lenses of treated rats synthesized little if any sterol but accumulated sterol at one-half the rate of control lens, we conclude that during early post-natal development of the rat the ocular lens possesses the potential to satisfy about one-half of its sterol requirements from sources outside of the lens, perhaps from lipoproteins in aqueous humor. This conclusion is consistent with our earlier work which indicated that the rat's lens can furnish 50-100% of its total cholesterol by synthesis de novo during the first two weeks of life and less thereafter. The relationship of the inhibition of sterol synthesis to production of the U18666A-induced cataract is discussed.
Collapse
|
17
|
Sarkar CP, Bierkamper GG, Cenedella RJ. Studies on the mechanisms of the epileptiform activity induced by U186661. I Gross alteration of the lipids of synaptosomes and myelin. Epilepsia 1982; 23:243-55. [PMID: 7084136 DOI: 10.1111/j.1528-1157.1982.tb06189.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
U18666A, an inhibitor of desmosterol reductase (a terminal enzyme in cholesterol synthesis), has been found to produce chronic epileptiform activity in laboratory animals. Since desmosterol might substitute for cholesterol in neuronal membranes without detriment, the present study was undertaken to examine the possibility that this drug-induced epilepsy was related to changes in other brain lipids. Chronic treatment of rat with U18666A, beginning at one day of age, resulted in pronounced decreases in the concentration of phospholipids and increases in gangliosides of brain microsomal, synaptosomal, and crude myelin fractions. Since total sterol levels were not changed, the ratio of sterols to phospholipids also increased. If drug treatment was stopped at 4 weeks of age, brain lipids of all subcellular fractions examined returned to normal levels by 8 weeks, and no epileptiform activity was detected. However, following 8 weeks of continuous treatment, epileptiform activity was present, and the changes in brain lipids were focused in the myelin fraction. Phospholipid levels and the sterol:phospholipid ratio of microsomes and synaptosomes, in contrast to myelin, were near normal; however, gangliosides were still clearly elevated in all fractions. A reported ability to induce epileptiform activity in rats by treatment with antiserum to brain gangliosides could indicate a special significance of the altered myelin and synaptic gangliosides to the U18666A-induced epilepsy. We suggest that some epileptiform conditions could be directly related to alterations in the lipid composition of critical neuronal structures.
Collapse
|