1
|
Lin X, Duan X, Jacobs C, Ullmann J, Chan CY, Chen S, Cheng SH, Zhao WN, Poduri A, Wang X, Haggarty SJ, Shi P. High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nat Commun 2018; 9:5142. [PMID: 30510233 PMCID: PMC6277389 DOI: 10.1038/s41467-018-07289-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
Technologies for mapping the spatial and temporal patterns of neural activity have advanced our understanding of brain function in both health and disease. An important application of these technologies is the discovery of next-generation neurotherapeutics for neurological and psychiatric disorders. Here, we describe an in vivo drug screening strategy that combines high-throughput technology to generate large-scale brain activity maps (BAMs) with machine learning for predictive analysis. This platform enables evaluation of compounds’ mechanisms of action and potential therapeutic uses based on information-rich BAMs derived from drug-treated zebrafish larvae. From a screen of clinically used drugs, we found intrinsically coherent drug clusters that are associated with known therapeutic categories. Using BAM-based clusters as a functional classifier, we identify anti-seizure-like drug leads from non-clinical compounds and validate their therapeutic effects in the pentylenetetrazole zebrafish seizure model. Collectively, this study provides a framework to advance the field of systems neuropharmacology. A major goal in neuropharmacology is to develop new tools to effectively test the therapeutic potential of pharmacological agents to treat neurological and psychiatric conditions. Here, authors present an in vivo drug screening system that generates large-scale brain activity maps to be used with machine learning to predict the therapeutic potential of clinically relevant drug leads.
Collapse
Affiliation(s)
- Xudong Lin
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Xin Duan
- Department of Biomedical Science, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Claire Jacobs
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jeremy Ullmann
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chung-Yuen Chan
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Siya Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Shuk-Han Cheng
- Department of Biomedical Science, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Department of Biomedical Science, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China. .,Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China. .,Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| |
Collapse
|
2
|
West PJ, Saunders GW, Billingsley P, Smith MD, White HS, Metcalf CS, Wilcox KS. Recurrent epileptiform discharges in the medial entorhinal cortex of kainate-treated rats are differentially sensitive to antiseizure drugs. Epilepsia 2018; 59:2035-2048. [PMID: 30328622 DOI: 10.1111/epi.14563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Approximately 30% of patients with epilepsy are refractory to existing antiseizure drugs (ASDs). Given that the properties of the central nervous systems of these patients are likely to be altered due to their epilepsy, tissues from rodents that have undergone epileptogenesis might provide a therapeutically relevant disease substrate for identifying compounds capable of attenuating pharmacoresistant seizures. To facilitate the development of such a model, this study describes the effects of classical glutamate receptor antagonists and 20 ASDs on recurrent epileptiform discharges (REDs) in brain slices derived from the kainate-induced status epilepticus model of temporal lobe epilepsy (KA-rats). METHODS Horizontal brain slices containing the medial entorhinal cortex (mEC) were prepared from KA-rats, and REDs were recorded from the superficial layers. 6-cyano-7-nitroquinoxaline-2,3-dione, (2R)-amino-5-phosphonovaleric acid, tetrodotoxin, or ASDs were bath applied for 20 minutes. Concentration-dependent effects and half maximal effective concentration values were determined for RED duration, frequency, and amplitude. RESULTS ASDs targeting sodium and potassium channels (carbamazepine, eslicarbazepine, ezogabine, lamotrigine, lacosamide, phenytoin, and rufinamide) attenuated REDs at concentrations near their average therapeutic plasma concentrations. γ-aminobutyric acid (GABA)ergic synaptic transmission-modulating ASDs (clobazam, midazolam, phenobarbital, stiripentol, tiagabine, and vigabatrin) attenuated REDs only at higher concentrations and, in some cases, prolonged RED durations. ASDs with other/mixed mechanisms of action (bumetanide, ethosuximide, felbamate, gabapentin, levetiracetam, topiramate, and valproate) and glutamate receptor antagonists weakly or incompletely inhibited RED frequency, increased RED duration, or had no significant effects. SIGNIFICANCE Taken together, these data suggest that epileptiform activity recorded from the superficial layers of the mEC in slices obtained from KA-rats is differentially sensitive to existing ASDs. The different sensitivities of REDs to these ASDs may reflect persistent molecular, cellular, and/or network-level changes resulting from disease. These data are expected to serve as a foundation upon which future therapeutics may be differentiated and assessed for potentially translatable efficacy in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah.,Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, Utah.,Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, Utah
| | - Gerald W Saunders
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, Utah
| | - Peggy Billingsley
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, Utah
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah.,Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, Utah.,School of Dentistry, University of Utah, Salt Lake City, Utah
| | - H Steve White
- Department of Pharmacy, University of Washington, Seattle, Washington
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah.,Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, Utah
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah.,Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, Utah.,Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
4
|
Ridler T, Matthews P, Phillips KG, Randall AD, Brown JT. Initiation and slow propagation of epileptiform activity from ventral to dorsal medial entorhinal cortex is constrained by an inhibitory gradient. J Physiol 2018; 596:2251-2266. [PMID: 29604046 DOI: 10.1113/jp275871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS The medial entorhinal cortex (mEC) has an important role in initiation and propagation of seizure activity. Several anatomical relationships exist in neurophysiological properties of mEC neurons; however, in the context of hyperexcitability, previous studies often considered it as a homogeneous structure. Using multi-site extracellular recording techniques, ictal-like activity was observed along the dorso-ventral axis of the mEC in vitro in response to various ictogenic stimuli. This originated predominantly from ventral areas, spreading to dorsal mEC with a surprisingly slow velocity. Modulation of inhibitory tone was capable of changing the slope of ictal initiation, suggesting seizure propagation behaviours are highly dependent on levels of GABAergic function in this region. A distinct disinhibition model also showed, in the absence of inhibition, a prevalence for interictal-like initiation in ventral mEC, reflecting the intrinsic differences in mEC neurons. These findings suggest the ventral mEC is more prone to hyperexcitable discharge than the dorsal mEC, which may be relevant under pathological conditions. ABSTRACT The medial entorhinal cortex (mEC) has an important role in the generation and propagation of seizure activity. The organization of the mEC is such that a number of dorso-ventral relationships exist in neurophysiological properties of neurons. These range from intrinsic and synaptic properties to density of inhibitory connectivity. We examined the influence of these gradients on generation and propagation of epileptiform activity in the mEC. Using a 16-shank silicon probe array to record along the dorso-ventral axis of the mEC in vitro, we found 4-aminopyridine application produces ictal-like activity originating predominantly in ventral areas. This activity spreads to dorsal mEC at a surprisingly slow velocity (138 μm s-1 ), while cross-site interictal-like activity appeared relatively synchronous. We propose that ictal propagation is constrained by differential levels of GABAergic control since increasing (diazepam) or decreasing (Ro19-4603) GABAA receptor activation, respectively, reduced or increased the slope of ictal initiation. The observation that ictal activity is predominately generated in ventral mEC was replicated using a separate 0-Mg2+ model of epileptiform activity in vitro. By using a distinct disinhibition model (co-application of kainate and picrotoxin) we show that additional physiological features (for example intrinsic properties of mEC neurons) still produce a prevalence for interictal-like initiation in ventral mEC. These findings suggest that the ventral mEC is more likely to initiate hyperexcitable discharges than the dorsal mEC, and that seizure propagation is highly dependent on levels of GABAergic expression across the mEC.
Collapse
Affiliation(s)
- Thomas Ridler
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Peter Matthews
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| | | | - Andrew D Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Jonathan T Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| |
Collapse
|
5
|
Hongo Y, Takasu K, Ikegaya Y, Hasegawa M, Sakaguchi G, Ogawa K. Heterogeneous effects of antiepileptic drugs in an in vitro epilepsy model--a functional multineuron calcium imaging study. Eur J Neurosci 2015; 42:1818-29. [PMID: 25967117 DOI: 10.1111/ejn.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023]
Abstract
Epilepsy is a chronic brain disease characterised by recurrent seizures. Many studies of this disease have focused on local neuronal activity, such as local field potentials in the brain. In addition, several recent studies have elucidated the collective behavior of individual neurons in a neuronal network that emits epileptic activity. However, little is known about the effects of antiepileptic drugs on neuronal networks during seizure-like events (SLEs) at single-cell resolution. Using functional multineuron Ca(2+) imaging (fMCI), we monitored the activities of multiple neurons in the rat hippocampal CA1 region on treatment with the proconvulsant bicuculline under Mg(2+) -free conditions. Bicuculline induced recurrent synchronous Ca(2+) influx, and the events were correlated with SLEs. Other proconvulsants, such as 4-aminopyridine, pentetrazol, and pilocarpine, also induced synchronous Ca(2+) influx. We found that the antiepileptic drugs phenytoin, flupirtine, and ethosuximide, which have different mechanisms of action, exerted heterogeneous effects on bicuculline-induced synchronous Ca(2+) influx. Phenytoin and flupirtine significantly decreased the peak, the amount of Ca(2+) influx and the duration of synchronous events in parallel with the duration of SLEs, whereas they did not abolish the synchronous events themselves. Ethosuximide increased the duration of synchronous Ca(2+) influx and SLEs. Furthermore, the magnitude of the inhibitory effect of phenytoin on the peak synchronous Ca(2+) influx level differed according to the peak amplitude of the synchronous event in each individual cell. Evaluation of the collective behavior of individual neurons by fMCI seems to be a powerful tool for elucidating the profiles of antiepileptic drugs.
Collapse
Affiliation(s)
- Yoshie Hongo
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Keiko Takasu
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Center for Information and Neural Networks, Suita City, Osaka, Japan
| | - Minoru Hasegawa
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Gaku Sakaguchi
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Koichi Ogawa
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| |
Collapse
|
6
|
Treven M, Koenig X, Assadpour E, Gantumur E, Meyer C, Hilber K, Boehm S, Kubista H. The anticonvulsant retigabine is a subtype selective modulator of GABAA receptors. Epilepsia 2015; 56:647-57. [PMID: 25779225 PMCID: PMC4949651 DOI: 10.1111/epi.12950] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Within its range of therapeutic plasma concentrations, the anticonvulsant retigabine (ezogabine) is believed to selectively act on Kv7 channels. Here, the contribution of specific γ-aminobutyric acid (GABA)A receptor subtypes to the antiseizure effects of retigabine was investigated. METHODS Using patch-clamp recordings, seizure-like activity, tonic currents, and GABA-induced currents in hippocampal neurons were tested for their sensitivity toward retigabine, as were recombinant GABAA receptors expressed in tsA 201 cells. RESULTS Retigabine reduced seizure-like activity elicited by low Mg(2+) in a concentration-dependent manner with half maximal inhibition at 1 μm. Seizure-like activity triggered by blocking either Kv7 channels or GABAA receptors was equally reduced by retigabine, but when these channels/receptors were blocked simultaneously, the inhibition was lost. Retigabine (10 μm) enhanced bicuculline-sensitive tonic currents in hippocampal neurons, but failed to affect GABA-evoked currents. However, when receptors involved in phasic GABAergic inhibition were blocked by penicillin, retigabine did enhance GABA-evoked currents. In tsA 201 cells expressing various combinations of GABAA receptor subunits, 10 μm retigabine enhanced currents through α1β2δ, α4β2δ, α4β3δ, and α6β2δ receptors, but left currents through α1β2γ2S, α4β3γ2S, α5β3γ2S, and α6β2γ2S receptors unaltered. With αβ receptors, retigabine diminished currents through α1β2 and α4β3, but increased currents through α6β2 receptors. The enhancement of currents through α1β2δ receptors by retigabine was concentration dependent and became significant at 1 μm. SIGNIFICANCE These results demonstrate that retigabine is a subtype selective modulator of GABAA receptors with preference for extrasynaptic δ-containing receptors; this property may contribute to its broad antiepileptic effectiveness and explain its lack of effect on absence seizures.
Collapse
Affiliation(s)
- Marco Treven
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Xaver Koenig
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Elham Assadpour
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Enkhbileg Gantumur
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Christiane Meyer
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Karlheinz Hilber
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Stefan Boehm
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Helmut Kubista
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Wu C, V Gopal K, Lukas TJ, Gross GW, Moore EJ. Pharmacodynamics of potassium channel openers in cultured neuronal networks. Eur J Pharmacol 2014; 732:68-75. [PMID: 24681057 DOI: 10.1016/j.ejphar.2014.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 12/30/2022]
Abstract
A novel class of drugs - potassium (K(+)) channel openers or activators - has recently been shown to cause anticonvulsive and neuroprotective effects by activating hyperpolarizing K(+) currents, and therefore, may show efficacy for treating tinnitus. This study presents measurements of the modulatory effects of four K(+) channel openers on the spontaneous activity and action potential waveforms of neuronal networks. The networks were derived from mouse embryonic auditory cortices and grown on microelectrode arrays. Pentylenetetrazol was used to create hyperactivity states in the neuronal networks as a first approximation for mimicking tinnitus or tinnitus-like activity. We then compared the pharmacodynamics of the four channel activators, retigabine and flupirtine (voltage-gated K(+) channel KV7 activators), NS1619 and isopimaric acid ("big potassium" BK channel activators). The EC50 of retigabine, flupirtine, NS1619, and isopimaric acid were 8.0, 4.0, 5.8, and 7.8µM, respectively. The reduction of hyperactivity compared to the reference activity was significant. The present results highlight the notion of re-purposing the K(+) channel activators for reducing hyperactivity of spontaneously active auditory networks, serving as a platform for these drugs to show efficacy toward target identification, prevention, as well as treatment of tinnitus.
Collapse
Affiliation(s)
- Calvin Wu
- Department of Speech and Hearing Sciences, University of North Texas, Denton, TX 76203, United States; Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States; Center for Network Neuroscience, University of North Texas, Denton, TX 76203, United States.
| | - Kamakshi V Gopal
- Department of Speech and Hearing Sciences, University of North Texas, Denton, TX 76203, United States; Center for Network Neuroscience, University of North Texas, Denton, TX 76203, United States
| | - Thomas J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Guenter W Gross
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States; Center for Network Neuroscience, University of North Texas, Denton, TX 76203, United States
| | - Ernest J Moore
- Department of Speech and Hearing Sciences, University of North Texas, Denton, TX 76203, United States; Center for Network Neuroscience, University of North Texas, Denton, TX 76203, United States; Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
8
|
Hatch RJ, Reid CA, Petrou S. Enhanced in vitro CA1 network activity in a sodium channel β1(C121W) subunit model of genetic epilepsy. Epilepsia 2014; 55:601-8. [PMID: 24605816 DOI: 10.1111/epi.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A NaV β1(C121W) mouse model of human genetic epilepsy has enhanced neuronal excitability and temperature sensitivity attributed to a decreased threshold for action potential firing in the axon initial segment. To investigate the network consequences of this neuronal dysfunction and to establish a genetic disease state model we developed an in vitro assay to investigate CA1 network properties and antiepileptic drug sensitivity. METHODS CA1 network oscillations were induced by tetanic stimulation and average number of spikes, interspike interval (ISI), duration, and latency were measured in slices from control and NaV β1(C121W) heterozygous mice in the presence and absence of retigabine or carbamazepine. Retigabine was also tested in a thermogenic seizure model. RESULTS Oscillations were reliably induced by tetanic stimulation and were maintained after severing connections between CA3 and CA1, suggesting a local recurrent circuit. Blocking α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), γ-aminobutyric acid receptor A (GABAA ), Ih , and T-type Ca(2+) channels/receptors reduced the number of spikes. Slices from NaV β1(C121W) heterozygous mice displayed several hallmarks of increased network excitability including increases in duration of the oscillation, the number and frequency of spikes and a decrease in their onset latency. The effect of genotype on network excitability was temperature sensitive, as it was seen only at elevated temperatures. Carbamazepine and retigabine were more effective in reducing network excitability in slices from NaV β1(C121W) heterozygous mice. Retigabine appeared to be more effective in suppressing time to thermogenic seizures in NaV β1(C121W) heterozygous mice compared to wild-type (WT) controls. SIGNIFICANCE Hippocampal networks of the NaV β1(C121W) heterozygous mouse model of genetic epilepsy show enhanced excitability consistent with earlier single neuron studies bridging important scales of brain complexity relevant to seizure genesis. Altered pharmacosensitivity further suggests that genetic epilepsy models may be useful in the development of novel antiepileptic drugs that target disease state pathology. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Robert J Hatch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
9
|
Boehlen A, Schwake M, Dost R, Kunert A, Fidzinski P, Heinemann U, Gebhardt C. The new KCNQ2 activator 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid displays anticonvulsant potential. Br J Pharmacol 2013; 168:1182-200. [PMID: 23176257 DOI: 10.1111/bph.12065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE KCNQ2-5 channels are voltage-gated potassium channels that regulate neuronal excitability and represent suitable targets for the treatment of hyperexcitability disorders. The effect of Chlor-N-(6-chlor-pyridin-3-yl)-benzamid was tested on KCNQ subtypes for its ability to alter neuronal excitability and for its anticonvulsant potential. EXPERIMENTAL APPROACH The effect of 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid was evaluated using whole-cell voltage-clamp recordings from CHO cells and Xenopus laevis oocytes expressing different types of KCNQ channels. Epileptiform afterdischarges were recorded in fully amygdala-kindled rats in vivo. Neuronal excitability was assessed using field potential and whole cell recording in rat hippocampus in vitro. KEY RESULTS 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid caused a hyperpolarizing shift of the activation curve and a pronounced slowing of deactivation in KCNQ2-mediated currents, whereas KCNQ3/5 heteromers remained unaffected. The effect was also apparent in the Retigabine-insensitive mutant KCNQ2-W236L. In fully amygdala-kindled rats, it elevated the threshold for induction of afterdischarges and reduced seizure severity and duration. In hippocampal CA1 cells, 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid strongly damped neuronal excitability caused by a membrane hyperpolarization and a decrease in membrane resistance and induced an increase of the somatic resonance frequency on the single cell level, whereas synaptic transmission was unaffected. On the network level, 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid caused a significant reduction of γ and θ oscillation peak power, with no significant change in oscillation frequency. CONCLUSION AND IMPLICATIONS Our data indicate that 4-Chlor-N-(6-chlor-pyridin-3-yl)-benzamid is a potent KCNQ activator with a selectivity for KCNQ2 containing channels. It strongly reduces neuronal excitability and displays anticonvulsant activity in vivo.
Collapse
Affiliation(s)
- A Boehlen
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Orhan G, Wuttke TV, Nies AT, Schwab M, Lerche H. Retigabine/Ezogabine, a KCNQ/KV7 channel opener: pharmacological and clinical data. Expert Opin Pharmacother 2012; 13:1807-16. [DOI: 10.1517/14656566.2012.706278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS. The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: Implications for clinical use. Epilepsia 2012; 53:425-36. [DOI: 10.1111/j.1528-1167.2011.03364.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia 2012; 53:412-24. [PMID: 22220513 DOI: 10.1111/j.1528-1167.2011.03365.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pharmacologic profile of retigabine [RTG (international nonproprietary name); ezogabine, EZG (U.S. adopted name)], is different from all currently approved antiepileptic drugs (AEDs). Its primary mechanism of action (MoA) as a positive allosteric modulator of KCNQ2-5 (K(v) 7.2-7.5) ion channels defines RTG/EZG as the first neuronal potassium (K(+)) channel opener for the treatment of epilepsy. KCNQ2-5 channels are predominantly expressed in neurons and are important determinants of cellular excitability, as indicated by the occurrence of human genetic mutations in KCNQ channels that underlie inheritable disorders including, in the case of KCNQ2/3, the syndrome of benign familial neonatal convulsions. In vitro pharmacologic studies demonstrate that the most potent action of RTG/EZG is at KCNQ2-5 channels, particularly heteromeric KCNQ2/3. Furthermore, mutagenesis and modeling studies have pinpointed the RTG/EZG binding site to a hydrophobic pocket near the channel gate, indicating how RTG/EZG can stabilize the open form of KCNQ2-5 channels; the absence of this site in KCNQ1 also provides a clear explanation for the inbuilt selectivity RTG/EZG has for potassium channels other than the KCNQ cardiac channel. KCNQ channels are active at the normal cell resting membrane potential (RMP) and contribute a continual hyperpolarizing influence that stabilizes cellular excitability. The MoA of RTG/EZG increases the number of KCNQ channels that are open at rest and also primes the cell to retort with a larger, more rapid, and more prolonged response to membrane depolarization or increased neuronal excitability. In this way, RTG/EZG amplifies this natural inhibitory force in the brain, acting like a brake to prevent the high levels of neuronal action potential burst firing (epileptiform activity) that may accompany sustained depolarizations associated with the initiation and propagation of seizures. This action to restore physiologic levels of neuronal activity is thought to underlie the efficacy of RTG/EZG as an anticonvulsant in a broad spectrum of preclinical seizure models and in placebo-controlled trials in patients with partial epilepsy. In this article, we consider the pharmacologic characteristics of RTG/EZG at the receptor, cellular, and network levels as a means of understanding the novel and efficacious MoA of this new AED as defined in both preclinical and clinical research.
Collapse
Affiliation(s)
- Martin J Gunthorpe
- New Frontiers Science Park, GlaxoSmithKline plc, Harlow, Essex, United Kingdom.
| | | | | |
Collapse
|
13
|
Motamedi GK, Gonzalez-Sulser A, Dzakpasu R, Vicini S. Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model. Neurotherapeutics 2012; 9:199-209. [PMID: 21913006 PMCID: PMC3271159 DOI: 10.1007/s13311-011-0078-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hypothermia can terminate epileptiform discharges in vitro and in vivo epilepsy models. Hypothermia is becoming a standard treatment for brain injury in infants with perinatal hypoxic ischemic encephalopathy, and it is gaining ground as a potential treatment in patients with drug resistant epilepsy. However, the exact mechanism of action of cooling the brain tissue is unclear. We have studied the 4-aminopyridine model of epilepsy in mice using single- and dual-patch clamp and perforated multi-electrode array recordings from the hippocampus and cortex. Cooling consistently terminated 4-aminopyridine induced epileptiform-like discharges in hippocampal neurons and increased input resistance that was not mimicked by transient receptor potential channel antagonists. Dual-patch clamp recordings showed significant synchrony between distant CA1 and CA3 pyramidal neurons, but less so between the pyramidal neurons and interneurons. In CA1 and CA3 neurons, hypothermia blocked rhythmic action potential discharges and disrupted their synchrony; however, in interneurons, hypothermia blocked rhythmic discharges without abolishing action potentials. In parallel, multi-electrode array recordings showed that synchronized discharges were disrupted by hypothermia, whereas multi-unit activity was unaffected. The differential effect of cooling on transmitting or secreting γ-aminobutyric acid interneurons might disrupt normal network synchrony, aborting the epileptiform discharges. Moreover, the persistence of action potential firing in interneurons would have additional antiepileptic effects through tonic γ-aminobutyric acid release.
Collapse
Affiliation(s)
- Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
14
|
|
15
|
Bi Y, Chen H, Su J, Cao X, Bian X, Wang K. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice. Mol Pain 2011; 7:84. [PMID: 22029713 PMCID: PMC3214183 DOI: 10.1186/1744-8069-7-84] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. RESULTS Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg) mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p.) injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT) mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. CONCLUSIONS Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.
Collapse
Affiliation(s)
- Yeping Bi
- Department of Neurobiology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
16
|
Xu W, Wu Y, Bi Y, Tan L, Gan Y, Wang K. Activation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats. Mol Pain 2010; 6:49. [PMID: 20796319 PMCID: PMC2936374 DOI: 10.1186/1744-8069-6-49] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/27/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Temporomandibular disorders (TMDs) are characterized by persistent orofacial pain and have diverse etiologic factors that are not well understood. It is thought that central sensitization leads to neuronal hyperexcitability and contributes to hyperalgesia and spontaneous pain. Nonsteroidal anti-inflammatory drugs (NSAIDs) are currently the first choice of drug to relieve TMD pain. NSAIDS were shown to exhibit anticonvulsant properties and suppress cortical neuron activities by enhancing neuronal voltage-gated potassium KCNQ/Kv7 channels (M-current), suggesting that specific activation of M-current might be beneficial for TMD pain. RESULTS In this study, we selected a new anticonvulsant drug retigabine that specifically activates M-current, and investigated the effect of retigabine on inflammation of the temporomandibular joint (TMJ) induced by complete Freund's adjuvant (CFA) in rats. The results show that the head withdrawal threshold for escape from mechanical stimulation applied to facial skin over the TMJ in inflamed rats was significantly lower than that in control rats. Administration of centrally acting M-channel opener retigabine (2.5 and 7.5 mg/kg) can dose-dependently raise the head withdrawal threshold of mechanical allodynia, and this analgesic effect can be reversed by the specific KCNQ channel blocker XE991 (3 mg/kg). Food intake is known to be negatively associated with TMJ inflammation. Food intake was increased significantly by the administration of retigabine (2.5 and 7.5 mg/kg), and this effect was reversed by XE991 (3 mg/kg). Furthermore, intracerebralventricular injection of retigabine further confirmed the analgesic effect of central retigabine on inflammatory TMJ. CONCLUSIONS Our findings indicate that central sensitization is involved in inflammatory TMJ pain and pharmacological intervention for controlling central hyperexcitability by activation of neuronal KCNQ/M-channels may have therapeutic potential for TMDs.
Collapse
Affiliation(s)
- Wen Xu
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Randomized, Multicenter, Dose-Ranging Trial of Retigabine for Partial-Onset Seizures. Porter RJ, Partiot A, Sachdeo R, Nohria V, Alves WM; 205 Study Group. Neurology 2007;68(15):1197–1204. OBJECTIVE: To evaluate the efficacy and safety of retigabine 600, 900, and 1,200 mg/day administered three times daily as adjunctive therapy in patients with partial-onset seizures. METHODS: A multicenter, randomized, double-blind, placebo-controlled trial was performed. After an 8-week baseline phase, patients were randomized to a 16-week double-blind treatment period (8-week forced titration and 8-week maintenance) followed by either tapering or entry into an open-label extension study. Primary efficacy was the percentage change from baseline in monthly seizure frequency and compared across treatment arms. Secondary efficacy comparisons included the proportion of patients experiencing 50% reduction in seizure frequency (responder rate), emergence of new seizure types, and physician assessment of global clinical improvement. Safety/tolerability assessments included adverse events (AEs), physical and neurologic examinations, and clinical laboratory evaluations. Efficacy analyses were performed on the intent-to-treat population. RESULTS: Of the 399 randomized patients, 279 (69.9%) completed the double-blind treatment period. The median percent change in monthly total partial seizure frequency from baseline was −23% for 600 mg/day, −29% for 900 mg/day, and −35% for 1,200 mg/day vs −13% for placebo ( p < 0.001 for overall difference across all treatment arms). Responder rates for retigabine were 23% for 600 mg/day, 32% for 900 mg/day ( p = 0.021), and 33% for 1,200 mg/day ( p = 0.016), vs 16% for placebo. The most common treatment-emergent AEs were somnolence, dizziness, confusion, speech disorder, vertigo, tremor, amnesia, abnormal thinking, abnormal gait, paresthesia, and diplopia. CONCLUSION: Adjunctive therapy with retigabine is well tolerated and reduces the frequency of partial-onset seizures in a dose-dependent manner.
Collapse
|
18
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
19
|
Abstract
Modest decreases in extracellular osmolarity induce brain hyperexcitability that may culminate in epileptic seizures. At the cellular level, moderate hyposmolarity markedly potentiates the intrinsic neuronal excitability of principal cortical neurons without significantly affecting their volume. The most conspicuous cellular effect of hyposmolarity is converting regular firing neurons to burst-firing mode. This effect is underlain by hyposmotic facilitation of the spike afterdepolarization (ADP), but its ionic mechanism is unknown. Because blockers of K(V)7 (KCNQ) channels underlying neuronal M-type K(+) currents (K(V)7/M channels) also cause spike ADP facilitation and bursting, we hypothesized that lowering osmolarity inhibits these channels. Using current- and voltage-clamp recordings in CA1 pyramidal cells in situ, we have confirmed this hypothesis. Furthermore, we show that hyposmotic inhibition of K(V)7/M channels is mediated by an increase in intracellular Ca(2+) concentration via release from internal stores but not via influx of extracellular Ca(2+). Finally, we show that interfering with internal Ca(2+)-mediated inhibition of K(V)7/M channels entirely protects against hyposmotic ADP facilitation and bursting, indicating the exclusivity of this novel mechanism in producing intrinsic neuronal hyperexcitability in hyposmotic conditions.
Collapse
|
20
|
Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 379:163-79. [DOI: 10.1007/s00210-008-0349-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
21
|
|
22
|
Mazarati A, Wu J, Shin D, Kwon YS, Sankar R. Antiepileptogenic and antiictogenic effects of retigabine under conditions of rapid kindling: an ontogenic study. Epilepsia 2008; 49:1777-86. [PMID: 18503560 DOI: 10.1111/j.1528-1167.2008.01674.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To examine antiepileptogenic and antiictogenic potential of retigabine (RTG) under conditions of rapid kindling epileptogenesis during different stages of development. METHODS The experiments were performed in postnatal day 14 (P14), P21, and P35 male Wistar rats. After stereotaxic implantation of hippocampal stimulating and recording electrodes, the effects of RTG on baseline afterdischarge (AD) properties were studied. Next, the animals underwent rapid kindling (sixty 10 s trains, bipolar 20 Hz square wave pulses delivered every 5 min). The progression of seizures (kindling acquisition), and responses to test stimulations after kindling (retention) were compared between RTG and vehicle-treated rats. Additionally, the effects of RTG on the severity of seizures in previously kindled animals were examined. RESULTS When administered intraperitoneally in doses that induced only mild, or no motor deficits, RTG significantly dampened brain excitability, evident as the increase of AD threshold and shortening of AD duration. During kindling, RTG delayed the development of focal seizures in P14 rats, and prevented the occurrence of full limbic seizures at all three ages. At P14 and P21, but not at P35, pretreatment with RTG prevented the establishment of kindling-induced enhanced seizure susceptibility. Administration of RTG to kindled animals decreased the severity of seizures induced by test stimulation. The effect was most prominent at P14. DISCUSSION RTG exerted both antiepileptogenic and antiictogenic effects under conditions of rapid kindling model. These effects were apparent during postneonatal, early childhood, and adolescent stages of development.
Collapse
Affiliation(s)
- Andréy Mazarati
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752, USA.
| | | | | | | | | |
Collapse
|
23
|
Jow F, Shen R, Chanda P, Tseng E, Zhang H, Kennedy J, Dunlop J, Bowlby MR. Validation of a medium-throughput electrophysiological assay for KCNQ2/3 channel enhancers using IonWorks HT. ACTA ACUST UNITED AC 2008; 12:1059-67. [PMID: 18087070 DOI: 10.1177/1087057107307448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enhancers of KCNQ channels are known to be effective in chronic pain models. To discover novel enhancers of KCNQ channels, the authors developed a medium-throughput electrophysiological assay by using the IonWorks platform. Screening of 20 CHO-K1 clones stably expressing KCNQ2/3 was performed on the IonWorks HT until the best clone (judged from seal rate, current level, and stability) was obtained. The KCNQ2/3 current amplitude in the cells was found to increase from 60 +/- 15 pA to 473 +/- 80 pA (at -10 mV), and the expression rate was increased by 56% when the cells were incubated at 27 degrees C overnight. The clone used for compound screening had a seal rate of greater than 90% and an overall success rate of greater than 70%. The voltage step protocol (hold cells at -80 mV and depolarize to -10 mV for 1 s) was designed to provide moderate current but still allow for pharmacological current enhancement. EC(50)s were generated from 8-point concentration-response curves with a control compound on each plate using compounds that were also tested with conventional patch clamp. The authors found that there was a very good correlation (R(2) > 0.9) between the 2 assays, thus demonstrating the highly predictive nature of the IonWorks assay.
Collapse
Affiliation(s)
- Flora Jow
- Discovery Neuroscience, Wyeth Research, Princeton, New Jersey 08543-8000, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Qiu C, Zeyda T, Johnson B, Hochgeschwender U, de Lecea L, Tallent MK. Somatostatin receptor subtype 4 couples to the M-current to regulate seizures. J Neurosci 2008; 28:3567-76. [PMID: 18385315 PMCID: PMC6671094 DOI: 10.1523/jneurosci.4679-07.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/18/2008] [Accepted: 02/22/2008] [Indexed: 11/21/2022] Open
Abstract
The K(+) M-current (I(M), Kv7) is an important regulator of cortical excitability, and mutations in these channels cause a seizure disorder in humans. The neuropeptide somatostatin (SST), which has antiepileptic properties, augments I(M) in hippocampal CA1 pyramidal neurons. We used SST receptor knock-out mice and subtype-selective ligands to investigate the receptor subtype that couples to I(M) and mediates the antiepileptic effects of SST. Using pentylenetetrazole as a chemoconvulsant, SST(2), SST(3), and SST(4) receptor knock-out mice all had shorter latencies to different seizure stages and increased seizure severity when compared with wild-type mice. However, the most robust differences were observed in the SST(4) knock-outs. When seizures were induced by systemic injection of kainate, only SST(4) knock-outs showed an increase in seizure sensitivity. We next examined the action of SST and subtype-selective SST agonists on electrophysiological parameters in hippocampal slices of wild-type and receptor knock-out mice. SST(2) and SST(4) appear to mediate the majority of SST inhibition of epileptiform activity in CA1. SST lacked presynaptic effects in mouse CA1, in contrast to our previous findings in rat. SST increased I(M) in CA1 pyramidal neurons of wild-type and SST(2) knock-out mice, but not SST(4) knock-out mice. Using M-channel blockers, we found that SST(4) coupling to M-channels is critical to its inhibition of epileptiform activity. This is the first demonstration of an endogenous enhancer of I(M) that is important in controlling seizure activity. SST(4) receptors could therefore be an important novel target for developing new antiepileptic and antiepileptogenic drugs.
Collapse
Affiliation(s)
- Cuie Qiu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19348
| | - Thomas Zeyda
- John A. Burns School of Medicine, Honolulu, Hawaii 96813
| | - Brian Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19348
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California 94304
| | - Melanie K. Tallent
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19348
| |
Collapse
|
25
|
Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res 2008; 79:6-13. [PMID: 18262393 DOI: 10.1016/j.eplepsyres.2007.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/24/2022]
Abstract
Disruptions in GABAergic neurotransmission have been implicated in numerous CNS disorders, including epilepsy and neuropathic pain. Selective inhibition of neuronal and glial GABA transporter subtypes may offer unique therapeutic options for regaining balance between inhibitory and excitatory systems. The ability of two GABA transport inhibitors to modulate inhibitory tone via inhibition of mGAT1 (tiagabine) or mGAT2/BGT-1 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), also known as EF1502) was evaluated using an in vitro model of spontaneous interictal-like bursting (SB). SBs were recorded extracellularly in combined mEC-HC horizontal brain slices (400 microm; 31+/-1 degrees C) obtained from KA-treated rats. Slice recordings demonstrated that EF1502 exhibited a concentration-dependent reduction in SB frequency. EF1502 significantly reduced SB rate to 32% of control at the 30 microM concentration, while reducing the area and duration of SB activity to 60% and 46% of control, respectively, at the 10 microM concentration. In contrast, the GAT1 selective inhibitor tiagabine (3, 10, and 30 microM) was unable to significantly reduce the frequency of SB activity in the mEC, despite significantly reducing both the duration (51% of control) and area (58% of control) of the SB at concentrations as low as 3 microM. The ability of EF1502, but not tiagabine, to inhibit SBs in the mEC suggests that this in vitro model of pharmacoresistant SB activity is useful to differentiate between novel anticonvulsants with similar mechanisms of action and suggests a therapeutic potential for non-GAT1 transport inhibitors.
Collapse
|
26
|
Qiu C, Johnson BN, Tallent MK. K+ M-current regulates the transition to seizures in immature and adult hippocampus. Epilepsia 2007; 48:2047-58. [PMID: 17651418 DOI: 10.1111/j.1528-1167.2007.01193.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Loss-of-function mutations in Kv7.2 or Kv7.3 K(+) channel subunits underlies the neonatal epilepsy benign familial neonatal convulsions (BFNC). These two subunits interact to form a functional K(+) channel that underlies the M-current (I(M)), a voltage-dependent noninactivating K(+) current. In BFNC, seizures begin shortly after birth, and spontaneously remit in the first few months of life. The nature of this window of vulnerability is unclear. We address this issue using a hippocampal slice model, to study the effects of I(M) blockade or augmentation on epileptiform activity. METHODS We used the Mg(+)(+)-free seizure model in adult and immature (P8-P15) acute rat hippocampal slices. We recorded from both CA1 and CA3 regions using extracellular and intracellular methods. RESULTS When M-channels are blocked pharmacologically, the transition from interictal to ictal bursting becomes much more likely, especially in immature brain. We also show augmentation of I(M) is effective in stopping ictal events in immature brain, at the developmental age that approximates a human newborn in cortical development. I(M) appears to counter the sustained N-methyl-D-aspartate (NMDA) receptor-mediated depolarizations needed to trigger an ictal event. The increased likelihood of ictal bursting by I(M) blockade is not shared by other selective K(+) channel blockers that increase hippocampal excitability. CONCLUSIONS Voltage-dependent M-channels are activated during interictal bursts and contribute to burst termination. When these channels are compromised, interictal burst duration becomes sufficient to trigger the sustained depolarizations that underlie ictal bursts. This transition to ictal bursts upon I(M) blockade is especially likely to occur in immature hippocampus. This selective function of M-channels likely contributes to the transient window of vulnerability to seizures that occurs with BFNC.
Collapse
Affiliation(s)
- Cuie Qiu
- Drexel University College of Medicine, 245 15th Street, Philadelphia, PA 19348, U.S.A
| | | | | |
Collapse
|
27
|
Smith MD, Adams AC, Saunders GW, White HS, Wilcox KS. Phenytoin- and carbamazepine-resistant spontaneous bursting in rat entorhinal cortex is blocked by retigabine in vitro. Epilepsy Res 2007; 74:97-106. [PMID: 17395429 DOI: 10.1016/j.eplepsyres.2007.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 12/20/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Hyperexcitability in the medial entorhinal cortex-hippocampal (mEC-HC) circuit in the initial weeks after prolonged seizure activity may contribute to the epileptogenic process in animal models of temporal lobe epilepsy (TLE). The present study examined combined mEC-HC slices (400 microm) using field potential recordings 1-2 weeks following the multiple administration, low-dose kainic acid (KA) model of TLE [Hellier, J.L., Patrylo, P.R., Buckmaster, P.S., Dudek, F.E., 1998. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31, 73-84]. Field potential recordings in slices from KA-treated rats demonstrated hallmarks of hyperexcitability in the mEC and in the CA1 and CA3 cell body regions of the HC. Spontaneous burst (SB) activity was observed under baseline recording conditions in the mEC of several slices from KA-treated rats, but not in the slices from saline-treated control rats. Elevating ACSF [K(+)](o) (6mM) in the presence of picrotoxin (50 microM) increased SB rates in all slices tested. However, there was a significantly shorter latency to onset of bursting and prolonged evoked response durations in layer II of the mEC of slices from KA-treated rats versus those from controls. Neither carbamazepine (CBZ) nor phenytoin (PHT) abolished SB activity in slices from KA-treated rats; whereas, SB activity in slices from control rats was dose-dependently reduced at 100 microM CBZ. In contrast, the novel anticonvulsant retigabine (RGB) dramatically reduced SB frequency in both control and KA-treated groups. The hyperexcitability observed in combined mEC-HC brain slices from KA-treated rats suggests that the mEC, as well as the HC, may contribute to the epileptogenic process after KA-induced seizure activity. This model may provide an efficient, flexible in vitro paradigm for differentiating novel AEDs in a model of pharmacoresistant bursting.
Collapse
Affiliation(s)
- Misty D Smith
- Anticonvulsant Drug Development Program, University of Utah, Department of Pharmacology & Toxicology, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Retigabine is a novel antiseizure drug that acts through potassium channels and has activity in a broad range of animal models of epilepsy. It is also effective in several preclinical pain models. The drug has been extensively studied in phase I and II studies, with very promising results. The maximal tolerated dose for most patients is 1,200 mg/day. Adverse effects have been largely CNS-related and mild; most have occurred during the titration periods in the various studies. At present, retigabine is in two pivotal phase III studies.
Collapse
Affiliation(s)
- Roger J Porter
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
29
|
Wuttke TV, Lerche H. Novel anticonvulsant drugs targeting voltage-dependent ion channels. Expert Opin Investig Drugs 2006; 15:1167-77. [PMID: 16989594 DOI: 10.1517/13543784.15.10.1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epilepsy is one of the most common neurological disorders with a prevalence of 0.5-1%. About two-thirds of epilepsy patients respond well to anticonvulsant pharmacotherapy and become seizure free. There is a third who remain pharmacoresistant, demonstrating the pressing need for novel treatment options that could be drugs with a different mechanism of action compared with those that are currently in clinical use. During the past, many new substances have been screened for blocking or activating effects on specific ion channels, particularly those that are not targets for currently used antiepileptic drugs. This review provides an overview of new anticonvulsant compounds targeting voltage-dependent ion channels.
Collapse
Affiliation(s)
- Thomas V Wuttke
- University of Ulm, Department of Neurology, Zentrum Klinische Forschung, Helmholtzstrasse 8/1, D-89081 Ulm, Germany
| | | |
Collapse
|
30
|
Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WRS, Ortinski PI, Vicini S, Rogawski MA. Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 2006; 70:200-10. [PMID: 16815680 DOI: 10.1016/j.eplepsyres.2006.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 04/12/2006] [Accepted: 05/01/2006] [Indexed: 11/17/2022]
Abstract
Cooling has been shown to terminate experimentally induced epileptiform activity in models of epilepsy without causing injury to the cooled brain, suggesting that cooling could represent an approach to seizure control in intractable focal epilepsies. Here we sought to determine the most effective way to apply cooling to abort spontaneous epileptiform discharges in in vitro brain slice models. We induced spontaneous epileptiform activity in rat brain slices by exposure to 4-aminopyridine (4-AP), 4-AP plus bicuculline, and Mg(2+)-free artificial CSF (aCSF) at 28-34 degrees C. Extracellular field recordings were made at hippocampal or neocortical sites. Slice temperature was reduced by perfusion with cold aCSF. Rapid cooling at rates of 2-5 degrees C/s was compared to cooling at slower rates of 0.1-1 degrees C/s. Cooling at both rates reversibly aborted epileptiform discharges in all three models and at all recording sites. With rapid cooling, small temperature drops were highly effective in terminating discharges, an effect that was sustained for as long as the reduced temperature level was maintained. In contrast, slow cooling required much larger temperature drops to inhibit discharges. With slow cooling, absolute temperature drops to 21-22 degrees C caused a 90% reduction in event frequency, but cooling to 14-15 degrees C was required to terminate discharges. We conclude that rapid cooling as effectively aborts discharges in in vitro epilepsy models as does slow cooling, but the magnitude of the temperature change required is less. Practical devices to inhibit seizure activity may only need to induce small temperature drops, if the cooling can be applied sufficiently rapidly.
Collapse
Affiliation(s)
- Gholam K Motamedi
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-3702, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Piccinin S, Randall AD, Brown JT. KCNQ/Kv7 channel regulation of hippocampal gamma-frequency firing in the absence of synaptic transmission. J Neurophysiol 2006; 95:3105-12. [PMID: 16467425 DOI: 10.1152/jn.01083.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synchronous neuronal firing can be induced in hippocampal slices in the absence of synaptic transmission by lowering extracellular Ca2+ and raising extracellular K+. However, the ionic mechanisms underlying this nonsynaptic synchronous firing are not well understood. In this study we have investigated the role of KCNQ/Kv7 channels in regulating this form of nonsynaptic bursting activity. Incubation of rat hippocampal slices in reduced (<0.2 mM) [Ca2+]o and increased (6.3 mM) [K+]o, blocked synaptic transmission, increased neuronal firing, and led to the development of spontaneous periodic nonsynaptic epileptiform activity. This activity was recorded extracellularly as large (4.7 +/- 1.9 mV) depolarizing envelopes with superimposed high-frequency synchronous population spikes. These intraburst population spikes initially occurred at a high frequency (about 120 Hz), which decayed throughout the burst stabilizing in the gamma-frequency band (30-80 Hz). Further increasing [K+]o resulted in an increase in the interburst frequency without altering the intraburst population spike frequency. Application of retigabine (10 microM), a Kv7 channel modulator, completely abolished the bursts, in an XE-991-sensitive manner. Furthermore, application of the Kv7 channel blockers, linopirdine (10 microM) or XE-991 (10 microM) alone, abolished the gamma frequency, but not the higher-frequency population spike firing observed during low Ca2+/high K+ bursts. These data suggest that Kv7 channels are likely to play a role in the regulation of synchronous population firing activity.
Collapse
Affiliation(s)
- S Piccinin
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol School of Medical Sciences, Bristol, UK
| | | | | |
Collapse
|
32
|
Hermann R, Borlak J, Munzel U, Niebch G, Fuhr U, Maus J, Erb K. The role of Gilbert's syndrome and frequent NAT2 slow acetylation polymorphisms in the pharmacokinetics of retigabine. THE PHARMACOGENOMICS JOURNAL 2006; 6:211-9. [PMID: 16402080 DOI: 10.1038/sj.tpj.6500359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retigabine (RGB) is an investigational antiepileptic drug, which undergoes extensive UGT1A1, 1A9 and 1A4-mediated N-glucuronidation and N-acetylation. The mono-acetylated metabolite of RGB has some pharmacological activity and is denoted AWD21-360. We investigated whether the pharmacokinetics (PK) of RGB and AWD21-360 are altered in subjects with Gilbert's syndrome (GS) and/or with frequent N-acetyltransferase 2 (NAT2) slow acetylator (SA) polymorphisms. Based on consistent genotyping and phenotyping screening results, 37 Caucasian subjects (21-46 years; 31 men, six women) were assigned to one of the following groups: (1) absence of GS (non-GS)/rapid acetylator (RA) (N=11); (2) GS/RA (N=8); (3) non-GS/SA (N=11); (4) GS/SA (N=7). Subjects received single and multiple (b.i.d.) 200-mg oral RGB doses over 5 days. Blood samples were collected up to 60 h after dosing for plasma PK of RGB and AWD21-360. Group comparisons were performed by ANOVA. Single-dose PK of RGB and AWD21-360 and multiple-dose PK of RGB did not differ significantly between groups. After multiple dose treatment, RA subjects showed a significantly higher total exposure to AWD21-360 of about 32% (95% CI 101.9-172.5) relative to SA subjects (P=0.0362). The UGT1A1 metabolic capacity (i.e. presence or absence of GS), however, did not significantly affect the overall exposure to AWD21-360. The results indicate that the PK of RGB is unaltered in individuals with GS, in subjects with NAT2 SA status, and in carriers of both variants, whereas the total exposure to AWD21-360 is significantly related to the RA or SA status of subjects. Results further suggest that metabolic switching to the mono-acetylated metabolite AWD21-360 may partially compensate for the impaired glucuronidation capacity in GS subjects. RGB treatment showed no significant differences in tolerability and safety between groups.
Collapse
Affiliation(s)
- R Hermann
- Department of Clinical Pharmacology, ALTANA Pharma AG, Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Arias RL, Bowlby MR. Pharmacological characterization of antiepileptic drugs and experimental analgesics on low magnesium-induced hyperexcitability in rat hippocampal slices. Brain Res 2005; 1047:233-44. [PMID: 15907811 DOI: 10.1016/j.brainres.2005.04.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/18/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
Perfusion of acute hippocampal slices with stimulatory buffers has long been known to induce rhythmic, large amplitude, synchronized spontaneous neuronal bursting in areas CA1 and CA3. The characteristics of this model of neuronal hyperexcitability were investigated in this study, particularly with respect to the activity of antiepileptic drugs and compounds representing novel mechanisms of analgesic action. Toward that end, low Mg(2+)/high K(+)-induced spontaneous activity was quantified by a virtual instrument designed for the digitization and analysis of bursting activity. Uninterrupted streams of extracellular field potentials were digitized and analyzed in 10-s sweeps, yielding four quantified parameters of neuronal hyperexcitability. Following characterization of the temporal stability of low Mg(2+)/high K(+)-induced hyperexcitability, compounds representing a diversity of functional mechanisms were tested for their effectiveness in reversing this activity. Of the four antiepileptic drugs tested in this model, only phenytoin proved ineffective, while valproate, gabapentin and carbamazepine varied in their potencies, with only the latter drug proving to be completely efficacious. In addition, three investigational compounds having analgesic potential were examined: ZD-7288, a blocker of HCN channels; EAA-090, an NMDA antagonist; and WAY-132983, a muscarinic agonist. Each of these compounds showed strong efficacy by completely blocking spontaneous bursting activity, along with potency greater than that of the antiepileptic drugs. These data indicate that pharmacological agents with varying mechanisms of action are able to block low Mg(2+)/high K(+)-induced hyperexcitability, and thus this model may represent a useful tool for identifying novel agents and mechanisms involved in epilepsy and neuropathic pain.
Collapse
Affiliation(s)
- Robert L Arias
- Discovery Neuroscience, Wyeth Research, CN8000 Room 1513, Princeton, NJ 08543-8000, USA.
| | | |
Collapse
|
34
|
Abstract
Since 1993, nine new antiepileptic drugs (AEDs) have been introduced into the U.S. market for the symptomatic treatment of partial epilepsy. Their antiepileptic activity was, for the most part, defined by acute seizure models such as the maximal electroshock (MES) and subcutaneous pentylenetetrazol (scPTZ) seizure tests and the kindled rat. Unfortunately, the clinical evidence to date would suggest that none of these models, albeit useful, are likely to identify those therapeutics that will effectively manage the patient with refractory seizures. In recent years, a number of in vivo and in vitro models have been developed that display varying degrees of pharmacoresistance. As such, they may provide a unique opportunity for identifying the truly novel AED. Through a greater understanding of the pathophysiology of acquired epilepsy at the molecular and genetic level, it may be possible to identify a new therapeutic approach that reaches beyond the symptomatic treatment of epilepsy to modify the progression, or, dare we suggest, prevent the development of epilepsy in the susceptible patient. The realization of such a possibility will necessitate a change in our current AED discovery approach. The present review describes the current approach used in the search for new AEDs and offers some insight into future directions incorporating new and emerging models of therapy resistance and epileptogenesis.
Collapse
Affiliation(s)
- H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
35
|
Ferron GM, Patat A, Parks V, Rolan P, Troy SM. Lack of pharmacokinetic interaction between retigabine and phenobarbitone at steady-state in healthy subjects. Br J Clin Pharmacol 2003; 56:39-45. [PMID: 12848774 PMCID: PMC1884339 DOI: 10.1046/j.1365-2125.2003.01825.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIMS To evaluate potential pharmacokinetic interactions between phenobarbitone and retigabine, a new antiepileptic drug. METHODS Fifteen healthy men received 200 mg of retigabine on day 1. On days 4-32, phenobarbitone 90 mg was administered at 22.00 h. On days 26-32, increasing doses of retigabine were given to achieve a final dose of 200 mg every 8 h on day 32. The pharmacokinetics of retigabine were determined on days 1 and 32, and those for phenobarbitone on days 25 and 31. RESULTS After administration of a single 200 mg dose, retigabine was rapidly absorbed and eliminated with a mean terminal half-life of 6.7 h, a mean AUC of 3936 ng x ml(-1) x h and a mean apparent clearance of 0.76 l x h(-1) x kg(-1). Similar exposure to the partially active acetylated metabolite (AWD21-360) of retigabine was observed. After administration of phenobarbitone dosed to steady-state, the pharmacokinetics of retigabine at steady-state were similar (AUC of 4433 ng x ml(-1) x h and t1/2 of 8.5 h) to those of retigabine alone. The AUC of phenobarbitone was 298 mg x l(-1) x h when administered alone and 311 mg x ml(-1) x h after retigabine administration. The geometric mean ratios and 90% confidence intervals of the AUC were 1.11 (0.97, 1.28) for retigabine, 1.01 (0.88, 1.06) for AWD21-360 and 1.04 (0.96, 1.11) for phenobarbitone. Individual and combined treatments were generally well tolerated. One subject was withdrawn from the study on day 10 due to severe abdominal pain. Headache was the most commonly reported adverse event. No clinically relevant changes were observed in the electrocardiograms, vital signs or laboratory measurements. CONCLUSIONS There was no pharmacokinetic interaction between retigabine and phenobarbitone in healthy subjects. No dosage adjustment is likely to be necessary when retigabine and phenobarbitone are coadministered to patients.
Collapse
Affiliation(s)
- Geraldine M Ferron
- Clinical Pharmacology Department, Wyeth Research, Collegeville, PA 19010, USA
| | | | | | | | | |
Collapse
|
36
|
Naish HJ, Marsh WL, Davies JA. Effect of low-affinity NMDA receptor antagonists on electrical activity in mouse cortical slices. Eur J Pharmacol 2002; 443:79-83. [PMID: 12044795 DOI: 10.1016/s0014-2999(02)01579-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate the effects of three low-affinity NMDA receptor antagonists, MRZ 2/279 (1-amino-1,3,3,5,5-pentamethyl-cyclohexane HCl), AR-R 15896AR ([+]-alpha-phenyl-2-pyridine-ethanamine diHCl) and dextromethorphan on epileptiform activity in vitro. Epileptiform discharges were elicited in DBA/2 mouse cortical slices by perfusion with Mg(2+)-free artificial cerebrospinal fluid. MRZ 2/279, AR-R 15896AR and dextromethorphan all reversibly decreased the frequency of the discharges in a concentration-dependent manner. The IC(50)'s for MRZ 2/279, AR-R 15896AR and dextromethorphan were 5.2, 10.8 and 55.9 microM, respectively. These low-affinity NMDA receptor antagonists may be proved to be clinically effective with fewer adverse effects than drugs with high-affinity for the NMDA receptor-operated channel.
Collapse
Affiliation(s)
- Hywel J Naish
- Department of Pharmacology, Therapeutics and Toxicology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | |
Collapse
|
37
|
|
38
|
Straub H, Köhling R, Höhling J, Rundfeldt C, Tuxhorn I, Ebner A, Wolf P, Pannek H, Speckmann E. Effects of retigabine on rhythmic synchronous activity of human neocortical slices. Epilepsy Res 2001; 44:155-65. [PMID: 11325571 DOI: 10.1016/s0920-1211(01)00193-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antiepileptic effects of the novel antiepileptic drug retigabine (D-23129) [N-(2-amino-4-(4-flurobenzylamino)phenyl) carbamid acid ethyl ester] were tested in neocortical slice preparations (n=23) from 17 patients (age, 3-42 years) who underwent surgery for the treatment of intractable epilepsy. Epileptiform events consisted of spontaneously occurring rhythmic sharp waves, as well as of epileptiform field potentials (EFP) elicited by superfusion with Mg(2+)-free solution without or with addition of 10 micromol/l bicuculline. (1) Spontaneous rhythmic sharp waves (n=6), with retigabine application, the repetition rate was decreased down to 12-47% of initial value (10 micromol/l, n=3) after 180 min or suppressed completely within 12 min (50 micromol/l, n=3). (2) Low Mg(2+) EFP (n=9), with retigabine application, the repetition rate was decreased down to 50 and 65% of initial value (10 micromol/l; n=2) after 180 min or suppressed completely after 9-55 min (10, 50 and 100 micromol/l; n=2 in each case). In one slice only a transient reduction of the repetition rate was seen with 10 micromol/l retigabine. (3) Low Mg(2+) EFP with addition of bicuculline (n=8), with retigabine application, the repetition rate was decreased down to 12-55% of initial value (10 micromol/l; n=4) after 180 min or suppressed completely after 6-30 min (50 and 100 micromol/l; n=2 in each case). The depressive effect of retigabine was reversible in all but one slice. The results show a clear antiepileptic effect of retigabine in human neocortical slices on spontaneously occurring rhythmic sharp waves and different types of induced seizure activity.
Collapse
Affiliation(s)
- H Straub
- Institut für Physiologie, Universität Münster, Robert-Koch-Str. 27a, D-48149, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 2001; 43:11-58. [PMID: 11137386 DOI: 10.1016/s0920-1211(00)00171-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Fifth Eilat Conference on New Antiepileptic Drugs (AEDs) took place at the Dan Hotel, Eilat, Israel, 25-29 June 2000. Basic scientists, clinical pharmacologists and neurologists from 20 countries attended the conference, whose main themes included recognition of unexpected adverse effects, new indications of AEDs, and patient-tailored AED therapy. According to tradition, the central part of the conference was devoted to a review of AEDs in development, as well to updates on AEDs that have been marketed in recent years. This article summarizes the information presented on drugs in preclinical and clinical development, including AWD 131-138, DP-valproate, harkoseride, LY300164, NPS 1776, NW 1015, pregabalin, remacemide, retigabine, rufinamide and valrocemide. The potential value of an innovative strategy, porcine embryonic GABAergic cell transplants, is also discussed. Finally, updates on felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, vigabatrin, zonisamide, and the antiepileptic vagal stimulator device are presented.
Collapse
Affiliation(s)
- M Bialer
- School of Pharmacy and David R. Bloom Centre for Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
40
|
Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 2000; 23:393-8. [PMID: 10941184 DOI: 10.1016/s0166-2236(00)01629-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1998, the discovery of two novel genes KCNQ2 and KCNQ3, mutated in a rare inherited form of epilepsy known as benign familial neonatal convulsions, for the first time enabled insight into the molecular etiology of a human idiopathic generalized epilepsy syndrome. These disease genes encode subunits of neuronal M-type K+ channels, key regulators of brain excitability. Analogies between benign familial neonatal convulsions and other channelopathies of skeletal and cardiac muscle, including periodic paralysis, myotonia and the long QT syndrome, provide clues about the nature of epilepsy-susceptibility genes and about the fundamental basis of epilepsy as an episodic disorder. It now appears that the KCNQ2/KCNQ3 K+ channels that are mutated in benign familial neonatal convulsions represent an important new target for anti-epileptic drugs. In the future, the identification of ion channel defects as predisposing factors in the common epilepsies could herald a new era of genotype-specific therapies.
Collapse
Affiliation(s)
- M A Rogawski
- Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1408, USA
| |
Collapse
|
41
|
Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 2000; 282:73-6. [PMID: 10713399 DOI: 10.1016/s0304-3940(00)00866-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retigabine (D-23129) is a novel antiepileptic compound with broad spectrum and potent anticonvulsant properties, both in vitro and in vivo. The compound was shown to activate a K(+) current in neuronal cells. The pharmacology of the induced current displays concordance with the published pharmacology of the M-channel, which recently was correlated to the KCNQ2/3 K(+) channel heteromultimere. We examined the effect of retigabine on KCNQ2/3 expressed in Chinese hamster ovary cells. The compound concentration-dependently activated a K(+) current in transfected cells clamped at -50 mV. The activation was induced by a shift of the opening threshold to more negative potentials. The effect was not mediated by an interaction with the cAMP modulatory site and could be partially blocked by the M-channel antagonist linopirdine. The data display that retigabine is the first described M-channel agonist and support the hypothesis that M-channel agonism is a new mode of action for anticonvulsant drugs. Since the function of this channel is reduced in a hereditary epilepsy syndrome, retigabine may be the first anticonvulsant to directly target the deficit observed in a channelopathy.
Collapse
Affiliation(s)
- C Rundfeldt
- Department of Pharmacology, Arzneimittelwerk Dresden GmbH, Corporate R&D, ASTA Medica Group, Meibetaner Strasse 35, D-01445, Radebeul, Germany.
| | | |
Collapse
|