1
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
2
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
3
|
Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol 2020; 325:113154. [PMID: 31837318 PMCID: PMC7105293 DOI: 10.1016/j.expneurol.2019.113154] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge, Institut Català d'Oncologia L'Hospitalet, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University Milano Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Aina Calls-Cobos
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
4
|
Xu Y, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated SNPs in case-control genome-wide association studies. Sci Rep 2019; 9:13686. [PMID: 31548641 PMCID: PMC6757104 DOI: 10.1038/s41598-019-50229-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWASs) aim to detect genetic risk factors for complex human diseases by identifying disease-associated single-nucleotide polymorphisms (SNPs). The traditional SNP-wise approach along with multiple testing adjustment is over-conservative and lack of power in many GWASs. In this article, we proposed a model-based clustering method that transforms the challenging high-dimension-small-sample-size problem to low-dimension-large-sample-size problem and borrows information across SNPs by grouping SNPs into three clusters. We pre-specify the patterns of clusters by minor allele frequencies of SNPs between cases and controls, and enforce the patterns with prior distributions. In the simulation studies our proposed novel model outperforms traditional SNP-wise approach by showing better controls of false discovery rate (FDR) and higher sensitivity. We re-analyzed two real studies to identifying SNPs associated with severe bortezomib-induced peripheral neuropathy (BiPN) in patients with multiple myeloma (MM). The original analysis in the literature failed to identify SNPs after FDR adjustment. Our proposed method not only detected the reported SNPs after FDR adjustment but also discovered a novel BiPN-associated SNP rs4351714 that has been reported to be related to MM in another study.
Collapse
Affiliation(s)
- Yan Xu
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jessica Su
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xuekui Zhang
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Velasco R, Santos C, Soler G, Gil-Gil M, Pernas S, Galan M, Palmero R, Bruna J. Serum micronutrients and prealbumin during development and recovery of chemotherapy-induced peripheral neuropathy. J Peripher Nerv Syst 2018; 21:134-41. [PMID: 27282616 DOI: 10.1111/jns.12177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent adverse event. Nutritional status can become impaired in cancer patients, potentially contributing to neuropathy's evolution. Our aim was to evaluate serum micronutrients and prealbumin in a cohort of 113 solid-cancer patients receiving platinum and taxane compounds during the development and recovery of neuropathy, up to 1 year after finishing treatment. CIPN was graded according to Total Neuropathy Score(©) and NCI.CTCv3 at T0 (baseline), T1 (1-3 months), and T12 (12 months) after chemotherapy. CIPN was classified as asymptomatic (< grade 2) or symptomatic (≥2). CIPN recovery was defined as ≥1 grade improvement at T12. Symptomatic CIPN developed in 52% of patients. Symptomatic patients presented a higher increase in TNSc (p < 0.001), in TNSr(©) (p < 0.001), and decrease in sural (p < 0.001) and radial nerve conduction (p < 0.001). No significant differences with any of the micronutrients were observed along T0-T1 period between severity or chemotherapy groups. By T12, symptomatic patients without recovery had a decrease in vitamin E levels (p = 0.019) and prealbumin (p = 0.062) compared with those symptomatic that improved. A correlation between the variation of vitamin E and prealbumin at T0-T1 (r = 0.626, p = 0.001) and T1-T12 (r = 0.411, p = 0.06) was observed. After chemotherapy treatment, the improvement of patients displaying symptomatic neuropathy is related to vitamin E and prealbumin serum levels. Our results suggest that nutritional status can play a role in CIPN recovery.
Collapse
Affiliation(s)
- Roser Velasco
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d'Oncologia - IDIBELL, Barcelona, Spain.,Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Cristina Santos
- Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
| | - Gemma Soler
- Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
| | - Miguel Gil-Gil
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d'Oncologia - IDIBELL, Barcelona, Spain.,Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
| | - Sonia Pernas
- Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
| | - Maica Galan
- Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
| | - Ramon Palmero
- Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d'Oncologia - IDIBELL, Barcelona, Spain.,Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
6
|
Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 2016; 139:3092-3108. [PMID: 27797810 PMCID: PMC5840884 DOI: 10.1093/brain/aww251] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
Peripheral polyneuropathy is a common and dose-limiting side effect of many important chemotherapeutic agents. Most such neuropathies are characterized by early axonal degeneration, yet therapies that inhibit this axonal destruction process do not currently exist. Recently, we and others discovered that genetic deletion of SARM1 (sterile alpha and TIR motif containing protein 1) dramatically protects axons from degeneration after axotomy in mice. This finding fuels hope that inhibition of SARM1 or its downstream components can be used therapeutically in patients threatened by axonal loss. However, axon loss in most neuropathies, including chemotherapy-induced peripheral neuropathy, is the result of subacute/chronic processes that may be regulated differently than the acute, one time insult of axotomy. Here we evaluate if genetic deletion of SARM1 decreases axonal degeneration in a mouse model of neuropathy induced by the chemotherapeutic agent vincristine. In wild-type mice, 4 weeks of twice-weekly intraperitoneal injections of 1.5 mg/kg vincristine cause pronounced mechanical and heat hyperalgesia, a significant decrease in tail compound nerve action potential amplitude, loss of intraepidermal nerve fibres and significant degeneration of myelinated axons in both the distal sural nerve and nerves of the toe. Neither the proximal sural nerve nor the motor tibial nerve exhibit axon loss. These findings are consistent with the development of a distal, sensory predominant axonal polyneuropathy that mimics vincristine-induced peripheral polyneuropathy in humans. Using the same regimen of vincristine treatment in SARM1 knockout mice, the development of mechanical and heat hyperalgesia is blocked and the loss in tail compound nerve action potential amplitude is prevented. Moreover, SARM1 knockout mice do not lose unmyelinated fibres in the skin or myelinated axons in the sural nerve and toe after vincristine. Hence, genetic deletion of SARM1 blocks the development of vincristine-induced peripheral polyneuropathy in mice. Our results reveal that subacute/chronic axon loss induced by vincristine occurs via a SARM1 mediated axonal destruction pathway, and that blocking this pathway prevents the development of vincristine-induced peripheral polyneuropathy. These findings, in conjunction with previous studies with axotomy and traumatic brain injury, establish SARM1 as the central determinant of a fundamental axonal degeneration pathway that is activated by diverse insults. We suggest that targeting SARM1 or its downstream effectors may be a viable therapeutic option to prevent vincristine-induced peripheral polyneuropathy and possibly other peripheral polyneuropathies.
Collapse
Affiliation(s)
- Stefanie Geisler
- 1 Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ryan A Doan
- 1 Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy Strickland
- 2 Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xin Huang
- 2 Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeffrey Milbrandt
- 2 Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- 3 Hope Center for Neurological Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Aaron DiAntonio
- 3 Hope Center for Neurological Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- 4 Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
7
|
An Overview of Bortezomib-Induced Neurotoxicity. TOXICS 2015; 3:294-303. [PMID: 29051465 PMCID: PMC5606681 DOI: 10.3390/toxics3030294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023]
Abstract
The boronic acid dipeptide bortezomib, able to induce tumor cell death by degradation of key proteins, is the first proteasome inhibitor drug to enter clinical practice. It is employed as first-line treatment in relapsed or resistant multiple myeloma (MM) patients. However, bortezomib often induces a dose-limiting toxicity in the form of painful sensory neuropathy, which can mainly be reduced by subcutaneous administration or dose modification. In this review we focus on the current understanding of the pathophysiological mechanisms of bortezomib-induced neuropathy to allow further studies in animal models and humans, including analysis of clinical and pharmacogenetic aspects, to optimize the treatment regimens.
Collapse
|
8
|
Toxic Effects of Bortezomib on Primary Sensory Neurons and Schwann Cells of Adult Mice. Neurotox Res 2015; 27:430-40. [DOI: 10.1007/s12640-014-9514-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 01/29/2023]
|
9
|
Argyriou AA, Cavaletti G, Bruna J, Kyritsis AP, Kalofonos HP. Bortezomib-induced peripheral neurotoxicity: an update. Arch Toxicol 2014; 88:1669-79. [DOI: 10.1007/s00204-014-1316-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022]
|
10
|
Alé A, Bruna J, Navarro X, Udina E. Neurotoxicity induced by antineoplastic proteasome inhibitors. Neurotoxicology 2014; 43:28-35. [DOI: 10.1016/j.neuro.2014.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
|
11
|
Ashley JD, Stefanick JF, Schroeder VA, Suckow MA, Kiziltepe T, Bilgicer B. Liposomal Bortezomib Nanoparticles via Boronic Ester Prodrug Formulation for Improved Therapeutic Efficacy in Vivo. J Med Chem 2014; 57:5282-92. [DOI: 10.1021/jm500352v] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan D. Ashley
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, 182 Fitzpatrick Hall, Indiana 46556, United States
| | - Jared F. Stefanick
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, 182 Fitzpatrick Hall, Indiana 46556, United States
| | - Valerie A. Schroeder
- Department
of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Freimann
Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mark A. Suckow
- Department
of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Freimann
Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Tanyel Kiziltepe
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, 182 Fitzpatrick Hall, Indiana 46556, United States
- Advanced
Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Basar Bilgicer
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, 182 Fitzpatrick Hall, Indiana 46556, United States
- Advanced
Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Toxic and drug-induced peripheral neuropathies: updates on causes, mechanisms and management. Curr Opin Neurol 2014; 26:481-8. [PMID: 23995278 DOI: 10.1097/wco.0b013e328364eb07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review discusses publications highlighting current research on toxic, chemotherapy-induced peripheral neuropathies (CIPNs), and drug-induced peripheral neuropathies (DIPNs). RECENT FINDINGS The emphasis in clinical studies is on the early detection and grading of peripheral neuropathies, whereas recent studies in animal models have given insights into molecular mechanisms, with the discovery of novel neuronal, axonal, and Schwann cell targets. Some substances trigger inflammatory changes in the peripheral nerves. Pharmacogenetic techniques are underway to identify genes that may help to predict individuals at higher risk of developing DIPNs. Several papers have been published on chemoprotectants; however, to date, this approach has not been shown effective in clinical trials. SUMMARY Both length and nonlength-dependent neuropathies are encountered, including small-fiber involvement. The introduction of new diagnostic techniques, such as excitability studies, skin laser Doppler flowmetry, and pharmacogenetics, holds promise for early detection and to elucidate underlying mechanisms. New approaches to improve functions and quality of life in CIPN patients are discussed. Apart from developing less neurotoxic anticancer therapies, there is still hope to identify chemoprotective agents (erythropoietin and substances involved in the endocannabinoid system are promising) able to prevent or correct painful CIPNs.
Collapse
|
13
|
Velasco R, Bruna J, Briani C, Argyriou AA, Cavaletti G, Alberti P, Frigeni B, Cacciavillani M, Lonardi S, Cortinovis D, Cazzaniga M, Santos C, Kalofonos HP. Early predictors of oxaliplatin-induced cumulative neuropathy in colorectal cancer patients. J Neurol Neurosurg Psychiatry 2014; 85:392-8. [PMID: 23813745 DOI: 10.1136/jnnp-2013-305334] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Peripheral neuropathy ranks among the most common dose-limiting and disabling side-effect of oxaliplatin (OXA)-based chemotherapy. The aim of this prospective, multicentre study was to define early clinical and neurophysiological markers that may help to identify patients at risk of developing severe, treatment emergent, cumulative OXA-induced peripheral neuropathy (OXAIPN). METHODS 200 colorectal cancer patients, scheduled to receive OXA-based chemotherapy, were prospectively followed. Detailed neurological assessment employing the clinical Total Neuropathy Score (TNSc), oncological rating scales (National Common Institute-Common Toxicity Criteria V.3) and nerve conduction studies (NCS) were performed at baseline, mid-treatment and at the end of chemotherapy. Symptoms of OXA-induced acute neurotoxicity were systematically recorded. RESULTS According to TNSc, 36 (18%) patients developed grade 3 OXAIPN. These patients were predominantly men (p=0.005), presented a significant decrease in all NCS (p<0.001), reported more acute neuropathic symptoms (p<0.001) and received higher OXA cumulative dose (p=0.003). Multivariate analysis showed that three variables obtained at intermediate follow-up, namely, the number of acute symptoms (OR 1.9; CI 95% 1.2 to 3.2; p=0.012) and the >30% decrease in sensory nerve action potential amplitude from the baseline value in radial (OR 41.4; CI 95% 4.98 to 343.1; p=0.001) and dorsal sural nerves (OR 24.96; CI 95% 2.6 to 239.4; p=0.005) were independently associated with the risk of developing severe OXAIPN. CONCLUSIONS High-grade OXA neurotoxicity can be predicted by clinical and neurophysiological information obtained at mid-treatment. Neurological assessment of acute neuropathy symptoms and radial and dorsal sural nerves NCS should be carefully monitored to predict and hopefully prevent the induction of severe OXAIPN.
Collapse
Affiliation(s)
- Roser Velasco
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO Duran i Reynals, , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alé A, Bruna J, Morell M, van de Velde H, Monbaliu J, Navarro X, Udina E. Treatment with anti-TNF alpha protects against the neuropathy induced by the proteasome inhibitor bortezomib in a mouse model. Exp Neurol 2014; 253:165-73. [PMID: 24406455 DOI: 10.1016/j.expneurol.2013.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/10/2013] [Accepted: 12/27/2013] [Indexed: 01/29/2023]
Abstract
Bortezomib (BTZ), a proteasome inhibitor, is an effective anti-neoplastic drug used in the treatment of multiple myeloma and mantle cell lymphoma. However, it can induce a reversible peripheral neuropathy that may lead to treatment discontinuation. The mechanism through which BTZ exerts toxic effects in peripheral neurons is not clear. Release of proinflammatory cytokines after nerve damage can induce neurodegeneration, but the effects of BTZ on cytokine expression in neurons are unknown, although BTZ modulates the expression of cytokines, such as TNF-α and IL-6, in tumor cells. The aim of this study was to evaluate the expression and the role of these cytokines on the course of BTZ induced neuropathy in mice. IL-6, TNF-α, TGF-β1 and IL-1β were up-regulated in dorsal root ganglia but TNF-α and IL-6 increased faster and higher. Then, we studied the potential neuroprotective effect of selective antibodies anti-TNF-α and anti-IL-6 on the evolution of the neuropathy. Treatment with anti-TNF-α but not with anti-IL-6 significantly prevented the decrease of sensory nerve action potentials amplitude and the loss of myelinated and unmyelinated fibers. We conclude that monoclonal antibodies directed against TNF-α may be a suitable neuroprotective therapy against the neurotoxicity induced by BTZ.
Collapse
Affiliation(s)
- Albert Alé
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Bruna
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Marta Morell
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | | | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Esther Udina
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
15
|
Redondo-Castro E, Navarro X. Peripheral nerve alterations after spinal cord injury in the adult rat. Spinal Cord 2013; 51:630-3. [PMID: 23774128 DOI: 10.1038/sc.2013.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess if spinal cord injury (SCI) can produce alterations in axons of peripheral nerves emerging caudal to the injury. METHODS Mild/severe contusion or complete transection was performed at T8 in adult rats. The function and morphology of the sciatic nerve were assessed 3 months after the lesion. RESULTS There was a decrease in the amplitudes of muscle responses in nerve conduction tests. The number of myelinated fibers was maintained, but some of them presented structural abnormalities. CONCLUSION SCIs cause alterations in peripheral axons not affected by the injury. Preservation of the peripheral components is essential for potential regenerative and rehabilitation therapies. Thus, special care has to be taken to avoid secondary complications, due to compressions or immobility, in SCI humans.
Collapse
Affiliation(s)
- E Redondo-Castro
- Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
16
|
Subclinical pretreatment sensory deficits appear to predict the development of pain and numbness in patients with multiple myeloma undergoing chemotherapy. Cancer Chemother Pharmacol 2013; 71:1531-40. [PMID: 23543296 DOI: 10.1007/s00280-013-2152-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/17/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy is a major complication in the treatment for cancer, including multiple myeloma (MM). Patients may develop painful and non-painful (e.g., numbness) neuropathy symptoms that impair function and often persist after therapy is terminated. This study tested the hypothesis that baseline subclinical neuropathy, as assessed by sensory thresholds, is related to the development of neuropathy symptoms (e.g., pain and numbness) in patients with MM undergoing treatment with chemotherapy. METHODS Patients (n = 56) who had undergone two or fewer cycles of induction therapy and who had no evident neuropathy were assessed using quantitative sensory tests to determine multiple-modality sensory thresholds. Patient-reported pain and numbness were assessed through induction therapy (16 weeks) via the MD Anderson Symptom Inventory. A subset of participants (n = 15) continued reporting on their symptoms for an additional 16 weeks ("maintenance phase"). RESULTS Patients with sharpness detection deficits at baseline (n = 11, 20 % of sample) reported less severe pain and numbness during induction therapy and less numbness during maintenance therapy (P < 0.05). During the maintenance phase, patients with warmth detection deficits (n = 5, 38 % of sample) reported more severe pain and numbness, and those with skin temperature deficits (n = 7, 47 % of maintenance sample) reported more severe pain (P < 0.05). These deficits were related to patient reported difficulty walking, a common symptom of peripheral neuropathy. CONCLUSION Our results suggest that baseline subclinical sensory deficits may be related to a patient's risk for developing chemotherapy-induced peripheral neuropathy.
Collapse
|