1
|
Le TT, Choi HI, Kim JW, Yun JH, Lee YH, Jeon EJ, Kwon KK, Cho DH, Choi DY, Park SB, Yoon HR, Lee J, Sim EJ, Lee YJ, Kim HS. Cas9-mediated gene-editing frequency in microalgae is doubled by harnessing the interaction between importin α and phytopathogenic NLSs. Proc Natl Acad Sci U S A 2025; 122:e2415072122. [PMID: 40030016 PMCID: PMC11912399 DOI: 10.1073/pnas.2415072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Pathogen-derived nuclear localization signals (NLSs) enable vigorous nuclear invasion in the host by the virulence proteins harboring them. Herein, inspired by the robust nuclear import mechanism, we show that NLSs originating from the plant infection-associated Agrobacterium proteins VirD2 and VirE2 can be incorporated into the Cas9 system as efficient nuclear delivery enhancers, thereby improving the low gene-editing frequency in a model microalga, Chlamydomonas reinhardtii, caused by poor nuclear localization of the bulky nuclease. Prior to evaluation of the NLSs, IPA1 (Cre04.g215850) was first defined in the alga as the nuclear import-related importin alpha (Impα) that serves as a counterpart adaptor protein of the NLSs, based on extensive in silico analyses considering the protein's sequence, tertiary folding behavior, and structural basis when interacting with a well-studied SV40TAg NLS. Through precursive affinity explorations, we reproducibly found that the NLSs mediated the binding between the Cas9 and Impα with nM affinities and visually confirmed that the fusion of the NLSs strictly localized the peptide-bearing cargoes in the microalgal nucleus without compensating for their cleavage ability. When employed in a real-world application, the VirD2 NLS increases the mutation frequency (~1.12 × 10-5) over 2.4-fold compared to an archetypal SV40TAg NLS (~0.46 × 10-5) when fused with Cas9. We demonstrate the cross-species versatility of the Impα-dependent strategy by successfully applying it to an industrial alga, Chlorella Sp. HS2. This work, focused on affinity augmentation, provides insights into increasing the frequency of gene editing, which can be advantageously used in programmable mutagenesis with broad applicability.
Collapse
Affiliation(s)
- Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon-si, Gyeonggi-do16419, South Korea
| | - Yoon Hyeok Lee
- Design AI Lab, AI Center Samsung Electronics, Suwon-si, Gyeonggi-do16678, South Korea
| | - Eun Jung Jeon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Jeongmi Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Bio-Molecular Science, University of Science and Technology, Daejeon34113, South Korea
| | - Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| |
Collapse
|
2
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
3
|
Kayani SI, -Rahman SU, Shen Q, Cui Y, Liu W, Hu X, Zhu F, Huo S. Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:514-529. [PMID: 37380353 DOI: 10.1080/07388551.2023.2208284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023]
Abstract
Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-Ur -Rahman
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
5
|
Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C. Unlocking microalgal host-exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Front Bioeng Biotechnol 2023; 11:1296216. [PMID: 38026874 PMCID: PMC10666632 DOI: 10.3389/fbioe.2023.1296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and β-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ruttaporn Chundet
- Division of Biotechnology, Faculty of Science, Maejo University, Chiangmai, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr 2023; 64:10564-10582. [PMID: 37357914 DOI: 10.1080/10408398.2023.2226720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Omega-3 fatty acids have gained attention due to numerous health benefits. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) are long chain omega-3 fatty acids produced from precursor ALA (α-linolenic acid) in humans but their rate of biosynthesis is low, therefore, these must be present in diet or should be taken as supplements. The commercial sources of omega-3 fatty acids are limited to vegetable oils and marine sources. The rising concern about vegan source, fish aquaculture conservation and heavy metal contamination in fish has led to the search for their alternative source. Microalgae have gained importance due to the production of high-value EPA and DHA and can thus serve as a sustainable and promising source of long chain omega-3 fatty acids. Although the bottleneck lies in the optimization for enhanced production that involves strategies viz. strain selection, optimization of cultivation conditions, media, metabolic and genetic engineering approaches; while co-cultivation, use of nanoparticles and strategic blending have emerged as innovative approaches that have made microalgae as potential candidates for EPA and DHA production. This review highlights the possible strategies for the enhancement of EPA and DHA production in microalgae. This will pave the way for their large-scale production for human health benefits.
Collapse
Affiliation(s)
- Arti Kumari
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Pabbi
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Zhang Z, Han T, Sui J, Wang H. Cryptochrome-mediated blue-light signal contributes to carotenoids biosynthesis in microalgae. Front Microbiol 2022; 13:1083387. [PMID: 36620041 PMCID: PMC9813510 DOI: 10.3389/fmicb.2022.1083387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Microalgae are considered as ideal cell factories for producing natural carotenoids which display favorable biological activities. As the most important abiotic factor, light not only provides energy for photosynthetic metabolism, but also regulates numerous biological processes. Blue light is the main wavelength of light that can travel through water. Previous studies have shown that blue light triggered carotenoid accumulation in several microalgae species, but the molecular mechanism remains unclear. Cryptochromes were blue-light-absorbing photoreceptors that have been found in all studied algal genomes. In this study, several different types of cryptochrome genes were cloned from Haematococcus pluvialis and Phaeodactylum tricornutum. Among them, cryptochrome genes HpCRY4 from H. pluvialis and PtCPF1 from P. tricornutum were upregulated under blue light treatment, in correlation with the increase of astaxanthin and fucoxanthin contents. Besides, heterologous expression and gene knockout was performed to verify the function of HpCRY4 and PtCPF1 in regulating carotenoid biosynthesis in microalgae. These results indicate that carotenoid biosynthesis in microalgae promoted by blue light was mediated by cryptochromes as photoreceptors.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Solar Energy Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Tianli Han
- Solar Energy Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Jikang Sui
- Solar Energy Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Hui Wang
- Solar Energy Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, China,Shandong Energy Research Institute, Qingdao, China,*Correspondence: Hui Wang,
| |
Collapse
|
9
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
10
|
Guo C, Anwar M, Mei R, Li X, Zhao D, Jiang Y, Zhuang J, Liu C, Wang C, Hu Z. Establishment and optimization of PEG-mediated protoplast transformation in the microalga Haematococcus pluvialis. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:1595-1605. [DOI: 10.1007/s10811-022-02718-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2025]
Abstract
AbstractGenetic manipulation of Haematococcus pluvialis is difficult because of the lack of a stable and convenient transformation system. The pH124-EGFP-Ble vector containing ble as a selective gene and EGFP as a reporter gene was constructed and employed for effective transformation. H. pluvialis protoplasts were obtained by treating with cellulase and macerozeme. Then polyethylene glycol-mediated transformation was established by incubating the protoplast with the vector. To improve the transformation efficiency of H. pluvialis protoplasts, the transformation system was optimized in consideration of different influencing factors, including zeomycin concentration, growth stage, amount of transformed vector, linearization of the vector, and duration of low-intensity illumination. The integration and expression of ble and EGFP was confirmed in the transformants. Moreover, the optimal combination for protoplast transformation of H. pluvialis was determined to be 5 µg of the linearized vector used to transform cells in the log growth phase, and then the transformed protoplasts allowed to recover under low-intensity illumination for 6 h. This study represents and describes the successful development of an H. pluvialis transformation protocol using protoplasts, which will enable convenient genetic manipulation of this important algal species.
Collapse
|
11
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
12
|
Qian Y, Kong W, Lu T. Precise and reliable control of gene expression in Agrobacterium tumefaciens. Biotechnol Bioeng 2021; 118:3962-3972. [PMID: 34180537 DOI: 10.1002/bit.27872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
Agrobacterium tumefaciens is a soil-borne bacterium that is known for its DNA delivery ability and widely exploited for plant transformation. Despite continued interest in improving the utility of the organism, the lack of well-characterized engineering tools limits the realization of its full potential. Here, we present a synthetic biology toolkit that enables precise and effective control of gene expression in A. tumefaciens. We constructed and characterized six inducible expression systems. Then, we optimized the one regulated by cumic acid through amplifier introduction and promoter engineering and evaluated its 15 cognate promoters. To establish fine-tunability, we constructed a series of spacers and a promoter library to systematically modulate both translational and transcriptional rates. We finally demonstrated the application of the tools by co-expressing genes with altered expression levels using a single signal. This study provides precise expression tools for A. tumefaciens, facilitating rational engineering of the bacterium for advanced plant biotechnological applications.
Collapse
Affiliation(s)
- Yuanchao Qian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga- Euglena gracilis. Int J Mol Sci 2021; 22:ijms22126299. [PMID: 34208268 PMCID: PMC8230907 DOI: 10.3390/ijms22126299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.
Collapse
|
14
|
Sharma PK, Goud VV, Yamamoto Y, Sahoo L. Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana. 3 Biotech 2021; 11:196. [PMID: 33927987 DOI: 10.1007/s13205-021-02750-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The green oleaginous microalgae, Chlorella sorokiniana, is a highly productive Chlorella species and a potential host for the production of biofuel, nutraceuticals, and recombinant therapeutic proteins. The lack of a stable and efficient genetic transformation system is the major bottleneck in improving this species. We report an efficient and stable Agrobacterium tumefaciens-mediated transformation system for the first time in C. sorokiniana. Cocultivation of C. sorokiniana cells (optical density at λ 680 = 1.0) with Agrobacterium at a cell density of OD600 = 0.6, on BG11 agar medium (pH 5.6) supplemented with 100 μM of acetosyringone, for three days at 25 ± 2 °C in the dark, resulted in significantly higher transformation efficiency (220 ± 5 hygromycin-resistant colonies per 106 cells). Transformed cells primarily selected on BG11 liquid medium with 30 mg/L hygromycin followed by selecting homogenous transformants on BG11 agar medium with 75 mg/L hygromycin. PCR analysis confirmed the presence of hptII, and the absence of virG amplification ruled out the Agrobacterium contamination in transformed microalgal cells. Southern hybridization confirmed the integration of the hptII gene into the genome of C. sorokiniana. The qRT-PCR and Western blot analyses confirmed hptII and GUS gene expression in the transgenic cell lines. The specific growth rate, biomass doubling time, PSII activity, and fatty-acid profile of transformed cells were found similar to wild-type untransformed cells, clearly indicating the growth and basic metabolic processes not compromised by transgene expression. This protocol can facilitate opportunities for future production of biofuel, carotenoids, nutraceuticals, and therapeutic proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02750-7.
Collapse
Affiliation(s)
- Prabin Kumar Sharma
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Vaibhab V Goud
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Y Yamamoto
- Department of Applied Biological Sciences, Gifu University, Gifu, 501-1194 Japan
| | - Lingaraj Sahoo
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
15
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
17
|
Li X, Yang Q, Peng L, Tu H, Lee LY, Gelvin SB, Pan SQ. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proc Natl Acad Sci U S A 2020; 117:26389-26397. [PMID: 33020260 PMCID: PMC7584991 DOI: 10.1073/pnas.2009645117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Agrobacterium tumefaciens is the causal agent of crown gall disease. The bacterium is capable of transferring a segment of single-stranded DNA (ssDNA) into recipient cells during the transformation process, and it has been widely used as a genetic modification tool for plants and nonplant organisms. Transferred DNA (T-DNA) has been proposed to be escorted by two virulence proteins, VirD2 and VirE2, as a nucleoprotein complex (T-complex) that targets the host nucleus. However, it is not clear how such a proposed large DNA-protein complex is delivered through the host nuclear pore in a natural setting. Here, we studied the natural nuclear import of the Agrobacterium-delivered ssDNA-binding protein VirE2 inside plant cells by using a split-GFP approach with a newly constructed T-DNA-free strain. Our results demonstrate that VirE2 is targeted into the host nucleus in a VirD2- and T-DNA-dependent manner. In contrast with VirD2 that binds to plant importin α for nuclear import, VirE2 directly interacts with the host nuclear pore complex component nucleoporin CG1 to facilitate its nuclear uptake and the transformation process. Our data suggest a cooperative nuclear import model in which T-DNA is guided to the host nuclear pore by VirD2 and passes through the pore with the assistance of interactions between VirE2 and host nucleoporin CG1. We hypothesize that this large linear nucleoprotein complex (T-complex) is targeted to the nucleus by a "head" guide from the VirD2-importin interaction and into the nucleus by a lateral assistance from the VirE2-nucleoporin interaction.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Qinghua Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Ling Peng
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Haitao Tu
- School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| |
Collapse
|
18
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
19
|
Khatiwada B, Sunna A, Nevalainen H. Molecular tools and applications of Euglena gracilis: From biorefineries to bioremediation. Biotechnol Bioeng 2020; 117:3952-3967. [PMID: 32710635 DOI: 10.1002/bit.27516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Euglena gracilis is a promising source of commercially important metabolites such as vitamins, wax esters, paramylon, and amino acids. However, the molecular tools available to create improved Euglena strains are limited compared to other microorganisms that are currently exploited in the biotechnology industry. The complex poly-endosymbiotic nature of the Euglena genome is a major bottleneck for obtaining a complete genome sequence and thus represents a notable shortcoming in gaining molecular information of this organism. Therefore, the studies and applications have been more focused on using the wild-type strain or its variants and optimizing the nutrient composition and cultivation conditions to enhance the production of biomass and valuable metabolites. In addition to producing metabolites, the E. gracilis biorefinery concept also provides means for the production of biofuels and biogas as well as residual biomass for the remediation of industrial and municipal wastewater. Using Euglena for bioremediation of environments contaminated with heavy metals is of special interest due to the strong ability of the organism to accumulate and sequester these compounds. The published draft genome and transcriptome will serve as a basis for further molecular studies of Euglena and provide a guide for the engineering of metabolic pathways of relevance for the already established as well as novel applications.
Collapse
Affiliation(s)
- Bishal Khatiwada
- Department Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Helena Nevalainen
- Department Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
20
|
Li X, Zhu T, Tu H, Pan SQ. Agrobacterium VirE3 Uses Its Two Tandem Domains at the C-Terminus to Retain Its Companion VirE2 on the Cytoplasmic Side of the Host Plasma Membrane. FRONTIERS IN PLANT SCIENCE 2020; 11:464. [PMID: 32373148 PMCID: PMC7187210 DOI: 10.3389/fpls.2020.00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 05/30/2023]
Abstract
Agrobacterium tumefaciens is the causal agent of crown gall disease in nature; in the laboratory the bacterium is widely used for plant genetic modification. The bacterium delivers a single-stranded transferred DNA (T-DNA) and a group of crucial virulence proteins into host cells. A putative T-complex is formed inside host cells that is composed of T-DNA and virulence proteins VirD2 and VirE2, which protect the foreign DNA from degradation and guide its way into the host nucleus. However, little is known about how the T-complex is assembled inside host cells. We combined the split-GFP and split-sfCherry labeling systems to study the interaction of Agrobacterium-delivered VirE2 and VirE3 in host cells. Our results indicated that VirE2 co-localized with VirE3 on the cytoplasmic side of the host cellular membrane upon the delivery. We identified and characterized two tandem domains at the VirE3 C-terminus that interacted with VirE2 in vitro. Deletion of these two domains abolished the VirE2 accumulation on the host plasma membrane and affected the transformation. Furthermore, the two VirE2-interacting domains of VirE3 exhibited different affinities with VirE2. Collectively, this study demonstrates that the anchorage protein VirE3 uses the two tandem VirE2-interacting domains to facilitate VirE2 protection for T-DNA at the cytoplasmic side of the host cell entrance.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tingting Zhu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Haitao Tu
- School of Stomatology and Medicine, Foshan Institute of Molecular Bio-Engineering, Foshan University, Foshan, China
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Yuan G, Xu X, Zhang W, Zhang W, Cui Y, Qin S, Liu T. Biolistic Transformation of Haematococcus pluvialis With Constructs Based on the Flanking Sequences of Its Endogenous Alpha Tubulin Gene. Front Microbiol 2019; 10:1749. [PMID: 31428066 PMCID: PMC6687776 DOI: 10.3389/fmicb.2019.01749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Haematococcus pluvialis has high commercial value, yet it displays low development of genetic transformation systems. In this research, the endogenous 5' and 3' flanking sequences of the constitutive alpha tubulin (tub) gene were cloned along with its encoding region in H. pluvialis, in which some putative promoter elements and polyadenylation signals were identified, respectively. Three selection markers of tub/aadA, tub/hyr and tub/ble with three different antibiotic-resistance genes fused between the endogenous tub promoter (Ptub) and terminator (Ttub) were constructed and utilized for biolistic transformation of H. pluvialis. Stable resistant colonies with introduced aadA genes were obtained after bombardments of either H. pluvialis NIES144 or SCCAP K0084 with the tub/aadA cassette, the efficiency of which could reach up to 3 × 10-5 per μg DNA through an established manipulation flow. Two key details, including the utilization of culture with motile flagellates dominant and controlled incubation of them on membrane filters during bombardments, were disclosed firstly. In obtained transformants, efficient integration and transcription of the foreign tub/aadA fragments could be identified through genome PCR examination and qPCR analysis, nonetheless with random style instead of homologous crossover in the H. pluvialis genome. The presented selection marker and optimized transforming procedures in this report would strengthen the platform for genetic manipulation and modification of H. pluvialis.
Collapse
Affiliation(s)
- Guanhua Yuan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Yantai Marine Economic Research Institute, Yantai, China
| | - Wei Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wenlei Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
22
|
Prasad B, Lein W, Thiyam G, Lindenberger CP, Buchholz R, Vadakedath N. Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method. PHOTOSYNTHESIS RESEARCH 2019; 140:173-188. [PMID: 30276605 DOI: 10.1007/s11120-018-0587-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
A mutated phytoene desaturase (pds) gene, pds-L504R, conferring resistance to the herbicide norflurazon has been reported as a dominant selectable marker for the genetic engineering of microalgae (Steinbrenner and Sandmann in Appl Environ Microbiol 72:7477-7484, 2006; Prasad et al. in Appl Microbiol Biotechnol 98(20):8629-8639, 2014). However, this mutated genomic clone harbors several introns and the entire expression cassette including its native promoter and terminator has a length > 5.6 kb, making it unsuitable as a standard selection marker. Therefore, we designed a synthetic, short pds gene (syn-pds-int) by removing introns and unwanted internal restriction sites, adding suitable restriction sites for cloning purposes, and introduced the first intron from the Chlamydomonas reinhardtii RbcS2 gene close to the 5'end without changing the amino acid sequence. The syn-pds-int gene (1872 bp) was cloned into pCAMBIA 1380 under the control of a short sequence (615 bp) of the promoter of pds (pCAMBIA 1380-syn-pds-int). This vector and the plasmid pCAMBIA1380-pds-L504R hosting the mutated genomic pds were used for transformation studies. To broaden the existing transformation portfolio, the rhodophyte Porphyridium purpureum was targeted. Agrobacterium-mediated transformation of P. purpureum with both the forms of pds gene, pds-L504R or syn-pds-int, yielded norflurazon-resistant (NR) cells. This is the first report of a successful nuclear transformation of P. purpureum. Transformation efficiency and lethal norflurazon dosage were determined to evaluate the usefulness of syn-pds-int gene and functionality of the short promoter of pds. PCR and Southern blot analysis confirmed transgene integration into the microalga. Both forms of pds gene expressed efficiently as evidenced by the stability, tolerance and the qRT-PCR analysis. The molecular toolkits and transformation method presented here could be used to genetically engineer P. purpureum for fundamental studies as well as for the production of high-value-added compounds.
Collapse
Affiliation(s)
- Binod Prasad
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Wolfgang Lein
- Institute for Biotechnology, Technical University Berlin, 13353, Berlin, Germany
- Department of Biotechnology, Dongseo University, Busan, South Korea
| | - General Thiyam
- Department of Biotechnology, Dongseo University, Busan, South Korea
| | - Christoph Peter Lindenberger
- Institute of Bioprocess Engineering, Friedrich-Alexander-University of Erlangen Nuremberg Busan Campus, 1276 Jisa-Dong, Gangseo-Gu, Busan, 618-230, South Korea
| | - Rainer Buchholz
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Nithya Vadakedath
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
23
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 2019; 39:709-731. [PMID: 30971144 DOI: 10.1080/07388551.2019.1597828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential. In this direction, specific analytical tools and techniques play a significant role in studying these consortia. This review presents a critical perspective on physical, biochemical and molecular techniques such as microscopy, flow cytometry with cell sorting, nanoSIMS and omics approaches used for systematic investigations of the structure and function, particularly nutrient removal potential of bacteria‒cyanobacteria/microalgae consortia. In particular, the use of specific molecular techniques of genomics, transcriptomics, proteomics metabolomics and genetic engineering to develop more stable consortia of bacteria and cyanobacteria/microalgae with their improved biotechnological capabilities in wastewater treatment has been highlighted.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Kadiyala Venkateswarlu
- c Formerly Department of Microbiology , Sri Krishnadevaraya University , Anantapuramu , Andhra Pradesh , India
| | - Ravi Naidu
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
24
|
Suttangkakul A, Sirikhachornkit A, Juntawong P, Puangtame W, Chomtong T, Srifa S, Sathitnaitham S, Dumrongthawatchai W, Jariyachawalid K, Vuttipongchaikij S. Evaluation of strategies for improving the transgene expression in an oleaginous microalga Scenedesmus acutus. BMC Biotechnol 2019; 19:4. [PMID: 30630453 PMCID: PMC6327543 DOI: 10.1186/s12896-018-0497-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/25/2018] [Indexed: 01/04/2023] Open
Abstract
Background Genetic transformation of microalgae has been hampered by inefficient transgene expression, limiting the progress of microalgal biotechnology. Many vector tools and strategies have been developed in recent years to improve transgene expression in the model microalga Chlamydomonas, but these were hardly applied to other microalgae. In this work, naturally-isolated oleaginous microalgae were accessed for genetic transformation, and various expression systems were evaluated in a selected microalga to circumvent inefficient transgene expression. Results Initially, a strain of Scenedesmus acutus was selected from the oleaginous microalgal collection based on its highest transformation rate and transgene stability. This strain, which had very low or no GFP reporter expression, was first tested to improve transgene expression by using intron-containing constructs and the transcript fusion using ble::E2A. The intron-containing constructs yielded 2.5–7.5% of transformants with 2–4-fold fluorescence signals, while the majority of the transformants of the transcript fusion had the fluorescence signals up to 10-fold. Subsequently, three UV-induced S. acutus mutants were isolated with moderate increases in the level and frequency of transgene expression (2–3-fold and 10–12%, respectively). Finally, a transcript fusion system was developed using psy white mutants with an expression vector containing PSY::E2A for complementation and light selection. Transformants with green colonies were selected under light exposure, and the transgene expression was detected at protein levels. Although the improvement using PSY::E2A was only minor (1–2-fold increase and ~ 7% of transformants), this system provides an alternative selectable marker that is compatible with large-scale culture. Conclusions Here, the overall improvement of transgene expression using the Chlamydomonas tools was moderate. The most effective tool so far is the transcript fusion using ble::E2A system. This work demonstrates that, so far, genetic engineering of non-model microalgae is still a challenging task. Further development of tools and strategies for transgene expression in microalgae are critically needed. Electronic supplementary material The online version of this article (10.1186/s12896-018-0497-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anongpat Suttangkakul
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Anchalee Sirikhachornkit
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Piyada Juntawong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Wilasinee Puangtame
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Thitikorn Chomtong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Suchada Srifa
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Sukhita Sathitnaitham
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Wasawat Dumrongthawatchai
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanidtha Jariyachawalid
- PTT Research and Technology Institute, PTT Public Company Limited, Ayuthaya, 13170, Thailand
| | - Supachai Vuttipongchaikij
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand. .,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
25
|
Khatiwada B, Kautto L, Sunna A, Sun A, Nevalainen H. Nuclear transformation of the versatile microalga Euglena gracilis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Li X, Tu H, Pan SQ. Agrobacterium Delivers Anchorage Protein VirE3 for Companion VirE2 to Aggregate at Host Entry Sites for T-DNA Protection. Cell Rep 2018; 25:302-311.e6. [PMID: 30304671 DOI: 10.1016/j.celrep.2018.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/13/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
Agrobacterium tumefaciens transfers oncogenic DNA (T-DNA) and effector proteins into various host plants. T-DNA is generated inside the bacteria and subsequently delivered into plant cells along with the companion effectors VirD2, VirE2, and VirE3. However, it is not clear how the T-complex consisting of VirD2 and VirE2 is assembled inside plant cells. Here, we report that the effector protein VirE3 localized to plant plasma membranes as an anchorage through a conserved α-helical-bundle domain. VirE3 interacted with itself and enabled VirE2 accumulation at host entry sites through direct interactions. VirE3 was critical for VirE2 function in T-DNA protection. Our data indicate that VirE3 functions as a previously unrecognized anchorage protein consisting of membrane-binding, self-interacting, and VirE2-interacting domains. Both VirE2 and VirE3 are conserved among Agrobacterium and rhizobia species but not other organisms, suggesting that a group of anchorage proteins have been generated through evolution to facilitate the nucleoprotein assembly at plant membranes.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Haitao Tu
- Foshan Institute of Molecular Bio-Engineering, School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
27
|
Dehghani J, Adibkia K, Movafeghi A, Barzegari A, Pourseif MM, Maleki Kakelar H, Golchin A, Omidi Y. Stable transformation of Spirulina (Arthrospira) platensis: a promising microalga for production of edible vaccines. Appl Microbiol Biotechnol 2018; 102:9267-9278. [PMID: 30159589 DOI: 10.1007/s00253-018-9296-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
The planktonic blue-green microalga Spirulina (Arthrospira) platensis possesses important features (e.g., high protein and vital lipids contents as well as essential vitamins) and can be consumed by humans and animals. Accordingly, this microalga gained growing attention as a new platform for producing edible-based pharmaceutical proteins. However, there are limited successful strategies for the transformation of S. platensis, in part because of an efficient expression of strong endonucleases in its cytoplasm. In the current work, as a pilot step for the expression of therapeutic proteins, an Agrobacterium-based system was established to transfer gfp:gus and hygromycin resistance (hygr) genes into the genome of S. platensis. The presence of acetosyringone in the transfection medium significantly reduced the transformation efficiency. The PCR and real-time RT-PCR data confirmed the successful integration and transcription of the genes. Flow cytometry and β-glucuronidase (GUS) activity experiments confirmed the successful production of GFP and the enzyme. Moreover, the western blot analysis showed a ~ 90 kDa band in the transformed cells, indicating the successful production of the GFP:GUS protein. Three months after the transformation, the gene expression stability was validated by histochemical, flow cytometry, and hygromycin B resistance analyses.
Collapse
Affiliation(s)
- Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Maleki Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Golchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Yedahalli S, Rehmann L, Bassi A. High throughput screening of β-glucuronidase (GUS) reporter in transgenic microalgae transformed by Agrobacterium tumefaciens. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Norzagaray-Valenzuela CD, Germán-Báez LJ, Valdez-Flores MA, Hernández-Verdugo S, Shelton LM, Valdez-Ortiz A. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens. J Microbiol Methods 2018; 150:9-17. [PMID: 29777738 DOI: 10.1016/j.mimet.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
Abstract
Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD600 = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Claudia D Norzagaray-Valenzuela
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico
| | - Lourdes J Germán-Báez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico
| | - Marco A Valdez-Flores
- Centro de Investigación Asociado a la Salud Pública, Facultad de Medicina, Universidad Autónoma de Sinaloa, Campo 2. Av. Cedros y Calle Sauces, Culiacán, Sinaloa C.P. 80019, Mexico
| | | | - Luke M Shelton
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Angel Valdez-Ortiz
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico.
| |
Collapse
|
30
|
Norashikin MN, Loh SH, Aziz A, Cha TS. Metabolic engineering of fatty acid biosynthesis in Chlorella vulgaris using an endogenous omega-3 fatty acid desaturase gene with its promoter. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Tu H, Li X, Yang Q, Peng L, Pan SQ. Real-Time Trafficking of Agrobacterium Virulence Protein VirE2 Inside Host Cells. Curr Top Microbiol Immunol 2018; 418:261-286. [PMID: 30182197 DOI: 10.1007/82_2018_131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A. tumefaciens delivers T-DNA and virulence proteins, including VirE2, into host plant cells, where T-DNA is proposed to be protected by VirE2 molecules as a nucleoprotein complex (T-complex) and trafficked into the nucleus. VirE2 is a protein that can self-aggregate and contains targeting sequences so that it can efficiently move from outside of a cell to the nucleus. We adopted a split-GFP approach and generated a VirE2-GFP fusion which retains the self-aggregating property and the targeting sequences. The fusion protein is fully functional and can move inside cells in real time in a readily detectable format: fluorescent and unique filamentous aggregates. Upon delivery mediated by the bacterial type IV secretion system (T4SS), VirE2-GFP is internalized into the plant cells via clathrin adaptor complex AP2-mediated endocytosis. Subsequently, VirE2-GFP binds to membrane structures such as the endoplasmic reticulum (ER) and is trafficked within the cell. This enables us to observe the highly dynamic activities of the cell. If a compound, a gene, or a condition affects the cell, the cellular dynamics shown by the VirE2-GFP will be affected and thus readily observed by confocal microscopy. This represents an excellent model to study the delivery and trafficking of an exogenously produced and delivered protein inside a cell in a natural setting in real time. The model may be used to explore the theoretical and applied aspects of natural protein delivery and targeting.
Collapse
Affiliation(s)
- Haitao Tu
- School of Stomatology and Medicine, Foshan Institute of Molecular Bio-Engineering, Foshan University, 528000, Foshan, China
| | - Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Qinghua Yang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Ling Peng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
| |
Collapse
|
32
|
Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI, Oh HM, Jeong WJ, Jeong BR, Chang YK. Current status and perspectives of genome editing technology for microalgae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:267. [PMID: 29163669 PMCID: PMC5686953 DOI: 10.1186/s13068-017-0957-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/04/2017] [Indexed: 05/25/2023]
Abstract
Genome editing techniques are critical for manipulating genes not only to investigate their functions in biology but also to improve traits for genetic engineering in biotechnology. Genome editing has been greatly facilitated by engineered nucleases, dubbed molecular scissors, including zinc-finger nuclease (ZFN), TAL effector endonuclease (TALEN) and clustered regularly interspaced palindromic sequences (CRISPR)/Cas9. In particular, CRISPR/Cas9 has revolutionized genome editing fields with its simplicity, efficiency and accuracy compared to previous nucleases. CRISPR/Cas9-induced genome editing is being used in numerous organisms including microalgae. Microalgae have been subjected to extensive genetic and biological engineering due to their great potential as sustainable biofuel and chemical feedstocks. However, progress in microalgal engineering is slow mainly due to a lack of a proper transformation toolbox, and the same problem also applies to genome editing techniques. Given these problems, there are a few reports on successful genome editing in microalgae. It is, thus, time to consider the problems and solutions of genome editing in microalgae as well as further applications of this exciting technology for other scientific and engineering purposes.
Collapse
Affiliation(s)
- Seungjib Jeon
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Sung-Eun Shin
- LG Chem, 188 Munji-ro, Yuseong-gu, Daejeon, 34122 Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
33
|
Ng I, Tan S, Kao P, Chang Y, Chang J. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio‐Based Chemicals. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600644] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Hsun Kao
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
| | - Jo‐Shu Chang
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
34
|
Dehghani J, Movafeghi A, Barzegari A, Barar J. Efficient and stable transformation of Dunaliella pseudosalina by 3 strains of Agrobacterium tumefaciens. ACTA ACUST UNITED AC 2017; 7:247-254. [PMID: 29435432 PMCID: PMC5801536 DOI: 10.15171/bi.2017.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
![]()
Introduction:
Several platforms including mammalian, plant and insect cells as well as bacteria, yeasts, and microalgae are available for the production of recombinant proteins. Low efficiency of delivery systems, extracellular and intracellular degradation of foreign genes during transformation, difficulties in targeting and importing into the nucleus, and finally problems in integration into nuclear genome are the most bottlenecks of classical plasmids for producing recombinant proteins. Owing to high growth rate, no common pathogen with humans, being utilized as humans’ food, and capability to perform N-glycosylation, microalgae are proposed as an ideal system for such biotechnological approaches. Here, Agrobacterium tumefaciens is introduced as an alternative tool for transformation of the microalga Dunaliella pseudosalina.
Methods: The transformation of gfp gene into the D. pseudosalina was evaluated by three strains including EHA101, GV3301 and GV3850 of A. tumefaciens. The integrating and expression of gfp gene were determined by PCR, RT-PCR, Q-PCR and SDS-PAGE analyses.
Results: The T-DNA of pCAMBIA1304 plasmid was successfully integrated into the genome of the microalgal cells. Although all of the strains were able to transform the algal cells, GV3301 possessed higher potential to transform the microalgal cells in comparison to EHA101 and GV3850 strains. Moreover, the stability of gfp gene was successfully established during a course of two months period in the microalgal genome.
Conclusion : Agrobacterium is introduced as a competent system for stable transformation of Dunaliella strains in order to produce eukaryotic recombinant proteins.
Collapse
Affiliation(s)
- Jaber Dehghani
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, 29th Bahman Blvd, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, 29th Bahman Blvd, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran.,School of Advanced Biomedical Sciences, Tabriz University of Medical Science, Daneshgah street, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
35
|
|
36
|
Li X, Pan SQ. Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. SCIENCE ADVANCES 2017; 3:e1601528. [PMID: 28345032 PMCID: PMC5362186 DOI: 10.1126/sciadv.1601528] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/09/2017] [Indexed: 05/20/2023]
Abstract
Agrobacterium tumefaciens can cause crown gall tumors on a wide range of host plants. As a natural genetic engineer, the bacterium can transfer both single-stranded DNA (ssDNA) [transferred DNA (T-DNA)] molecules and bacterial virulence proteins into various recipient cells. Among Agrobacterium-delivered proteins, VirE2 is an ssDNA binding protein that is involved in various steps of the transformation process. However, it is not clear how plant cells receive the T-DNA or protein molecules. Using a split-green fluorescent protein approach, we monitored the VirE2 delivery process inside plant cells in real time. We observed that A. tumefaciens delivered VirE2 from the bacterial lateral sides that were in close contact with plant membranes. VirE2 initially accumulated on plant cytoplasmic membranes at the entry points. VirE2-containing membranes were internalized through clathrin-mediated endocytosis to form endomembrane compartments. VirE2 colocalized with the early endosome marker SYP61 but not with the late endosome marker ARA6, suggesting that VirE2 escaped from early endosomes for subsequent trafficking inside the cells. Dual endocytic motifs at the carboxyl-terminal tail of VirE2 were involved in VirE2 internalization and could interact with the μ subunit of the plant clathrin-associated adaptor AP2 complex (AP2M). Both the VirE2 cargo motifs and AP2M were important for the transformation process. Because AP2-mediated endocytosis is well conserved, our data suggest that the A. tumefaciens pathogen hijacks conserved endocytic pathways to facilitate the delivery of virulence factors. This might be important for Agrobacterium to achieve both a wide host range and a high transformation efficiency.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
37
|
Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K-powered ER/actin network. Proc Natl Acad Sci U S A 2017; 114:2982-2987. [PMID: 28242680 DOI: 10.1073/pnas.1612098114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Agrobacterium tumefaciens causes crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear how Agrobacterium-delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement of Agrobacterium-delivered VirE2 inside plant cells by using a split-GFP approach in real time. Agrobacterium-delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. The A. tumefaciens pathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful for Agrobacterium to target a wide range of recipient cells and achieve a high efficiency of transformation.
Collapse
|
38
|
Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34:1396-1412. [DOI: 10.1016/j.biotechadv.2016.10.005] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
|
39
|
Simon DP, Anila N, Gayathri K, Sarada R. Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium -mediated genetic transformation. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Yang B, Liu J, Jiang Y, Chen F. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnol J 2016; 11:1244-1261. [PMID: 27465356 DOI: 10.1002/biot.201500617] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/08/2022]
Abstract
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.
Collapse
Affiliation(s)
- Bo Yang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China.,School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore.
| | - Yue Jiang
- Runke Bioengineering Co., Ltd., Zhangzhou, China.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China.,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore
| |
Collapse
|
41
|
Srinivasan R, Gothandam KM. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation. PLoS One 2016; 11:e0158322. [PMID: 27351975 PMCID: PMC4924854 DOI: 10.1371/journal.pone.0158322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer.
Collapse
|
42
|
The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int J Mol Sci 2016; 17:ijms17060962. [PMID: 27322258 PMCID: PMC4926494 DOI: 10.3390/ijms17060962] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals.
Collapse
|
43
|
|
44
|
Vir gene inducers in Dunaliella salina ; an insight in to the Agrobacterium -mediated genetic transformation of microalgae. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Varela JC, Pereira H, Vila M, León R. Production of carotenoids by microalgae: achievements and challenges. PHOTOSYNTHESIS RESEARCH 2015; 125:423-36. [PMID: 25921207 DOI: 10.1007/s11120-015-0149-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 05/26/2023]
Abstract
Carotenoids are a wide group of lipophylic isoprenoids synthesized by all photosynthetic organisms and also by some non-photosynthetic bacteria and fungi. Animals, which cannot synthesize carotenoids de novo, must include them in their diet to fulfil essential provitamin, antioxidant, or colouring requirements. Carotenoids are indispensable in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. In this review, we outline the factors inducing carotenoid accumulation in microalgae, the knowledge acquired on the metabolic pathways responsible for their biosynthesis, and the recent achievements in the genetic engineering of this pathway. Despite the considerable progress achieved in understanding and engineering algal carotenogenesis, many aspects remain to be elucidated. The increasing number of sequenced microalgal genomes and the data generated by high-throughput technologies will enable a better understanding of carotenoid biosynthesis in microalgae. Moreover, the growing number of industrial microalgal species genetically modified will allow the production of novel strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- João C Varela
- Centre of Marine Science, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | |
Collapse
|
46
|
Sharon-Gojman R, Maimon E, Leu S, Zarka A, Boussiba S. Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales). ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 2015; 196-197:33-41. [DOI: 10.1016/j.jbiotec.2015.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/24/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022]
|
48
|
Pratheesh PT, Vineetha M, Kurup GM. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol 2014; 56:507-15. [PMID: 24198218 DOI: 10.1007/s12033-013-9720-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Algal-based recombinant protein production has gained immense interest in recent years. The development of algal expression system was earlier hindered due to the lack of efficient and cost-effective transformation techniques capable of heterologous gene integration and expression. The recent development of Agrobacterium-mediated genetic transformation method is expected to be the ideal solution for these problems. We have developed an efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Pre-treatment of Agrobacterium in TAP induction medium (pH 5.2) containing 100 μM acetosyringone and 1 mM glycine betaine and infection of Chlamydomonas with the induced Agrobacterium greatly improved transformation frequency. This protocol was found to double the number of transgenic events on selection media compared to that of previous reports. PCR was used successfully to amplify fragments of the hpt and GUS genes from transformed cells, while Southern blot confirmed the integration of GUS gene into the genome of C. reinhardtii. RT-PCR, Northern blot and GUS histochemical analyses confirm GUS gene expression in the transgenic cell lines of Chlamydomonas. This protocol provides a quick, efficient, economical and high-frequency transformation method for microalgae.
Collapse
Affiliation(s)
- P T Pratheesh
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India,
| | | | | |
Collapse
|
49
|
Development of genetic transformation methodologies for an industrially-promising microalga: Scenedesmus almeriensis. Biotechnol Lett 2014; 36:2551-8. [PMID: 25214215 DOI: 10.1007/s10529-014-1641-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
The development of the microalgal industry requires advances in every aspect of microalgal biotechnology. In this regard, the availability of genetic engineering tools for industrially-promising species is key. As Scenedesmus almeriensis has promise for industrial use, we describe here an Agrobacterium-based methodology that allows stable genetic transformation of it for the first time, thus opening the way to its genetic manipulation. Transformation was accomplished using two different antibiotic resistance genes [hygromicine phophotransferase (hpt) and Shble] and it is credited by PCR amplification of both hpt/Shble and GUS genes and by the β-glucuronidase activity of transformed cells. Nevertheless, the single 35S promoter seems unable to direct gene expression to a convenient level in S. almeriensis as suggested by the low GUS enzymatic activity. Temperature was critical for the transformation efficiency.
Collapse
|
50
|
Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2014; 5:359. [PMID: 25183966 PMCID: PMC4135232 DOI: 10.3389/fpls.2014.00359] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 05/09/2023]
Abstract
Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS) organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodeling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Gaëtan Vanier
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Clément Ovide
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
- Institut Universitaire de FranceParis, France
| |
Collapse
|