1
|
Cabrera V, Abate P, Balaszczuk V, Macchione AF. Alcohol outcomes on anxiety, impulsivity and spatial memory: Possible Omega-3 amelioration effects. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111281. [PMID: 39904400 DOI: 10.1016/j.pnpbp.2025.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Alcohol consumption is a worldwide concern that causes 5 % of the global disease burden and contributes to 3 million deaths per year. Several studies suggest an increase in alcohol drinking and alcohol related problems. Alcohol Use Disorder (formerly referred as alcoholism or alcohol addiction) is one of many possible outcomes of an early and prolonged alcohol consumption and it is highly comorbid with anxiety disorders, impulsivity and memory deficits among others. In this review we approach recent data about global and American prevalence of alcohol use and discuss different factors that contribute to alcohol consumption. Furthermore, we revise evidence of ethanol effects on anxiety-like behaviors, impulsivity and spatial memory. Lastly, we look at the Omega-3 fatty acid as a possible course of action in mitigating the aforementioned deleterious effects of alcohol consumption.
Collapse
Affiliation(s)
- Valentín Cabrera
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina
| | - Paula Abate
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Balaszczuk
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Ana Fabiola Macchione
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Bailoo JD, Bergeson SE, Ponomarev I, Willms JO, Kisby BR, Cornwall GA, MacDonald CC, Lawrence JJ, Ganapathy V, Sivaprakasam S, Panthagani P, Trasti S, Varholick JA, Findlater M, Deonarine A. A bespoke water T-maze apparatus and protocol: an optimized, reliable, and repeatable method for screening learning, memory, and executive functioning in laboratory mice. Front Behav Neurosci 2024; 18:1492327. [PMID: 39720305 PMCID: PMC11666379 DOI: 10.3389/fnbeh.2024.1492327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 12/26/2024] Open
Abstract
The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform. Together, these issues may compromise the reproducibility, generalizability, and predictability of experimental results, as well as animal welfare. To address these issues, and as an initial proof-of-principle, we first narrowed the spatial dimensions of the MWM by using a T-insert, which constrained and reduced the overall length of time/distance that the animal must swim in order to navigate to the escape platform, thus reducing stress and off-task behavior. Given the robust performance observed across spatial acquisition (learning and memory) as well as during reversal learning (executive function), we further reduced (by 43%) the overall distance and time that the animal must swim in order to find the escape platform in a bespoke standalone Water T-Maze (WTM). We show, across five experiments, procedural refinements to our protocol and demonstrate robust, reliable and reproducible indicators of learning, memory and executive functioning in a task that is also significantly more efficient (3 days of testing within the WTM vs. 11 days of testing within the MWM). Taken together, our WTM apparatus and protocol are a significant improvement over other water-based apparatuses and protocols for evaluating learning, memory, and executive functioning in laboratory mice.
Collapse
Affiliation(s)
- Jeremy Davidson Bailoo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joshua O. Willms
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Scott Trasti
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin A. Varholick
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, United States
| | - Amrika Deonarine
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
3
|
Yadav D, Ostrea EM, Cheng CT, Kisseih E, Maddipati KR, Thomas RL. Effect of docosahexaenoic acid and olive oil supplementation on pup weight in alcohol-exposed pregnant rats. Front Pediatr 2024; 12:1334285. [PMID: 38638591 PMCID: PMC11024321 DOI: 10.3389/fped.2024.1334285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background Low birth weight has been observed in offspring of alcoholic mothers due likely to unresolved inflammation and oxidative injury. Dietary lipids play a role in inflammation and its resolution. The primary objective was to investigate the effect of DHA and olive oil on the birth weight of pups born to alcohol-exposed dams. Methods Pregnant rats were randomized to the control or three treatment (alcohol) groups. From gestational days (GD) 8-19, the control group received daily olive oil and malto/dextrose, whereas groups 2 and 3 received olive oil and low-dose alcohol or high-dose alcohol, respectively. Group 4 received daily DHA and high-dose alcohol. The dam's blood was collected on GD 15 and 20 for cytokine analysis. Dams were sacrificed on GD 20. The mean birth weight of pups was compared by one-way ANOVA with post hoc Duncan's test. Results There was a significant increase in the pups' mean birth weight in the high-dose alcohol/DHA and high-dose alcohol/olive oil. Higher pro-inflammatory cytokines (IL-1β and IL-12p70) were noted in the alcohol-exposed dams. Conclusions DHA and olive oil supplementation in alcohol-exposed pregnant rats significantly increased their pups' birth weight despite having high pro-inflammatory cytokines. The mechanism of this effect remains to be determined.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Enrique M. Ostrea
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charlie T. Cheng
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Esther Kisseih
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Krishna R. Maddipati
- Bioactive Lipids Research Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ronald L. Thomas
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
4
|
Mooney SM, Billings E, McNew M, Munson CA, Shaikh SR, Smith SM. Behavioral changes in FPR2/ALX and Chemr23 receptor knockout mice are exacerbated by prenatal alcohol exposure. Front Neurosci 2023; 17:1187220. [PMID: 37483341 PMCID: PMC10357512 DOI: 10.3389/fnins.2023.1187220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Prenatal alcohol exposure (PAE) causes neuroinflammation that may contribute to the pathophysiology underlying Fetal Alcohol Spectrum Disorder. Supplementation with omega-3 polyunsaturated fatty acids (PUFAs) has shown success in mitigating effects of PAE in animal models, however, the underlying mechanisms are unknown. Some PUFA metabolites, specialized pro-resolving mediators (SPMs), play a role in the resolution phase of inflammation, and receptors for these are in the brain. Methods To test the hypothesis that the SPM receptors FPR2 and ChemR23 play a role in PAE-induced behavioral deficits, we exposed pregnant wild-type (WT) and knockout (KO) mice to alcohol in late gestation and behaviorally tested male and female offspring as adolescents and young adults. Results Maternal and fetal outcomes were not different among genotypes, however, growth and behavioral phenotypes in the offspring did differ and the effects of PAE were unique to each line. In the absence of PAE, ChemR23 KO animals showed decreased anxiety-like behavior on the elevated plus maze and FPR2 KO had poor grip strength and low activity compared to age-matched WT mice. WT mice showed improved performance on fear conditioning between adolescence and young adulthood, this was not seen in either KO. Discussion This PAE model has subtle effects on WT behavior with lower activity levels in young adults, decreased grip strength in males between test ages, and decreased response to the fear cue indicating an effect of alcohol exposure on learning. The PAE-mediated decreased response to the fear cue was also seen in ChemR23 KO but not FPR2 KO mice, and PAE worsened performance of adolescent FPR2 KO mice on grip strength and activity. Collectively, these findings provide mechanistic insight into how PUFAs could act to attenuate cognitive impairments caused by PAE.
Collapse
Affiliation(s)
- Sandra M. Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Elanaria Billings
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Madison McNew
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Carolyn A. Munson
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Saame R. Shaikh
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Susan M. Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
5
|
Chandrasekaran J, Jacquez B, Wilson J, Brigman JL. Reinforcer value moderates the effects of prenatal alcohol exposure on learning and reversal. Front Neurosci 2023; 17:1147536. [PMID: 37179543 PMCID: PMC10166816 DOI: 10.3389/fnins.2023.1147536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Fetal Alcohol Spectrum Disorders (FASD) are the leading cause of preventable developmental disability and are commonly characterized by alterations in executive function. Reversal learning tasks are reliable, cross-species methods for testing a frequently impaired aspect of executive control, behavioral flexibility. Pre-clinical studies commonly require the use of reinforcers to motivate animals to learn and perform the task. While there are several reinforcers available, the most commonly employed are solid (food pellets) and liquid (sweetened milk) rewards. Previous studies have examined the effects of different solid rewards or liquid dietary content on learning in instrumental responding and found that rodents on liquid reward with higher caloric content performed better with increased response and task acquisition rate. The influence of reinforcer type on reversal learning and how this interacts with developmental insults such as prenatal alcohol exposure (PAE) has not been explored. Methods We tested whether reinforcer type during learning or reversal would impact an established deficit in PAE mice. Results We found that all male and female mice on liquid reward, regardless of prenatal exposure were better motivated to learn task behaviors during pre-training. Consistent with previous findings, both male and female PAE mice and Saccharine control mice were able to learn the initial stimulus reward associations irrespective of the reinforcer type. During the initial reversal phase, male PAE mice that received pellet rewards exhibited maladaptive perseverative responding whereas male mice that received liquid rewards performed comparable to their control counterparts. Female PAE mice that received either reinforcer types did not exhibit any deficits on behavioral flexibility. Female saccharine control mice that received liquid, but not pellet, rewards showed increased perseverative responding during the early reversal phase. Discussion These data suggest that reinforcer type can have a major impact on motivation, and therefore performance, during reversal learning. Highly motivating rewards may mask behavioral deficits seen with more moderately sought rewards and gestational exposure to the non-caloric sweetener, saccharine, can impact behavior motivated by those reinforcers in a sex-dependent manner.
Collapse
Affiliation(s)
- Jayapriya Chandrasekaran
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Belkis Jacquez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| | - Jennifer Wilson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
6
|
Bozzatello P, Blua C, Rocca P, Bellino S. Mental Health in Childhood and Adolescence: The Role of Polyunsaturated Fatty Acids. Biomedicines 2021; 9:850. [PMID: 34440053 PMCID: PMC8389598 DOI: 10.3390/biomedicines9080850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
There is increasing awareness of the importance of polyunsaturated fatty acids (PUFAs) for optimal brain development and function. In recent decades, researchers have confirmed the central role of PUFAs in a variety of patho-physiological processes. These agents modulate the mechanisms of brain cell signalling including the dopaminergic and serotonergic pathways. Therefore, nutritional insufficiencies of PUFAs may have adverse effects on brain development and developmental outcomes. The role of n-3 PUFAs has been studied in several psychiatric disorders in adulthood: schizophrenia, major depression, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, eating disorders, substance use disorder, and borderline personality disorder. In contrast to the great number of studies conducted in adults, there are only limited data on the effects of n-3 PUFA supplementation in children and adolescents who suffer from mental disorders or show a high risk of developing psychiatric disorders. The aim of this review is to provide a complete and updated account of the available evidence of the impact of polyunsaturated fatty acids on developmental psychopathology in children and adolescents and the effect of fatty acid supplementation during developmental milestones, particularly in high-risk populations of children with minimal but detectable signs or symptoms of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Silvio Bellino
- Department of Neuroscience, University of Turin, 10126 Turin, Italy; (P.B.); (C.B.); (P.R.)
| |
Collapse
|
7
|
Gibula-Tarlowska E, Korz V, Lopatynska-Mazurek M, Chlopas-Konowalek A, Grochecki P, Kalaba P, Dragacevic V, Kotlinski R, Kujawski R, Szulc M, Czora-Poczwardowska K, Mikolajczak PL, Lubec G, Kotlinska JH. CE-123, a novel dopamine transporter inhibitor, attenuates locomotor hyperactivity and improves cognitive functions in rat model of fetal alcohol spectrum disorders. Behav Brain Res 2021; 410:113326. [PMID: 33940050 DOI: 10.1016/j.bbr.2021.113326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Perinatal alcohol exposure can lead to fetal alcohol spectrum disorders (FASD), usually first diagnosed in childhood, that are characterized by hyperactivity, impulsivity and learning and memory disability, among others. To test the hypothesis that dopamine signaling is one of the main factors underlying these impairments, a new atypical dopamine transporter (DAT) inhibitor, CE-123 (1, 3 or 10 mg/kg) was assessed for its potential to overcome the ethanol-induced behavioral effects in a rat model of FASD. In the present study, neonatal rats were exposed to alcohol intubations across the neonatal period (postnatal day (PND)4-9, the third trimester equivalent of human gestation) and, after weaning, the animals (male rats) were assigned randomly to three groups. The first group was tested at PND21 (hyperactivity test). A second group was tested at PND45 (anxiety test), at PND47 (locomotor activity test), at PND49 (spatial cognitive test in the Barnes maze) and PND50 (reversal learning in the Barnes maze). The third group was tested at PND50 (dopamine receptor mRNA expression). Our results support the hypothesis that dopamine signaling is associated with FASD because the dopamine (D1, D2 and D5) receptor mRNA expression was altered in the striatum, hippocampus and prefrontal cortex in adult rats exposed to ethanol during neonatal period. CE-123 (3 and 10 mg/kg) inhibited the hyperactivity and ameliorated (10 mg/kg) the impairment of reversal learning in alcohol-exposed rats. Thus, these findings provide support that CE-123 may be a useful intervention for same of the deficits associated with neonatal ethanol exposure.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Volker Korz
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Paracelsus Private Medical University, Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Rzeszow, Poland
| | - Radosław Kujawski
- Department of Pharmacology, University of Medical Sciences, Poznan, Poland
| | - Michał Szulc
- Department of Pharmacology, University of Medical Sciences, Poznan, Poland
| | | | | | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
8
|
Alcohol exposure in utero disrupts cortico-striatal coordination required for behavioral flexibility. Neuropharmacology 2021; 188:108471. [PMID: 33618902 DOI: 10.1016/j.neuropharm.2021.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Deficits in behavioral flexibility are a hallmark of multiple psychiatric, neurological, and substance use disorders. These deficits are often marked by decreased function of the prefrontal cortex (PFC); however, the genesis of such executive deficits remains understudied. Here we report how the most preventable cause of developmental disability, in utero exposure to alcohol, alters cortico-striatal circuit activity leading to impairments in behavioral flexibility in adulthood. We utilized a translational touch-screen task coupled with in vivo electrophysiology in adult mice to examine single unit and coordinated activity of the lateral orbital frontal cortex (OFC) and dorsolateral striatum (DS) during flexible behavior. Prenatal alcohol exposure (PAE) decreased OFC, and increased DS, single unit activity during reversal learning and altered the number of choice responsive neurons in both regions. PAE also decreased coordinated activity within the OFC and DS as measured by oscillatory field activity and altered spike-field coupling. Furthermore, PAE led to sustained connectivity between regions past what was seen in control animals. These findings suggest that PAE causes altered coordination within and between the OFC and DS, promoting maladaptive perseveration. Our model suggests that in optimally functioning mice OFC disengages the DS and updates the newly changed reward contingency, whereas in PAE animals, aberrant and persistent OFC to DS signaling drives behavioral inflexibility during early reversal sessions. Together, these findings demonstrate how developmental exposure alters circuit-level activity leading to behavioral deficits and suggest a critical role for coordination of neural timing during behaviors requiring executive function.
Collapse
|
9
|
Kenton JA, Castillo VK, Kehrer PE, Brigman JL. Moderate Prenatal Alcohol Exposure Impairs Visual-Spatial Discrimination in a Sex-Specific Manner: Effects of Testing Order and Difficulty on Learning Performance. Alcohol Clin Exp Res 2020; 44:2008-2018. [PMID: 32772384 DOI: 10.1111/acer.14426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to high levels of alcohol during development leads to alterations in neurogenesis and deficits in hippocampal-dependent learning. Evidence suggests that even more moderate alcohol consumption during pregnancy can have negative impacts on the cognitive function of offspring. Methods for assessing impairments differ greatly across species, complicating translation of preclinical findings into potential therapeutics. We have demonstrated the utility of a touchscreen operant measure for assessing hippocampal function in mice. METHODS Here, we integrated a well-established "drinking-in-the-dark" exposure model that produces reliable, but more moderate, levels of maternal intoxication with a trial-unique, delayed nonmatching-to-location (TUNL) task to examine the effects of prenatal alcohol exposure (PAE) on hippocampal-sensitive behavior directly analogous to those used in clinical assessment. PAE and SAC offspring mice were trained to touch a single visual stimulus ("sample phase") in one of 10 possible spatial locations (2 × 5 grid) in a touchscreen operant system. After a delay, animals were simultaneously presented with the original stimulus and a rewarded stimulus in a novel location ("choice phase"). PAE and saccharin (SAC) control mice were trained on a series of problems that systematically increased the difficulty by decreasing the separation between the sample and choice stimuli. Next, a separate cohort of PAE and SAC animals were given a brief training and then tested on a challenging variant where both the separation and delay varied with each trial. RESULTS We found that PAE mice were generally able to perform at levels similar to SAC control mice at progressively more difficult separations. When tested on the most difficult unpredictable variant immediately, PAE showed a sex-specific deficit with PAE females performing worse during long delays. CONCLUSIONS Taken together, these data demonstrate the utility of the TUNL task for examining PAE related alterations in hippocampal function and underline the need to examine sex-by-treatment interactions in these models.
Collapse
Affiliation(s)
- Johnny A Kenton
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Victoria K Castillo
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Penelope E Kehrer
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jonathan L Brigman
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
10
|
Sowell KD, Holt RR, Uriu-Adams JY, Chambers CD, Coles CD, Kable JA, Yevtushok L, Zymak-Zakutnya N, Wertelecki W, Keen CL. Altered Maternal Plasma Fatty Acid Composition by Alcohol Consumption and Smoking during Pregnancy and Associations with Fetal Alcohol Spectrum Disorders. J Am Coll Nutr 2020; 39:249-260. [PMID: 32240041 DOI: 10.1080/07315724.2020.1737984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Polyunsaturated fatty acids are vital for optimal fetal neuronal development. The relationship between maternal alcohol consumption and smoking with third trimester plasma fatty acids were examined and their association with Fetal Alcohol Spectrum Disorders (FASD).Methods: Moderate to heavy alcohol-using and low/unexposed comparison women were recruited during mid-pregnancy from two prenatal clinics in Ukraine. The participants' infants underwent physical and neurobehavioral exams prior to one-year of age and classified as having FASD by maternal alcohol consumption and neurobehavioral scores. A subset of mother-child pairs was selected representing three groups of cases and controls: Alcohol-Exposed with FASD (AE-FASD, n = 30), Alcohol-Exposed Normally Developing (AE-ND, n = 33), or Controls (n = 46). Third trimester maternal plasma samples were analyzed for fatty acids and levels were compared across groups.Results: The percent of C18:0 (p < 0.001), arachidonic acid (AA, C20:4n-6, p = 0.017) and C22:5n-6 (p = 0.001) were significantly higher in AE-FASD women than controls or AE-ND women. Alcohol-exposed women who smoked had lower C22:5n-3 (p = 0.029) and docosahexaenoic acid (DHA, C22:6n-3, p = 0.005) and higher C22:5n-6 (p = 0.013) than women consuming alcohol alone or abstainers.Conclusion: Alterations in fatty acid profiles were observed in moderate to heavy alcohol-consuming mothers with infants classified with FASD compared to alcohol-exposed normally developing infants or controls.
Collapse
Affiliation(s)
- Krista D Sowell
- Department of Health, Physical Education, and Sport Studies, Winston-Salem State University, Winston Salem, North Carolina, USA
| | - Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Janet Y Uriu-Adams
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Christina D Chambers
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA
| | - Claire D Coles
- Departments of Psychiatry and Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julie A Kable
- Departments of Psychiatry and Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lyubov Yevtushok
- OMNI-Net, Rivne & the Rivne Diagnostic Center, Rivne, Ukraine.,Department of Therapy No.1 and Medical Diagnostics, Lviv National Medical University, Lviv, Ukraine
| | | | - Wladimir Wertelecki
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
11
|
Olguin SL, Thompson SM, Young JW, Brigman JL. Moderate prenatal alcohol exposure impairs cognitive control, but not attention, on a rodent touchscreen continuous performance task. GENES BRAIN AND BEHAVIOR 2020; 20:e12652. [PMID: 32144885 DOI: 10.1111/gbb.12652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
A common feature associated with fetal alcohol spectrum disorders is the inability to concentrate on a specific task while ignoring distractions. Human continuous performance tasks (CPT), measure vigilance and cognitive control simultaneously while these processes are traditionally measured separately in rodents. We recently established a touchscreen 5-choice CPT (5C-CPT) that measures vigilance and cognitive control simultaneously by incorporating both target and nontargets and showed it was sensitive to amphetamine-induced improvement in humans and mice. Here, we examined the effects of moderate prenatal alcohol exposure (PAE) in male and female mice on performance of the 5-choice serial reaction time task (5-CSRTT), which contained only target trials, and the 5C-CPT which incorporated both target and nontarget trials. In addition, we assessed gait and fine motor coordination in behavioral naïve PAE and control animals. We found that on the 5-CSRTT mice were able to respond to target presentations with similar hit rates regardless of sex or treatment. However, on the 5C-CPT PAE mice made significantly more false alarm responses vs controls. Compared with control animals, PAE mice had a significantly lower sensitivity index, a measure of ability to discriminate appropriate responses to stimuli types. During 5C-CPT, female mice, regardless of treatment, also had increased mean latency to respond when correct and omitted more target trials. Gait assessment showed no significant differences in PAE and SAC mice on any measure. These findings suggest that moderate exposure to alcohol during development can have long lasting effects on cognitive control unaffected by gross motor alterations.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, New Mexico, USA
| | - Shannon M Thompson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jared W Young
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA.,Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
13
|
Marquardt K, Cavanagh JF, Brigman JL. Alcohol exposure in utero disrupts cortico-striatal coordination required for behavioral flexibility. Neuropharmacology 2019; 162:107832. [PMID: 31678398 DOI: 10.1016/j.neuropharm.2019.107832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Deficits in behavioral flexibility are a hallmark of multiple psychiatric, neurological, and substance use disorders. These deficits are often marked by decreased function of the prefrontal cortex (PFC); however, the genesis of such executive deficits remains understudied. Here we report how the most preventable cause of developmental disability, in utero exposure to alcohol, alters cortico-striatal circuit activity leading to impairments in behavioral flexibility in adulthood. We utilized a translational touch-screen task coupled with in vivo electrophysiology in adult mice to examine single unit and coordinated activity of the lateral orbital frontal cortex (OFC) and dorsolateral striatum (DS) during flexible behavior. Prenatal alcohol exposure (PAE) decreased OFC, and increased DS, single unit activity during reversal learning and altered the number of choice responsive neurons in both regions. PAE also decreased coordinated activity within the OFC and DS as measured by oscillatory field activity and altered spike-field coupling. Furthermore, PAE led to sustained connectivity between regions past what was seen in control animals. These findings suggest that PAE causes altered coordination within and between the OFC and DS, promoting maladaptive perseveration. Our model suggests that in optimally functioning mice OFC disengages the DS and updates the newly changed reward contingency, whereas in PAE animals, aberrant and persistent OFC to DS signaling drives behavioral inflexibility during early reversal sessions. Together, these findings demonstrate how developmental exposure alters circuit-level activity leading to behavioral deficits and suggest a critical role for coordination of neural timing during behaviors requiring executive function.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
14
|
Olguin SL, Zimmerman A, Zhang H, Allan A, Caldwell KC, Brigman JL. Increased Maternal Care Rescues Altered Reinstatement Responding Following Moderate Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1949-1956. [PMID: 31318985 DOI: 10.1111/acer.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) commonly include deficits in learning, memory, and executive control that can have a severe negative impact on quality of life across the life span. It is still unclear how prenatal alcohol exposure (PAE) affects executive control processes, such as control over reward seeking, that lead to inappropriate behavior later in life. Learning and reinstatement of a previously learned response after extinction is a simple, well-validated measure of both acquisition of a rewarded instrumental response and sensitivity to reward and reward-associated cues. We investigated the effects of PAE on learning, extinction, and reinstatement of a simple instrumental response for food reward. Next, we assessed the effectiveness of an early intervention, communal nest (CN) housing, on increased reinstatement of an extinguished response seen after PAE. METHODS To assess the effects of PAE on control over reward seeking, we tested male and female PAE and saccharine (SAC) controls raised in a standard nest (SN) on the acquisition, extinction, and food reward-induced reinstatement of an instrumental response utilizing a touch screen-based paradigm. Next, in order to examine the effects of an early-life intervention on these behaviors, we tested PAE and SAC mice raised in a CN early-life environment on these behaviors. RESULTS PAE mice readily acquired and extinguished a simple touch response to a white square stimulus. However, PAE mice showed significantly increased and persistent reinstatement compared to controls. Increased maternal care via rearing in CN slowed acquisition and sped extinction learning and rescued the significantly increased reinstatement responding in PAE mice. CONCLUSIONS Together these results demonstrate that even moderate PAE is sufficient to alter control over reward seeking as measured by reinstatement. Importantly, an early-life intervention previously shown to improve cognitive outcomes in PAE mice was sufficient to ameliorate this effect.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Amber Zimmerman
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Haikun Zhang
- Center for Brain Repair and Recovery, (HZ, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Andrea Allan
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Kevin C Caldwell
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Jonathan L Brigman
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico.,Center for Brain Repair and Recovery, (HZ, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
15
|
Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol 2016; 51:1-15. [PMID: 26992695 DOI: 10.1016/j.alcohol.2015.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD.
Collapse
|
16
|
Wellmann KA, George F, Brnouti F, Mooney SM. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure. Behav Brain Res 2015; 286:201-11. [PMID: 25746516 DOI: 10.1016/j.bbr.2015.02.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/17/2023]
Abstract
Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10 mg/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects.
Collapse
Affiliation(s)
- Kristen A Wellmann
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States.
| | - Finney George
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Fares Brnouti
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Sandra M Mooney
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States.
| |
Collapse
|
17
|
Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2014; 2:93. [PMID: 25232537 PMCID: PMC4153370 DOI: 10.3389/fped.2014.00093] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure. Each animal model and system of exposure has its place, depending on the research question being undertaken. In this review, we will examine the different routes of ethanol administration and the various animal models of fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning and memory, olfaction, social, executive, and motor functions. Special emphasis will be placed where the various animal models best represent deficits observed in the human condition and offer a viable test bed to examine potential therapeutics for human beings with FASD.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada
| | | | - Brian R Christie
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada ; Department of Biology, University of Victoria , Victoria, BC , Canada ; Program in Neuroscience, The Brain Research Centre, University of British Columbia , Vancouver, BC , Canada ; Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
18
|
Furuya H, Aikawa H, Yoshida T, Okazaki I. The use of docosahexaenoic acid supplementation to ameliorate the hyperactivity of rat pups induced by in utero ethanol exposure. Environ Health Prev Med 2012; 5:103-10. [PMID: 21432193 DOI: 10.1265/ehpm.2000.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/1999] [Accepted: 05/31/2000] [Indexed: 11/09/2022] Open
Abstract
It has been demonstrated thatin utero ethanol (EtOH) exposure induces hyperactive behavior and learning disturbances in offspring. In order to investigate the effects of docosahexaenoic acid (DHA) on these neurobehavioral dysfunctions of rat pups induced byin utero EtOH exposure, pregnant Wistar rats were divided into four treatment groups depending on the type of oil added to the diet and drinking water as follows; (a) 5% safflower oil with tap water (TW/n-6), (b) 3% safflower oil and 2% DHA with tap water (TW/n-3), (c) 5% safflower oil with 10%-EtOH (ET/n-6), (d) 3% safflower oil and 2% DHA with 10%-EtOH (ET/n-3) at gestational day (GD) 7.10%-EtOH was administered to dams in ET/n-6 and ET/n-3 groups from GD 7 to the pups' weaning (postnatal week 4), and all pups were fed with the same diet that was given to their dams during the entire examination period. The open-field test and the water E-maze test were conducted for all pups, and a spontaneous motor activity test and the Sidman electric shock avoidance test were performed for some of male pups. Amounts of monoamine metabolites in striatum were then determined, and fatty acid analyses of total brain lipids were performed.The male pups in the ET/n-6 group showed significandy more rearing and square-crossing movements in the open-field test, and significandy higher spontaneous motor activity during the dark period in the daily cycle compared to the males in the TW/n-6 group. The male pups in the ET/n-3 group showed fewer of these behaviors in the open-field test compared to the ET/n-6 group males, and a normal pattern of spontaneous motor activity.Learning disturbance induced byin utero EtOH exposure was not observed in the E-shaped water maze, but was observed in the avoidance rates in the Sidman electric shock avoidance test. However, there was no significant modifying effect of DHA on the avoidance rates in EtOH exposed pups.The analysis of the fatty acid composition of total lipids in the brains of the pups revealed high levels of DHA in the diet reflected an increased level of brain DHA and caused a decreased level of the brain arachidonic acid. Retroco nversion from DHA to eicosapentaenoic acid was also observed. However, there was no significant effect of DHA on the levels of monoamine metabolites.These results support the hypothesis that DHA can counteract the attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- H Furuya
- Department of Community Health, Division of Community and Environmental Health, Tokai University School of Medicine, 259-1193, Bohseidai Isehara, Kanagawa, Japan
| | | | | | | |
Collapse
|
19
|
Kavraal S, Oncu SK, Bitiktas S, Artis AS, Dolu N, Gunes T, Suer C. Maternal intake of Omega-3 essential fatty acids improves long term potentiation in the dentate gyrus and Morris water maze performance in rats. Brain Res 2012; 1482:32-9. [DOI: 10.1016/j.brainres.2012.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/03/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
20
|
Badanich KA, Becker HC, Woodward JJ. Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice. Behav Neurosci 2012; 125:879-91. [PMID: 22122149 DOI: 10.1037/a0025922] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, stroke or trauma-induced damage to the orbitofrontal cortex (OFC) or medial prefrontal cortex (mPFC) results in impaired cognitive flexibility. Alcoholics also exhibit similar deficits in cognitive flexibility, suggesting that the OFC and mPFC are susceptible to alcohol-induced dysfunction. The present experiments investigated this issue using an attention set-shifting assay in ethanol dependent adult male C57BL/6J mice. Ethanol dependence was induced by exposing mice to repeated cycles of chronic intermittent ethanol (CIE) vapor inhalation. Behavioral testing was conducted 72 hours or 10 days following CIE exposure to determine whether ethanol-induced changes in OFC-dependent (reversal learning) and mPFC-dependent (set-shifting) behaviors are long lasting. During early ethanol abstinence (72 hrs), CIE mice showed reduced reversal learning performance as compared to controls. Reversal learning deficits were revealed as greater number of trials to criterion, more errors made, and a greater difficulty in performing a reversal learning task relative to baseline performance. Furthermore, the magnitude of the impairment was greater during reversal of a simple discrimination rather than reversal of an intra-dimensional shift. Reversal learning deficits were no longer present when mice were tested 10 days after CIE exposure, suggesting that ethanol-induced changes in OFC function can recover. Unexpectedly, performance on the set-shifting task was not impaired during abstinence from ethanol. These data suggest reversal learning, but not attention set-shifting, is transiently disrupted during short-term abstinence from CIE. Given that reversal learning requires an intact OFC, these findings support the idea that the OFC may be vulnerable to the cognitive impairing actions of ethanol.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
21
|
Dobson CC, Mongillo DL, Poklewska-Koziell M, Winterborn A, Brien JF, Reynolds JN. Sensitivity of modified Biel-maze task, compared with Y-maze task, to measure spatial learning and memory deficits of ethanol teratogenicity in the guinea pig. Behav Brain Res 2012; 233:162-8. [PMID: 22562040 DOI: 10.1016/j.bbr.2012.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
Ethanol consumption during pregnancy can produce a variety of teratogenic effects in offspring, termed Fetal Alcohol Spectrum Disorders (FASD). The most debilitating and permanent consequence of chronic prenatal ethanol exposure (CPEE) is neurobehavioral teratogenicity, which often manifests as cognitive and behavioral impairments, including deficits in spatial learning and memory. This study tested the hypothesis that a modified dry-land version of the multi-choice Biel-maze task is more sensitive than the rewarded-alternation Y-maze task for the determination of spatial learning and memory deficits of ethanol teratogenicity. Pregnant guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (control) for 5days/week throughout gestation. CPEE resulted in ethanol neurobehavioral teratogenicity in offspring, as demonstrated by increased spontaneous locomotor activity at postnatal day (PD) 10 and decreased brain weight at euthanasia (PD 150-200). On PD 21, offspring were randomly assigned to one of two tasks to assess spatial learning and memory performance: a dry-land version of the Biel maze or a rewarded-alternation Y-maze. Animals were habituated to the environment of their assigned task and performance of each CPEE or control offspring was measured. In the modified Biel maze, CPEE and control offspring were not different for percent completed trials or time to complete a trial. However, CPEE offspring made more errors (reversals and entering dead ends) in the Biel maze, demonstrating impaired spatial learning and memory. In contrast, CPEE offspring did not have impaired performance of the rewarded-alternation Y-maze task. Therefore, the modified dry-land version of the Biel-maze task, which measures cognitive performance using a complex multi-choice design, is more sensitive in demonstrating CPEE-induced spatial learning and memory deficits compared with a simple, rewarded-alternation Y-maze task.
Collapse
Affiliation(s)
- Christine C Dobson
- Department of Biomedical and Molecular Sciences, Pharmacology and Toxicology Graduate Program, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Rezayof A, Motevasseli T, Rassouli Y, Zarrindast MR. Dorsal hippocampal dopamine receptors are involved in mediating ethanol state-dependent memory. Life Sci 2007; 80:285-92. [PMID: 17046026 DOI: 10.1016/j.lfs.2006.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic agents into the hippocampal CA1 regions (intra-CA1) on ethanol (EtOH) state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Pre-training intra-peritoneal (i.p.) administration of EtOH (0.25, 0.5 and 1 g/kg) dose dependently induced impairment of memory retention. Pre-test administration of EtOH (0.5 g/kg)-induced state-dependent retrieval of the memory acquired under pre-training EtOH (0.5 g/kg) influence. Intra-CA1 administration of the dopamine D(1) receptor agonist, SKF 38393 (0.5, 1 and 2 g/mouse) or the dopamine D(2) receptor agonist, quinpirole (0.25, 0.5 and 1 microg/mouse) alone cannot affect memory retention. While, pre-test intra-CA1 injection of SKF 38393 (2 microg/mouse, intra-CA1) or quinpirole (0.25, 0.5 and 1 microg/mouse, intra-CA1) improved pre-training EtOH (0.5 g/kg)-induced retrieval impairment. Moreover, pre-test administration of SKF 38393 (0.5, 1 and 2 microg/mouse, intra-CA1) or quinpirole (0.5 and 1 microg/mouse, intra-CA1) with an ineffective dose of EtOH (0.25 g/kg) significantly restored the retrieval and induced EtOH state-dependent memory. Furthermore, pre-training injection of the dopamine D(1) receptor antagonist, SCH 23390 (4 microg/mouse), but not the dopamine D(2) receptor antagonist, sulpiride, into the CA1 regions suppressed the learning of a single-trial passive avoidance task. Pre-test intra-CA1 injection of SCH 23390 (2 and 4 microg/mouse, intra-CA1) or sulpiride (2.5 and 5 microg/mouse, intra-CA1) 5 min before the administration of EtOH (0.5 g/kg, i.p.) dose dependently inhibited EtOH state-dependent memory. These findings implicate the involvement of a dorsal hippocampal dopaminergic mechanism in EtOH state-dependent memory and also it can be concluded that there may be a cross-state dependency between EtOH and dopamine.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Avoidance Learning/drug effects
- Central Nervous System Depressants/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Ethanol/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Injections, Intraperitoneal
- Injections, Intraventricular
- Male
- Memory/drug effects
- Mice
- Mice, Inbred Strains
- Quinpirole/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Sulpiride/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Ameneh Rezayof
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Brookes KJ, Chen W, Xu X, Taylor E, Asherson P. Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry 2006; 60:1053-61. [PMID: 16893529 DOI: 10.1016/j.biopsych.2006.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 01/10/2006] [Accepted: 04/13/2006] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fatty acids, in particular omega-3 fatty acids, have been found to affect behavior and cognition both directly and indirectly. Evidence to suggest a link with attention-deficit/hyperactivity disorder (ADHD) derives from three key areas: 1) animal dietary restriction studies observed increased locomotive hyperactivity and reduced cognitive ability in offspring; 2) animal dietary studies indicate alterations in the dopamine pathway; and 3) human studies report reduced plasma omega-3 fatty acids in ADHD subjects. METHODS We investigated three genes that encode essential enzymes (desaturases) for the metabolism of fatty acids by scanning for genetic association between 45 single nucleotide polymorphisms (SNPs) and ADHD. RESULTS Our findings suggest a significant association of ADHD with SNP rs498793 (case-control p = .004, odds ratio [OR] 1.6, 95% confidence interval [CI] 1.15-2.23; transmission disequilibrium test [TDT] p = .014, OR 1.69) in the fatty acid desaturase 2 (FADS2) gene. As alcohol is known to decrease the activities of these desaturase enzymes, we also tested for interactions between ADHD subjects' genotypes and maternal use of alcohol during pregnancy. Two SNPs in the fatty acid desaturase 1 (FADS1) gene were nominally associated with ADHD only in the prenatal alcohol-exposed group of children; formal test for interaction was not significant. CONCLUSIONS These preliminary findings are suggestive of an association between FADS2 and ADHD.
Collapse
Affiliation(s)
- Keeley J Brookes
- MRC Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
O'Leary-Moore SK, McMechan AP, Mathison SN, Berman RF, Hannigan JH. Reversal learning after prenatal or early postnatal alcohol exposure in juvenile and adult rats. Alcohol 2006; 38:99-110. [PMID: 16839856 DOI: 10.1016/j.alcohol.2006.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Learning tasks that require the reversal of a previously learned contingency are disrupted in animals and humans exposed to alcohol during the perinatal period. The current experiments examined how varying the time of alcohol exposure and the age at which subjects were tested would affect the expression of reversal deficits in a T-maze task. Groups of rats were exposed to alcohol from gestational day (GD) 8 to GD20 or from postnatal day (PN) 4 to PN9, and then tested in a spatial reversal task at either PN28 or PN63. Results indicate that exposure to alcohol during the prenatal period did not lead to substantial dose-dependent reversal learning deficits in males or females at either age tested. However, exposure to alcohol during the early postnatal period, a period that corresponds to the third trimester in human neural development, selectively disrupted reversal learning performance in male rats at PN28 but not PN63. Statistically significant sex differences were seen when subjects were tested at PN63. These results demonstrate how the timing of alcohol exposure leads to variability in the age-dependent expression of learning deficits associated with fetal alcohol effects.
Collapse
Affiliation(s)
- Shonagh K O'Leary-Moore
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth & Development, 275 East Hancock, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
25
|
Fraser M, Wainwright PE. A study of the behavioral effects of prenatal ethanol exposure in mice fed a diet marginally deficient in essential fatty acids for two generations. Nutr Neurosci 2002; 4:445-59. [PMID: 11843264 DOI: 10.1080/1028415x.2001.11747380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study investigated the effects of prenatal ethanol exposure on measures of fecundity, growth, behavioral development and learning in mice that had been fed a diet, marginal in essential fatty acid (EFA) content for two generations. The first generation of mice were fed one of two diets (adequate or marginal EFA) from conception. They were mated at 10 weeks, and from days 5 to 17 of gestation dams on each diet were fed equivalent daily amounts of a liquid diet containing either 22.5% of the calories as ethanol or with maltose-dextrin substituted isocalorically for ethanol. An additional control group was fed lab chow ad libitum. Offspring were maintained on their respective diets after weaning. The marginal-EFA diet led to a large increase in perinatal mortality; it also decreased body and brain weight in the surviving pups, and retarded behavioural development. Ethanol retarded behavioral development in females, and delayed the acquisition of learning the position of an escape platform in a T water-maze in the mice fed the adequate-EFA diet. The effects of ethanol did not appear to be worse in the mice fed the marginal-EFA diet, but these data must be considered in light of the high mortality on this diet, where only the healthiest pups may have survived.
Collapse
Affiliation(s)
- M Fraser
- Department of Health Studies and Gerontology, University of Waterloo, Ont., Canada
| | | |
Collapse
|
26
|
Abstract
This paper addresses the importance of considering nutritional factors as a source of variability in studies of behavioural development in mice. Work in our laboratory, using a standardised developmental scale that allows quantitative comparisons among different studies, indicates that nutritional factors do have the propensity to influence behavioural development to a degree similar to that seen with some genotypic manipulations. These nutritional factors encompass both undernutrition, which entails an overall reduction in nutrient and caloric intake, and malnutrition, which refers to a dietary imbalance, i.e. a deficiency (or excess) of specific macro- or micronutrients. As an example of malnutrition, we describe investigations in mice that address the role of the essential fatty acids in brain and behavioural development. These show that manipulations of dietary lipid composition that are in the same range that one would find among commercial laboratory diets influence not only behavioural development, but also performance on other behavioural tasks. This suggests that detailed dietary information may be useful in the attempt to characterise the sources of variation in the behavioural phenotypes of mice.
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
27
|
Wauben IP, Xing HC, McCutcheon D, Wainwright PE. Dietary trans fatty acids combined with a marginal essential fatty acid status during the pre- and postnatal periods do not affect growth or brain fatty acids but may alter behavioral development in B6D2F(2) mice. J Nutr 2001; 131:1568-73. [PMID: 11340117 DOI: 10.1093/jn/131.5.1568] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate whether dietary trans fatty acids (TFA) during the pre- and postnatal periods would exacerbate the effects of marginal essential fatty acid (EFA) status on growth, brain long-chain polyunsaturated fatty acids (LC-PUFA) and behavioral development in B6D2F(2) mice. Pregnant B6D2F(1) females were randomly assigned to one of the following three diets: marginal EFA plus 22% trans 18:1 (mEFA + TFA); marginal EFA (mEFA); and control (CON). The total 18:1 content in all diets was similar. The offspring were weaned and maintained on the same diets. Both the mEFA and mEFA + TFA groups had reduced growth and brain weight compared with CON, but did not differ from one another. As expected, the mEFA and mEFA + TFA groups had reduced docosahexaenoic acid [DHA; 22:6(n-3)]) and increased 22:5(n-6) concentrations in brain phosphatidylcholine (PC) and phosphatidylethanolamine (PE) compared with the CON group, but again did not differ from one another. Reversal learning in the T-water maze was significantly slower in the mEFA + TFA groups compared with the mEFA group and both were slower than the CON group. These findings illustrate that TFA combined with a marginal EFA status do not exacerbate the effects of marginal EFA status on growth or brain LC-PUFA. However, long-term effects of dietary TFA during the pre- and postnatal period on behavioral development and neural function should be investigated in future studies.
Collapse
Affiliation(s)
- I P Wauben
- Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Canada N2L 3G1
| | | | | | | |
Collapse
|
28
|
Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N. Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 2001; 34 Suppl:S239-43. [PMID: 10419165 DOI: 10.1007/bf02562305] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Studies were carried out to determine if decreased levels of central nervous system docosahexaenoic acid (DHA), a result of consuming an n-3-deficient diet, had an effect on learning- and memory-related behaviors in adult male rats. Females were reared on an n-3-deficient or n-3-adequate diet beginning at 21 d of life. Their male pups, the F2 generation, were weaned to the diet of the dam and tested at 9-12 wk of age. An olfactory-based discrimination and Morris water maze task were used to assess performance. Whole brain was collected after the behavioral experiments and central nervous system fatty acid content was analyzed in olfactory bulb total lipid extracts. F2 generation male rats consuming the n-3-deficient diet had an 82% decrease in DHA compared to rats consuming the n-3-adequate diet. The n-3-deficient animals made significantly more total errors in a 7-problem, 2-odor discrimination task compared to the n-3-adequate group. Furthermore, the escape latency in the Morris water maze task was significantly longer for the n-3-deficient rats compared to the n-3-adequate rats. These results indicate that rats with decreased DHA levels in the central nervous system perform poorer in these tasks compared to rats with higher DHA levels and suggest the presence of learning deficits in these animals.
Collapse
Affiliation(s)
- R S Greiner
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Division on Intramural Clinical and Biological Research, Rockville, Maryland 20852, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Prenatal exposure to alcohol can result in fetal alcohol syndrome (FAS), characterized by growth retardation, facial dysmorphologies, and a host of neurobehavioral impairments. Neurobehavioral effects in FAS, and in alcohol-related neurodevelopmental disorder, include poor learning and memory, attentional deficits, and motor dysfunction. Many of these behavioral deficits can be modeled in rodents. This paper reviews the literature suggesting that many fetal alcohol effects result, at least in part, from teratogenic effects of alcohol on the hippocampus. Neurobehavioral studies show that animals exposed prenatally to alcohol are impaired in many of the same spatial learning and memory tasks sensitive to hippocampal damage, including T-mazes, the Morris water maze, and the radial arm maze. Direct evidence for hippocampal involvement is provided by neuroanatomical studies of the hippocampus documenting reduced numbers of neurons, lower dendritic spine density on pyramidal neurons, and decreased morphological plasticity after environmental enrichment in rats exposed prenatally to alcohol. Electrophysiological studies also demonstrate changes in synaptic activity in in vitro hippocampal brain slices isolated from prenatal alcohol-exposed animals. Considered together, these observations demonstrate that prenatal exposure to alcohol can result in abnormal hippocampal development and function. Such studies provide a better understanding of neurological deficits associated with FAS in humans, and may also contribute to the development of strategies to ameliorate the effects of prenatal alcohol exposure on behavior.
Collapse
Affiliation(s)
- R F Berman
- Department of Neurological Surgery, Center for Neuroscience, University of California at Davis, 95616, USA.
| | | |
Collapse
|
30
|
Wainwright P. Chapter 4.9 Methodological issues in the assessment of behavioral development in laboratory mice. HANDBOOK OF MOLECULAR-GENETIC TECHNIQUES FOR BRAIN AND BEHAVIOR RESEARCH 1999. [DOI: 10.1016/s0921-0709(99)80055-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Stone WS, Altman HJ, Hall J, Arankowsky-Sandoval G, Parekh P, Gold PE. Prenatal exposure to alcohol in adult rats: relationships between sleep and memory deficits, and effects of glucose administration on memory. Brain Res 1996; 742:98-106. [PMID: 9117426 DOI: 10.1016/s0006-8993(96)00976-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies show that prenatal exposure to alcohol results in sleep deficits in rats, including reductions in paradoxical sleep. Little is known, however, about the extent or duration of sleep impairments beyond the neonatal period. The present experiment examined effects of prenatal exposure on sleep in young adulthood. Three-hour, daytime sleep EEGs were obtained in 6-month-old female rats prenatally exposed to alcohol. Compared to isocaloric pair-fed and ad libitum control groups, the alcohol-exposed group showed reduced paradoxical sleep. Non-paradoxical sleep did not differ between groups. Concurrent deficits were obtained in radial arm maze, but not inhibitory (passive) avoidance, performance. One year later, at the age of 18 months, alcohol-exposed rats showed deficits in spontaneous alternation behavior which were reversed by administration of glucose (100 mg/kg). Deficits in paradoxical sleep at 6 months of age were highly correlated with deficits in spontaneous alternation behavior at 18 months of age, in individual, alcohol-exposed animals. These results provide the first evidence that prenatal exposure to alcohol results in selective and persistent deficits in sleep. They also show that measures of paradoxical sleep can predict impaired memory over a large portion of the life span, and suggest that glucose can attenuate memory deficits in this population.
Collapse
Affiliation(s)
- W S Stone
- Department of Psychology, University of Virginia, Charlottesville 22903, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The deleterious effects of prenatal ethanol exposure have been extensively documented in clinical and experimental studies. This paper provides an overview of work conducted with mice to examine the myriad of adverse consequences that result from embryonic/fetal exposure to ethanol. All of the hallmark features of the clinical fetal alcohol syndrome have been demonstrated in mice, including prenatal and postnatal growth retardation, structural malformations and behavioral abnormalities associated with central nervous system dysfunction. As expected, the severity and profile of effects is related to both dosage level and timing of exposure. In addition, these effects have been demonstrated following acute and chronic exposure, with a variety of routes of administration employed. Furthermore, a number of strains have been used in these studies and the variant response (susceptibility) to the teratogenic actions of ethanol exhibited among different mouse strains support the notion that genetic factors govern, at least in part, vulnerability to these effects of ethanol. More recent studies using mouse models have focused on examining potential mechanisms underlying the full spectrum of ethanol's teratogenic actions.
Collapse
Affiliation(s)
- H C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA
| | | | | |
Collapse
|
33
|
Abstract
The substantial advances in understanding fetal alcohol syndrome over the past 20 years were made in large part because of research with animals. This review illustrates recent progress in animal research by focusing primarily on the central nervous system effects of prenatal alcohol exposure. Current findings suggest further progress in understanding consequences, risk factors, mechanisms, prevention and treatment will depend on continued research with animals.
Collapse
Affiliation(s)
- J H Hannigan
- Wayne State University School of Medicine, C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Hannigan JH. Effects of prenatal exposure to alcohol plus caffeine in rats: pregnancy outcome and early offspring development. Alcohol Clin Exp Res 1995; 19:238-46. [PMID: 7771655 DOI: 10.1111/j.1530-0277.1995.tb01498.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The factors determining susceptibility to fetal alcohol syndrome (FAS) are not fully understood. We used an animal model of alcohol-related birth defects to assess the coteratogenic potential of caffeine as a risk factor in FAS. Rats were exposed prenatally to alcohol (approximately 15 g/kg/day) with or without caffeine (approximately 84 mg/kg/day) from gestation days 6 through 20 via liquid diet. All control groups were pair-fed to the alcohol-exposed groups. In addition, some controls had free access to lab chow and water. Prenatal exposure to alcohol or caffeine reduced both maternal weight gain during pregnancy and birth-weight of offspring. The combination of alcohol plus caffeine produced an additive effect in reducing birthweight and synergistic effects in increasing postnatal offspring mortality. Prenatal alcohol exposure had a significant negative impact on several developmental indices, including grip strength and negative geotaxis. Prenatal caffeine exposure did not affect maturational measures and did reduce offspring serum levels of the zinc-dependent enzyme alkaline phosphatase. This study in rats demonstrated that caffeine can exacerbate some of the effects of alcohol on prenatal development, specifically reduced birthweight, litter size, and postnatal survival, but that caffeine does not appear to alter prenatal alcohol-induced delays in early postnatal maturation of survivors. The relative impact of intralitter birthweight rank on developmental outcome was also assessed.
Collapse
Affiliation(s)
- J H Hannigan
- Fetal Alcohol Research Center, C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
35
|
Wainwright PE, Lévesque S, Krempulec L, Bulman-Fleming B, McCutcheon D. Effects of environmental enrichment on cortical depth and Morris-maze performance in B6D2F2 mice exposed prenatally to ethanol. Neurotoxicol Teratol 1993; 15:11-20. [PMID: 8459783 DOI: 10.1016/0892-0362(93)90040-u] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pregnant mice were fed a liquid diet with 25% of the calories as ethanol from day 5 to 17 of gestation; controls received equivalent amounts of diet with maltose-dextrin substituted isocalorically for the ethanol. Two male weanlings from each litter were assigned randomly to an enriched or isolated environmental condition. After 6 weeks in these environments measures of brain growth were obtained, including thickness of frontal, parietal, and occipital cortex (study 1), or their behavioral capabilities were assessed in a Morris water maze (study 2). Ethanol decreased birth weight (both studies), postweaning body weight (study 2), and brain weight (study 1), while the enriched animals in both studies were heavier. Ethanol decreased the thickness of the occipital cortex only. All groups demonstrated learning by showing a decrease in latency to locate the hidden platform over the 5 days of testing; this was supported by their spending most time in the target quadrant during the probe trial. The latencies of the enriched animals were shorter than the isolated; covariance analysis indicated that this was not due solely to their faster swimming speed.
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Abstract
The membrane phospholipids of the brain contain high levels of polyunsaturated fatty acids (PUFA), particularly arachidonic acid, 20:4n-6 and docosahexaenoic acid, 22:6n-3. These long-chain PUFA are synthesized from their respective essential fatty acid (EFA) precursors, linoleic acid, 18:2n-6 and linolenic acid, 18:3n-3. Although the necessity of n-6 fatty acids for optimum growth has been established, a similar requirement for those of the n-3 family is less clear. The rapid accumulation of the long-chain n-3 PUFA in the brain during prenatal and preweaning development suggests that the provision of n-3 fatty acids to the developing brain may be necessary for normal growth and functional development. The intent of this review is to assess the experimental work which addresses this question, most of which has been conducted on rodents. The emphasis will be on studies which measure behavioral outcomes, and particular attention will be paid to methodological issues which affect the interpretation of these data. An integration of the research findings will be presented and discussed in light of possible implications for therapeutic interventions.
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies, University of Waterloo, Ontario, Canada
| |
Collapse
|
37
|
Wainwright PE, Huang YS, Bulman-Fleming B, Dalby D, Mills DE, Redden P, McCutcheon D. The effects of dietary n-3/n-6 ratio on brain development in the mouse: a dose response study with long-chain n-3 fatty acids. Lipids 1992; 27:98-103. [PMID: 1579061 DOI: 10.1007/bf02535807] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study examines the effects of the ratio of n-3/n-6 fatty acids (FA) on brain development in mice when long-chain n-3 FA are supplied in the diet. From conception until 12 days after birth, B6D2F1 mice were fed liquid diets, each providing 10% of energy from olive oil, and a further 10% from different combinations of free FA concentrates derived from safflower oil (18:2n-6), and fish oil (20:5n-3 and 22:6n-3). The range of dietary n-3/n-6 ratios was 0, 0.25, 0.5, 1.0, 2.0 and 4.0, with an n-6 content of greater than 1.5% of energy in all diets, and similar levels of total polyunsaturated fatty acids (PUFA). In an additional group of ratio 0.5, 18:2n-6 was partially replaced by its delta 6 desaturation product, 18:3n-6. Biochemical analyses were conducted on 12-day-old pup brains, as well as on samples of maternal milk. No obvious effects on overall pup growth and development were observed, apart from a smaller litter size at ratio 1. Co-variance analysis indicated that increasing the n-3/n-6 ratio was associated with slightly smaller brains, relative to body weight. We found that 18:2n-6 and 20:5n-3 were the predominant n-6 and n-3 FA in the milk; in the brain these were 20:4n-6 and 22:6n-3, respectively. Increasing dietary n-3/n-6 ratios generally resulted in an increase in n-3 FA, with a corresponding decrease in n-6 FA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies, University of Waterloo, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Wainwright PE, Huang YS, Bulman-Fleming B, Mills DE, Redden P, McCutcheon D. The role of n-3 essential fatty acids in brain and behavioral development: a cross-fostering study in the mouse. Lipids 1991; 26:37-45. [PMID: 1828850 DOI: 10.1007/bf02544022] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cross-fostering design was used to examine the effects on brain and behavioral development in mice of pre- and/or postnatal dietary supplementation with n-3 fatty acids. Pregnant mice were fed either of two liquid diets, control (con) or experimental (exp). Each diet provided 3% of the calories in the form of n-6 fatty acids; the experimental diet was supplemented with an additional 1.5% from long chain n-3 fatty acids derived from fish oil. There were four treatment groups, with all pups fostered at birth. These groups were (prenatal diet/postnatal diet): Group 1. exp/exp; Group 2, exp/con; Group 3, con/exp; Group 4, con/con; a fifth control group (unfostered) was fed lab chow (LC) throughout the study. Animals from the exp/exp and con/con groups were weaned onto lab chow for later behavioral assessment. Prenatal n-3 supplementation resulted in a small acceleration of behavioral development. The adult animals did not differ on visual discrimination learning nor did they differ in visual acuity. During development the fatty acid composition of the brain membrane phospholipids reflected closely that of the pre- and postnatal dietary conditions. Levels of 22:5n-3 and 22:6n-3 increased in the n-3 supplemented groups, accompanied by a decrease in levels of 22:4n-6 and 22:5n-6; the net effect of these changes was to increase the total levels of C22 fatty acids. While these results support considerable plasticity of the fatty acid composition of the developing brain with respect to the immediate dietary availability of n-3 compounds, they do not support long term effects on learning capacity of n-3 supplementation during the developmental period.
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies, University of Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Wainwright PE, Huang YS, Simmons V, Mills DE, Ward RP, Ward GR, Winfield D, McCutcheon D. Effects of prenatal ethanol and long-chain n-3 fatty acid supplementation on development in mice. 2. Fatty acid composition of brain membrane phospholipids. Alcohol Clin Exp Res 1990; 14:413-20. [PMID: 2143055 DOI: 10.1111/j.1530-0277.1990.tb00496.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pregnant mice were fed equivalent daily amounts of a liquid diet containing 25% (kcal) ethanol, or with maltose dextrin substituted isocalorically for ethanol. The diet also contained 20% oil; this was either of two mixtures, one comprised of predominantly n-6 (18:2n-6) fatty acids, and the other containing an equivalent amount of n-6, but supplemented with a source of long chain n-3 (20:5n-3, 22:6n-3) fatty acids. An additional control group was fed lab chow ad libitum. The treatment was implemented from day 7 to 17 of gestation, whereafter all groups were fed lab chow. Birth occurred on day 19, and the fatty acid composition of the brain membrane phospholipids was determined in the pups 3 days after birth (day 22 postconception) and again, 10 days later (day 32 postconception). On day 22 the polyunsaturated fatty acid (PUFA) composition of the brain phospholipids reflected dietary availability, with the n-3/n-6 ratio higher in the n-3 groups; this was decreased by ethanol in the phosphatidylcholine (PC) fraction. The dietary effect was still apparent on day 32; again ethanol reduced this in both the PC and phosphatidylethanolamine (PE) fractions. The n-3 oil, but not ethanol, increased the 20:3n-6/20:4n-6 ratio, indicative of an inhibition of the activity of delta-5 desaturase. With respect to the 22:C compounds, the n-3 oil decreased the levels of 22:5n-6, while increasing those of 22:6n-3, but generally the sum of these two fatty acids remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies, University of Waterloo, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|