1
|
Sanchez LM, Acosta G, Cushing SD, Johnson SA, Turner SM, Davies S, Savage DD, Burke SN, Clark BJ. The effects of moderate prenatal alcohol exposure on performance in object and spatial discrimination tasks by adult male rats. Behav Brain Res 2025; 478:115324. [PMID: 39521144 PMCID: PMC11606775 DOI: 10.1016/j.bbr.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Exposure to alcohol during pregnancy produces Fetal Alcohol Spectrum Disorders, which in its most severe form is characterized by physical dysmorphology and neurobehavioral alterations. Moderate prenatal alcohol exposure (mPAE) is known to produce deficits in discrimination of spatial locations in adulthood. However, the impact of mPAE on higher-order sensory representations, such as discrimination of perceptually similar stimuli, is currently unknown. In the present study, we tested the hypothesis that mPAE would disrupt performance on hippocampal-sensitive tasks that require discrimination between perceptually similar objects or discrimination between spatial locations in a radial arm maze. Here we report that male mPAE rats exhibited intact performance on three types of object discrimination tasks: one in which rats discriminated between distinct toy objects, a second in which discrimination was made between distinct and similar LEGO objects, and a mnemonic similarity task in which rats discriminated between randomly presented LEGO objects that varied in similarity with a learned object. Although adult male mPAE rats performed similarly to control rats on all three object discrimination tasks, they showed deficits when tested in a radial arm maze spatial discrimination task. Specifically, male mPAE rats expressed a significantly higher number of working memory errors (returns to previously visited arms) and were more likely to use non-spatial strategies during training. Together, the findings of the present study support the conclusion that mPAE produces specific deficits in the online processing of spatial information and executing spatial navigation strategies, but spares the ability to discriminate between perceptually similar stimuli.
Collapse
Affiliation(s)
- Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah D Cushing
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah A Johnson
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
2
|
Acosta G, Rico KT, Madden JT, LaCour A, Wang E, Sanchez LM, Davies S, Maestas-Olguin C, Cox KB, Reyna NC, Hogeveen J, Savage DD, Pentkowski NS, Clark BJ. The effects of moderate prenatal alcohol exposure on performance in hippocampal-sensitive spatial memory and anxiety tasks by adult male and female rat offspring. Alcohol 2024; 121:75-86. [PMID: 39122134 PMCID: PMC11637952 DOI: 10.1016/j.alcohol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Moderate prenatal alcohol exposure (mPAE) results in structural alterations to the hippocampus. Previous studies have reported impairments in hippocampal-sensitive tasks, but have not compared performance between male and female animals. In the present study, performance in hippocampal-sensitive spatial memory and anxiety behavior tests were compared across adult male and female saccharin (SACC) control mPAE Long-Evans rat offspring. Two tests of spatial memory were conducted that were aimed at assessing memory for recently acquired spatial information: A delayed spatial alternation task using an M-shaped maze and a delayed match-to-place task in the Morris water task. In both tasks, rats in SACC and mPAE groups showed similar learning and retention of a spatial location even after a 2-h interval between encoding and retention. A separate group of adult male and female SACC and mPAE rat offspring were tested for anxiety-like behaviors in the elevated plus-maze paradigm. In this test, both male and female mPAE rats exhibited a significantly greater amount of time and a greater number of head dips in the open arms, while locomotion and open arm entries did not differ between groups. The results suggest that mPAE produces a reduction in anxiety-like behaviors in both male and female rats in the elevated plus-maze.
Collapse
Affiliation(s)
- Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Kehiry Trejo Rico
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Ariyana LaCour
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Enhui Wang
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Kayla B Cox
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Nicole C Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Goncalves-Garcia M, Davies S, Savage DD, Hamilton DA. The histamine H 3 receptor inverse agonist SAR-152954 reverses deficits in long-term potentiation associated with moderate prenatal alcohol exposure. Alcohol 2024; 118:45-55. [PMID: 38705312 PMCID: PMC11409852 DOI: 10.1016/j.alcohol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.
Collapse
Affiliation(s)
| | - Suzy Davies
- Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daniel D Savage
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Derek A Hamilton
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Candelaria-Cook FT, Schendel ME, Romero LL, Cerros C, Hill DE, Stephen JM. Sex-specific Differences in Resting Oscillatory Dynamics in Children with Prenatal Alcohol Exposure. Neuroscience 2024; 543:121-136. [PMID: 38387734 PMCID: PMC10954390 DOI: 10.1016/j.neuroscience.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
At rest children with prenatal alcohol exposure (PAE) exhibit impaired static and dynamic functional connectivity, along with decreased alpha oscillations. Sex-specific information regarding the impact of PAE on whole-brain resting-state gamma spectral power remains unknown. Eyes-closed and eyes-open MEG resting-state data were examined in 83 children, ages 6-13 years of age. Using a matched design, the sample consisted of 42 typically developing children (TDC) (22 males/20 females) and 41 children with PAE and/or a fetal alcohol spectrum disorders (FASD) diagnosis (21 males/20 females). Whole-brain source resting-state spectral power was examined to determine group and sex specific relationships. Within gamma, we found sex and group specific changes such that female participants with PAE/FASD had increased gamma power when compared to female TDC and male participants with PAE/FASD. These differences were detected in most source regions analyzed during both resting-states, and were observed across the age spectrum examined. Within delta, we found sex and group specific changes such that female participants with PAE/FASD had decreased delta power when compared to female TDC and male participants with PAE/FASD. The reduced delta oscillations in female participants with PAE/FASD were detected in several source regions during eyes-closed rest and were evident at younger ages. These results indicate PAE alters neural oscillations during rest in a sex-specific manner, with females with PAE/FASD showing the largest perturbations. These results further demonstrate PAE has global effects on resting-state spectral power and connectivity, creating long-term consequences by potentially disrupting the excitation/inhibition balance in the brain, interrupting normative neurodevelopment.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda L Romero
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
5
|
Smimih K, El-Mansoury B, Saad FEZ, Khanouchi M, El Amine S, Aimrane A, Zouhairi N, Ferssiwi A, Bitar A, Merzouki M, El Hiba O. Sensory Motor Function Disturbances in Mice Prenatally Exposed to Low Dose of Ethanol: A Neurobehavioral Study in Postnatal and Adult Stages. Neurol Int 2023; 15:580-594. [PMID: 37092508 PMCID: PMC10123635 DOI: 10.3390/neurolint15020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prenatal alcohol exposure (PAE) refers to fetal exposure to alcohol during pregnancy through placental barrier transfer from maternal blood. The postnatal outcomes of PAE differ among exposed individuals and range from overt (serious) alcohol-related behavioral and neurophysiological impairments to covert (silenced) symptoms. The aims of the present investigation were to assess the postnatal neurobehavioral disturbances, particularly, motor coordination and sensory-motor function in mice with PAE. Female mice with positive vaginal plugs were divided into three groups: group 1: Et + Pyr: received two i.p injections of ethanol (1 g/kg) followed by pyrazole (100 mg/kg). Group 2: Pyr: received an i.p injection of pyrazole (100 mg/kg). Group 3: C: of saline controls received, in equal volume, saline solution (NaCl 0.9%). After birth, mice pups were weighed and subjected to behavioral tests for motor function screening using the motor ambulation test, cliff aversion, surface righting, and negative geotaxis, while at the adult stage, mice were subjected to the open field, rotarod, parallel bars, and static rods tests. Our data show an obvious decrement of body weight from the first post-natal day (P1) and continues over the adult stage. This was accompanied by an obvious impaired sensory-motor function which was maintained even at the adult stage with alteration of the locomotor and coordination abilities. The current data demonstrate the powerful neurotoxic effect of prenatal ethanol exposure on the sensory-motor and coordination functions, leading to suppose possible structural and/or functional neuronal disturbances, particularly the locomotor network.
Collapse
Affiliation(s)
- Kamal Smimih
- Biological Engineering Laboratory, Faculty of Sciences and Techniques (FST), Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Fatima Ez-Zahraa Saad
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Manal Khanouchi
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Souad El Amine
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Abdelmohcine Aimrane
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Nadia Zouhairi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques (FST), Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Abdessalam Ferssiwi
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Abdelali Bitar
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Mohamed Merzouki
- Biological Engineering Laboratory, Faculty of Sciences and Techniques (FST), Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| |
Collapse
|
6
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Hill DE, Stephen JM. Disrupted dynamic functional network connectivity in fetal alcohol spectrum disorders. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:687-703. [PMID: 36880528 PMCID: PMC10281251 DOI: 10.1111/acer.15046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in harmful and long-lasting neurodevelopmental changes. Children with PAE or a fetal alcohol spectrum disorder (FASD) have decreased white matter volume and resting-state spectral power compared to typically developing controls (TDC) and impaired resting-state static functional connectivity. The impact of PAE on resting-state dynamic functional network connectivity (dFNC) is unknown. METHODS Using eyes-closed and eyes-open magnetoencephalography (MEG) resting-state data, global dFNC statistics and meta-states were examined in 89 children aged 6-16 years (51 TDC, 38 with FASD). Source analyzed MEG data were used as input to group spatial independent component analysis to derive functional networks from which the dFNC was calculated. RESULTS During eyes-closed, relative to TDC, participants with FASD spent a significantly longer time in state 2, typified by anticorrelation (i.e., decreased connectivity) within and between default mode network (DMN) and visual network (VN), and state 4, typified by stronger internetwork correlation. The FASD group exhibited greater dynamic fluidity and dynamic range (i.e., entered more states, changed from one meta-state to another more often, and traveled greater distances) than TDC. During eyes-open, TDC spent significantly more time in state 1, typified by positive intra- and interdomain connectivity with modest correlation within the frontal network (FN), while participants with FASD spent a larger fraction of time in state 2, typified by anticorrelation within and between DMN and VN and strong correlation within and between FN, attention network, and sensorimotor network. CONCLUSIONS There are important resting-state dFNC differences between children with FASD and TDC. Participants with FASD exhibited greater dynamic fluidity and dynamic range and spent more time in states typified by anticorrelation within and between DMN and VN, and more time in a state typified by high internetwork connectivity. Taken together, these network aberrations indicate that prenatal alcohol exposure has a global effect on resting-state connectivity.
Collapse
Affiliation(s)
| | - Megan E. Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dina E. Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Julia M. Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Basavarajappa BS, Subbanna S. Synaptic Plasticity Abnormalities in Fetal Alcohol Spectrum Disorders. Cells 2023; 12:442. [PMID: 36766783 PMCID: PMC9913617 DOI: 10.3390/cells12030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The brain's ability to strengthen or weaken synaptic connections is often termed synaptic plasticity. It has been shown to function in brain remodeling following different types of brain damage (e.g., drugs of abuse, alcohol use disorders, neurodegenerative diseases, and inflammatory conditions). Although synaptic plasticity mechanisms have been extensively studied, how neural plasticity can influence neurobehavioral abnormalities in alcohol use disorders (AUDs) is far from being completely understood. Alcohol use during pregnancy and its harmful effects on the developing offspring are major public health, social, and economic challenges. The significant attribute of prenatal alcohol exposure on offspring is damage to the central nervous system (CNS), causing a range of synaptic structural, functional, and behavioral impairments, collectively called fetal alcohol spectrum disorder (FASD). Although the synaptic mechanisms in FASD are limited, emerging evidence suggests that FASD pathogenesis involves altering a set of molecules involved in neurotransmission, myelination, and neuroinflammation. These studies identify several immediate and long-lasting changes using many molecular approaches that are essential for synaptic plasticity and cognitive function. Therefore, they can offer potential synaptic targets for the many neurobehavioral abnormalities observed in FASD. In this review, we discuss the substantial research progress in different aspects of synaptic and molecular changes that can shed light on the mechanism of synaptic dysfunction in FASD. Increasing our understanding of the synaptic changes in FASD will significantly advance our knowledge and could provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
8
|
Burke MW, Slimani H, Ptito M, Ervin FR, Palmour RM. Dose-Related Reduction in Hippocampal Neuronal Populations in Fetal Alcohol Exposed Vervet Monkeys. Brain Sci 2022; 12:1117. [PMID: 36138853 PMCID: PMC9496786 DOI: 10.3390/brainsci12091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a chronic debilitating condition resulting in behavioral and intellectual impairments and is considered the most prevalent form of preventable mental retardation in the industrialized world. We previously reported that 2-year-old offspring of vervet monkey (Chlorocebus sabeus) dams drinking, on average, 2.3 ± 0.49 g ethanol per Kg maternal body weight 4 days per week during the last third of pregnancy had significantly lower numbers of CA1 (-51.6%), CA2 (-51.2%) and CA3 (-42.8%) hippocampal neurons, as compared to age-matched sucrose controls. Fetal alcohol-exposed (FAE) offspring also showed significantly lower volumes for these structures at 2 years of age. In the present study, we examined these same parameters in 12 FAE offspring with a similar average but a larger range of ethanol exposures (1.01-2.98 g/Kg/day; total ethanol exposure 24-158 g/Kg). Design-based stereology was performed on cresyl violet-stained and doublecortin (DCX)-immunostained sections of the hippocampus. We report here significant neuronal deficits in the hippocampus with a significant negative correlation between daily dose and neuronal population in CA1 (r2 = 0.486), CA2 (r2 = 0.492), and CA3 (r2 = 0.469). There were also significant correlations between DCX population in the dentate gyrus and daily dose (r2 = 0.560). Both correlations were consistent with linear dose-response models. This study illustrates that neuroanatomical sequelae of fetal ethanol exposure are dose-responsive and suggests that there may be a threshold for this effect.
Collapse
Affiliation(s)
- Mark W. Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA
| | - Hocine Slimani
- School of Optometry and Department of Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Maurice Ptito
- School of Optometry and Department of Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Neuroscience, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frank R. Ervin
- Behavioural Science Foundation, St. Kitts, Saint Kitts and Nevis
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC H3A 1A1, Canada
| | - Roberta M. Palmour
- Behavioural Science Foundation, St. Kitts, Saint Kitts and Nevis
- Departments of Human Genetics and Psychiatry, Faculty of Medicine, McGill University, Montréal, QC H3A 1A1, Canada
| |
Collapse
|
9
|
Grafe EL, Fontaine CJ, Thomas JD, Christie BR. Effects of prenatal ethanol exposure on choline-induced long-term depression in the hippocampus. J Neurophysiol 2021; 126:1622-1634. [PMID: 34495785 DOI: 10.1152/jn.00136.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.
Collapse
Affiliation(s)
- Erin L Grafe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Department of Psychology, San Diego State University, San Diego, California
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
10
|
Stephen JM, Hill DE, Candelaria-Cook FT. Examining the effects of prenatal alcohol exposure on corticothalamic connectivity: A multimodal neuroimaging study in children. Dev Cogn Neurosci 2021; 52:101019. [PMID: 34666262 PMCID: PMC8524752 DOI: 10.1016/j.dcn.2021.101019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Children with a fetal alcohol spectrum disorder (FASD) experience a range of cognitive and behavioral effects. Prior studies have demonstrated white matter changes in children with FASD relative to typically developing controls (TDC) and these changes relate to behavior. Our prior MEG study (Candelaria-Cook et al. 2020) demonstrated reduced alpha oscillations during rest in FASD relative to TDC and alpha power is correlated with behavior. However, little is known about how brain structure influences brain function. We hypothesized that alpha power was related to corticothalamic connectivity. Children 8–13 years of age (TDC: N = 25, FASD: N = 24) underwent rest MEG with eyes open or closed and MRI to collect structural and diffusion tensor imaging data. MEG spectral analysis was performed for sensor and source data. We estimated mean fractional anisotropy in regions of interest (ROIs) that included the corticothalamic tracts. The FASD group had reduced mean FA in three of the corticothalamic ROIs. FA in these tracts was significantly correlated with alpha power at the sensor and source level. The results support the hypothesis that integrity of the corticothalamic tracts influences cortical alpha power. Further research is needed to understand how brain structure and function influence behavior.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - D E Hill
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - F T Candelaria-Cook
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
11
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
12
|
Lee J, Naik V, Orzabal M, Lunde-Young R, Ramadoss J. Morphological alteration in rat hippocampal neuronal dendrites following chronic binge prenatal alcohol exposure. Brain Res 2021; 1768:147587. [PMID: 34297994 DOI: 10.1016/j.brainres.2021.147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Prenatal alcohol exposure (PAE) may result in Fetal Alcohol Spectrum Disorders (FASD). The hippocampus has been recognized as a vulnerable target to alcohol-induced developmental damage. However, the effect of prenatal exposure to alcohol on dendritic morphological adaptations throughout the hippocampal fields in the developing brain still remains largely unknown in the context of FASD. We hypothesized that chronic binge alcohol exposure during pregnancy alters dendrite arborization throughout the developing rat hippocampus. Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol from gestational day (GD) 5-10 and progressed to 6 g/kg alcohol from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. After parturition, all dams received an ad libitum diet and nursed their offspring until postnatal day (PND) 10 when the pup brains were collected for morphological analysis. PAE increased dendritic arborization and complexities of CA1, CA2/3, and DG neurons in the PND 10 rat hippocampus. The number of primary dendrites, total dendritic length, and number of dendritic branches were significantly increased following PAE, and Sholl analysis revealed significantly more intersections of the dendritic processes in PND 10 offspring following PAE compared with those in the PF-Cont group. We conclude that chronic binge PAE significantly alters hippocampal dendritic morphology in the developing hippocampus. We conjecture that this morphological alteration in postnatal rat hippocampal dendrites following chronic binge prenatal alcohol exposure may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Rodriguez CI, Vergara VM, Davies S, Calhoun VD, Savage DD, Hamilton DA. Detection of prenatal alcohol exposure using machine learning classification of resting-state functional network connectivity data. Alcohol 2021; 93:25-34. [PMID: 33716098 DOI: 10.1016/j.alcohol.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD), a wide range of physical and neurobehavioral abnormalities associated with prenatal alcohol exposure (PAE), is recognized as a significant public health concern. Advancements in the diagnosis of FASD have been hindered by a lack of consensus in diagnostic criteria and limited use of objective biomarkers. Previous research from our group utilized resting-state functional magnetic resonance imaging (fMRI) to measure functional network connectivity (FNC), which revealed several sex- and region-dependent alterations in FNC as a result of moderate PAE relative to controls. Considering that FNC is sensitive to moderate PAE, this study explored the use of FNC data and machine learning methods to detect PAE among a sample of rodents exposed to alcohol prenatally and controls. We utilized previously acquired resting state fMRI data collected from adult rats exposed to moderate levels of prenatal alcohol (PAE) or a saccharin control solution (SAC) to assess FNC of resting state networks extracted by spatial group independent component analysis (GICA). FNC data were subjected to binary classification using support vector machine (SVM) -based algorithms and leave-one-out-cross validation (LOOCV) in an aggregated sample of males and females (n = 48; 12 male PAE, 12 female PAE, 12 male SAC, 12 female SAC), a males-only sample (n = 24; 12 PAE, 12 SAC), and a females-only sample (n = 24; 12 PAE, 12 SAC). Results revealed that a quadratic SVM (QSVM) kernel was significantly effective for PAE detection in females. QSVM kernel-based classification resulted in accuracy rates of 62.5% for all animals, 58.3% for males, and 79.2% for females. Additionally, qualitative evaluation of QSVM weights implicates an overarching theme of several hippocampal and cortical networks in contributing to the formation of correct classification decisions by QSVM. Our results suggest that binary classification using QSVM and adult female FNC data is a potential candidate for the translational development of novel and non-invasive techniques for the identification of FASD.
Collapse
|
14
|
Stanton ME, Murawski NJ, Jablonski SA, Robinson-Drummer PA, Heroux NA. Mechanisms of context conditioning in the developing rat. Neurobiol Learn Mem 2021; 179:107388. [PMID: 33482320 DOI: 10.1016/j.nlm.2021.107388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The article reviews our studies of contextual fear conditioning (CFC) in rats during a period of development---Postnatal Day (PND) 17-33---that represents the late-infant, juvenile, and early-adolescent stages. These studies seek to acquire 'systems level' knowledge of brain and memory development and apply it to a rodent model of Fetal Alcohol Spectrum Disorder (FASD). This rodent model focuses on alcohol exposure from PND4-9, a period of brain development equivalent to the human third trimester, when neocortex, hippocampus, and cerebellum are especially vulnerable to adverse effects of alcohol. Our research emphasizes a variant of CFC, termed the Context Preexposure Facilitation Effect (CPFE, Fanselow, 1990), in which context representations incidentally learned on one occasion are retrieved and associated with immediate shock on a subsequent occasion. These representations can be encoded at the earliest developmental stage but seem not to be retained or retrieved until the juvenile period. This is associated with developmental differences in context-elicited expression, in prefrontal cortex, hippocampus, and amygdala, of immediate early genes (IEGs) that are implicated in long-term memory. Loss-of-function studies establish a functional role for these regions as soon as the CPFE emerges during ontogeny. In our rodent model of FASD, the CPFE is much more sensitive to alcohol dose than other commonly used cognitive tasks. This impairment can be reversed by acute administration during behavioral testing of drugs that enhance cholinergic function. This effect is associated with normalized IEG expression in prefrontal cortex during incidental context learning. In summary, our findings suggest that long-term memory of incidentally-learned context representations depends on prefrontal-hippocampal circuitry that is important both for the normative development of context conditioning and for its disruption by developmental alcohol exposure.
Collapse
Affiliation(s)
- Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Nathen J Murawski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Sarah A Jablonski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
15
|
Macchione AF, Trujillo V, Anunziata F, Sahonero M, Anastasia A, Abate P, Molina JC. Early ethanol pre-exposure alters breathing patterns by disruptions in the central respiratory network and serotonergic balance in neonate rats. Behav Brain Res 2020; 396:112908. [PMID: 32961215 DOI: 10.1016/j.bbr.2020.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/04/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
Early ethanol exposure alters neonatal breathing plasticity. Respiratory EtOH's effects are attributed to central respiratory network disruptions, particularly in the medullary serotonin (5HT) system. In this study we evaluated the effects of neonatal pre-exposure to low/moderate doses upon breathing rates, activation patterns of brainstem's nuclei and expression of 5HT 2A and 2C receptors. At PD9, breathing frequencies, tidal volumes and apneas were examined in pups pre-exposed to vehicle or ethanol (2.0 g/kg) at PDs 3, 5 and 7. This developmental stage is equivalent to the 3rd human gestational trimester, characterized by increased levels of synaptogenesis. Pups were tested under sobriety or under the state of ethanol intoxication and when subjected to normoxia or hypoxia. Number of c-Fos and 5HT immunolabelled cells and relative mRNA expression of 5HT 2A and 2C receptors were quantified in the brainstem. Under normoxia, ethanol pre-exposed pups exhibited breathing depressions and a high number of apneas. An opposite phenomenon was found in ethanol pre-treated pups tested under hypoxia where an exacerbated hypoxic ventilatory response (HVR) was observed. The breathing depression was associated with an increase in the neural activation levels of the raphe obscurus (ROb) and a high mRNA expression of the 5HT 2A receptor in the brainstem while desactivation of the ROb and high activation levels in the solitary tract nucleus and area postrema were associated to the exacerbated HVR. In summary, early ethanol experience induces respiratory disruptions indicative of sensitization processes. Neuroadaptive changes in central respiratory areas under consideration appear to be strongly associated with changes in their respiratory plasticity.
Collapse
Affiliation(s)
- A F Macchione
- Instituto De Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional De Córdoba, Córdoba, Argentina; Facultad De Psicología, Universidad Nacional De Córdoba, Córdoba, Argentina; Instituto De Investigaciones Psicológicas, IIPsi-CONICET-Universidad Nacional De Córdoba, Córdoba, Argentina.
| | - V Trujillo
- Instituto De Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional De Córdoba, Córdoba, Argentina
| | - F Anunziata
- Instituto De Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional De Córdoba, Córdoba, Argentina
| | - M Sahonero
- Facultad De Psicología, Universidad Nacional De Córdoba, Córdoba, Argentina
| | - A Anastasia
- Instituto De Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional De Córdoba, Córdoba, Argentina; Facultad De Psicología, Universidad Nacional De Córdoba, Córdoba, Argentina
| | - P Abate
- Facultad De Psicología, Universidad Nacional De Córdoba, Córdoba, Argentina; Instituto De Investigaciones Psicológicas, IIPsi-CONICET-Universidad Nacional De Córdoba, Córdoba, Argentina
| | - J C Molina
- Instituto De Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional De Córdoba, Córdoba, Argentina; Facultad De Psicología, Universidad Nacional De Córdoba, Córdoba, Argentina.
| |
Collapse
|
16
|
Kenton JA, Castillo VK, Kehrer PE, Brigman JL. Moderate Prenatal Alcohol Exposure Impairs Visual-Spatial Discrimination in a Sex-Specific Manner: Effects of Testing Order and Difficulty on Learning Performance. Alcohol Clin Exp Res 2020; 44:2008-2018. [PMID: 32772384 DOI: 10.1111/acer.14426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to high levels of alcohol during development leads to alterations in neurogenesis and deficits in hippocampal-dependent learning. Evidence suggests that even more moderate alcohol consumption during pregnancy can have negative impacts on the cognitive function of offspring. Methods for assessing impairments differ greatly across species, complicating translation of preclinical findings into potential therapeutics. We have demonstrated the utility of a touchscreen operant measure for assessing hippocampal function in mice. METHODS Here, we integrated a well-established "drinking-in-the-dark" exposure model that produces reliable, but more moderate, levels of maternal intoxication with a trial-unique, delayed nonmatching-to-location (TUNL) task to examine the effects of prenatal alcohol exposure (PAE) on hippocampal-sensitive behavior directly analogous to those used in clinical assessment. PAE and SAC offspring mice were trained to touch a single visual stimulus ("sample phase") in one of 10 possible spatial locations (2 × 5 grid) in a touchscreen operant system. After a delay, animals were simultaneously presented with the original stimulus and a rewarded stimulus in a novel location ("choice phase"). PAE and saccharin (SAC) control mice were trained on a series of problems that systematically increased the difficulty by decreasing the separation between the sample and choice stimuli. Next, a separate cohort of PAE and SAC animals were given a brief training and then tested on a challenging variant where both the separation and delay varied with each trial. RESULTS We found that PAE mice were generally able to perform at levels similar to SAC control mice at progressively more difficult separations. When tested on the most difficult unpredictable variant immediately, PAE showed a sex-specific deficit with PAE females performing worse during long delays. CONCLUSIONS Taken together, these data demonstrate the utility of the TUNL task for examining PAE related alterations in hippocampal function and underline the need to examine sex-by-treatment interactions in these models.
Collapse
Affiliation(s)
- Johnny A Kenton
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Victoria K Castillo
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Penelope E Kehrer
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jonathan L Brigman
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
17
|
Altered Hippocampal Place Cell Representation and Theta Rhythmicity following Moderate Prenatal Alcohol Exposure. Curr Biol 2020; 30:3556-3569.e5. [PMID: 32707066 DOI: 10.1016/j.cub.2020.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Prenatal alcohol exposure (PAE) leads to profound deficits in spatial memory and synaptic and cellular alterations to the hippocampus that last into adulthood. Neurons in the hippocampus called place cells discharge as an animal enters specific places in an environment, establish distinct ensemble codes for familiar and novel places, and are modulated by local theta rhythms. Spatial memory is thought to critically depend on the integrity of hippocampal place cell firing. Therefore, we tested the hypothesis that hippocampal place cell firing is impaired after PAE by performing in vivo recordings from the hippocampi (CA1 and CA3) of moderate PAE and control adult rats. Our results show that hippocampal CA3 neurons from PAE rats have reduced spatial tuning. Second, CA1 and CA3 neurons from PAE rats are less likely to orthogonalize their firing between directions of travel on a linear track and between changes in contextual stimuli in an open arena compared to control neurons. Lastly, reductions in the number of hippocampal place cells exhibiting significant theta rhythmicity and phase precession were observed, which may suggest changes to hippocampal microcircuit function. Together, the reduced spatial tuning and sensitivity to contextual changes provide a neural systems-level mechanism to explain spatial memory impairment after moderate PAE.
Collapse
|
18
|
Lee J, Lunde-Young R, Naik V, Ramirez J, Orzabal M, Ramadoss J. Chronic Binge Alcohol Exposure During Pregnancy Alters mTOR System in Rat Fetal Hippocampus. Alcohol Clin Exp Res 2020; 44:1329-1336. [PMID: 32333810 DOI: 10.1111/acer.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Gestational alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), an array of cognitive, behavioral, and physical developmental impairments. Mammalian target of rapamycin (mTOR) plays a key role in regulating protein synthesis in response to neuronal activity, thereby modulating synaptic plasticity and long-term memory formation in the brain. Based on our previous quantitative mass spectrometry proteomic studies, we hypothesized that gestational chronic binge alcohol exposure alters mTOR signaling and downstream pathways in the fetal hippocampus. METHODS Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol (peak BAC, 216 mg/dl) from GD 5-10 and progressed to 6 g/kg alcohol (peak BAC, 289 mg/dl) from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. RESULTS In the Alcohol group, following this exposure paradigm, fetal body weight and crown-rump length were decreased. The phosphorylation level of mTOR (P-mTOR) in the fetal hippocampus was decreased in the Alcohol group compared with controls. Alcohol exposure resulted in dysregulation of fetal hippocampal mTORC1 signaling, as evidenced by an increase in total 4E-BP1 expression. Phosphorylation levels of 4E-BP1 and p70 S6K were also increased following alcohol exposure. P-mTOR and P-4E-BP1 were exclusively detected in the dentate gyrus and oriens layer of the fetal hippocampus, respectively. DEPTOR and RICTOR expression levels in the fetal hippocampus were increased; however, RAPTOR was not altered by chronic binge alcohol exposure. CONCLUSION We conclude that chronic binge alcohol exposure during pregnancy alters mTORC1 signaling pathway in the fetal hippocampus. We conjecture that this dysregulation of mTOR protein expression, its activity, and downstream proteins may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Raine Lunde-Young
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vishal Naik
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Josue Ramirez
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Marcus Orzabal
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Madden JT, Thompson SM, Magcalas CM, Wagner JL, Hamilton DA, Savage DD, Clark BJ, Pentkowski NS. Moderate prenatal alcohol exposure reduces parvalbumin expressing GABAergic interneurons in the dorsal hippocampus of adult male and female rat offspring. Neurosci Lett 2019; 718:134700. [PMID: 31874217 DOI: 10.1016/j.neulet.2019.134700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Prenatal alcohol exposure (PAE) negatively impacts hippocampal development and impairs hippocampal-sensitive learning and memory. However, hippocampal neural adaptations in response to moderate PAE are not completely understood. To explore the effects of moderate PAE on GABAergic interneuron expression, this study used a rat model of moderate PAE to examine the effects of PAE on parvalbumin (PARV)-positive cells in fields CA1, CA3 and the dentate gyrus (DG) of the dorsal hippocampus (dHC). Long-Evans dams were given daily access to 5 % (vol/vol) ethanol or saccharine (SAC) control solutions throughout the course of gestation. Offspring were divided into four separate groups: PAE (n = 7) or SAC (n = 7) males, or PAE (n = 8) or SAC (n = 8) females. All rats were aged to adulthood and, following testing in the Morris water task, their brains were analyzed for the expression of the GABAergic neuronal marker PARV. We report a main effect of PAE on GABAergic expression, with significant reductions in PARV-positive cells in area CA3 for males and the DG for females. There was also a trend for a reduction in PARV expressing neurons in fields CA1 and CA3 in females. The results are discussed in relation to hippocampal GABAergic interneuron function, PAE and behavior.
Collapse
Affiliation(s)
- John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Shannon M Thompson
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer L Wagner
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
20
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
21
|
Gustus K, Lozano E, Newville J, Li L, Valenzuela CF, Cunningham LA. Resistance of Postnatal Hippocampal Neurogenesis to Alcohol Toxicity in a Third Trimester-Equivalent Mouse Model of Gestational Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:2504-2513. [PMID: 31573091 DOI: 10.1111/acer.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The adult hippocampal dentate is comprised of both developmentally generated dentate granule cells (dDGCs) and adult-generated dentate granule cells (aDGCs), which play distinct roles in hippocampal information processing and network function. EtOH exposure throughout gestation in mouse impairs the neurogenic response to enriched environment (EE) in adulthood, although the basal rate of adult neurogenesis under standard housing (SH) is unaffected. Here, we tested whether the production and/or survival of either dDGCs or aDGCs are selectively impaired following exposure of mice to EtOH vapors during early postnatal development (human third trimester-equivalent), and whether this exposure paradigm leads to impairment of EE-mediated dentate neurogenesis in adulthood. METHODS All experiments were performed using NestinCreERT2 :tdTomato bitransgenic mice, which harbor a tamoxifen-inducible tdTomato (tdTom) reporter for indelible labeling of newborn hippocampal DGCs. We exposed all mice to EtOH vapor or room air (Control) for 4 h/d from postnatal day (PND) 3 through PND 15. This paradigm resulted in a mean daily postexposure blood EtOH concentration of ~160 mg/dl. One cohort of neonatal mice received a single injection of tamoxifen at PND 2 and was sacrificed at either PND 16 or PND 50 to assess the impact of EtOH exposure on the production and long-term survival of dDGCs born during the early postnatal period. A second cohort of mice received daily injections of tamoxifen at PND 35 to 39 to label aDGCs and was exposed to SH or EE for 6 weeks prior to sacrifice. RESULTS Early postnatal EtOH exposure had no statistically significant effect on the production or survival of tdTom+ dDGCs, as assessed at PND 16 or PND 50. Early postnatal EtOH exposure also had no effect on the number of tdTom+ aDGCs under SH conditions. Furthermore, early postnatal EtOH exposure had no significant impact on the adult neurogenic response to EE. CONCLUSIONS Both early postnatal dentate neurogenesis and adult dentate neurogenesis, as well as the adult neurogenic response to EE, are surprisingly resistant to early postnatal EtOH vapor exposure in mice.
Collapse
Affiliation(s)
- Kymberly Gustus
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Evelyn Lozano
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jessie Newville
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lu Li
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Lee Anna Cunningham
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
22
|
Maternal ethanol exposure reshapes CART system in the rat brain: Correlation with development of anxiety, depression and memory deficits. Neuroscience 2019; 406:126-139. [DOI: 10.1016/j.neuroscience.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
|
23
|
Davies S, Ballesteros-Merino C, Allen NA, Porch MW, Pruitt ME, Christensen KH, Rosenberg MJ, Savage DD. Impact of moderate prenatal alcohol exposure on histaminergic neurons, histidine decarboxylase levels and histamine H 2 receptors in adult rat offspring. Alcohol 2019; 76:47-57. [PMID: 30557779 DOI: 10.1016/j.alcohol.2018.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
We have reported that moderate prenatal alcohol exposure (PAE) elevates histamine H3 receptor-mediated inhibition of glutamatergic neurotransmission in dentate gyrus (DG), and that the H3 receptor antagonist ABT-239 ameliorates PAE-induced deficits in DG long-term potentiation. Here, we investigated whether PAE alters other markers of histaminergic neurotransmission. Long-Evans rat dams voluntarily consumed either a 0% or a 5% ethanol solution 4 h each day throughout gestation. Young adult female offspring from each prenatal treatment group were used in histidine decarboxylase (HDC) immunohistochemical studies of histamine neuron number in ventral hypothalamus, quantitative Western blotting studies of HDC expression in multiple brain regions, radiohistochemical studies of H2 receptor density in multiple brain regions, and in biochemical studies of H2 receptor-effector coupling in dentate gyrus. Rat dams consumed a mean of 1.90 g of ethanol/kg/day during pregnancy. This level of consumption did not affect maternal weight gain, offspring birth weight, or litter size. PAE did not affect the number of HDC-positive neurons in ventral hypothalamus. However, HDC expression was reduced in frontal cortex, dentate gyrus, and cerebellum of PAE rats compared to controls. Specific [125I]-iodoaminopotentidine binding to H2 receptors was not altered in any of the brain regions measured, nor was basal or H2 receptor agonist-stimulated cAMP accumulation in DG altered in PAE rats compared to controls. These results suggest that not all markers of histaminergic neurotransmission are altered by PAE. However, the observation that HDC levels were reduced in the same brain regions where elevated H3 receptor-effector coupling was observed previously raises the question of whether a cause-effect relationship exists between HDC expression and H3 receptor function in affected brain regions of PAE rats. This relationship, along with the question of why these effects occur in some, but not all brain regions, requires more-detailed investigation.
Collapse
|
24
|
Ma YY. Striatal morphological and functional alterations induced by prenatal alcohol exposure. Pharmacol Res 2019; 142:262-266. [PMID: 30807864 DOI: 10.1016/j.phrs.2019.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
Prenatal alcohol exposure (PAE) is an insidious yet preventable cause of developmental disability. The prenatal stage is a critical period for brain development with the concurrence of high vulnerability to the acute and prolonged effects of PAE. There is substantial evidence from both human observations and laboratory experiments that PAE is a common risk factor that predisposes to an array of postnatal mental disorders, including emotional, cognitive, and motor deficits. Although it is well accepted that PAE causes substantial morbidity, available treatments are limited. One reason is the lack of sufficient understanding about the neuroalterations induced by PAE, and how these changes contribute to PAE-induced mental disorders. Among a number of brain structures that have been explored extensively in PAE, the striatum has attracted great attention in the last 20 years in the field of PAE neurobiology. Interestingly, in animal models, the striatum has been considered as a pivotal switch of brain dysfunction induced by PAE, such as addiction, anxiety, depression, and neurodegeneration. In this review, we focus on recent advances in the understanding of morphological and functional changes in brain regions related to alterations after PAE, in particular the striatum. Because this region is central for behavior, emotion and cognition, there is an urgent need for more studies to uncover the PAE-induced alterations at the circuit, neuronal, synaptic and molecular levels, which will not only improve our understanding of the neuroplasticity induced by PAE, but also provide novel biological targets to treat PAE-related mental disorders with translational significance.
Collapse
Affiliation(s)
- Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, MS A422, Indianapolis, IN 46202, United States.
| |
Collapse
|
25
|
Sanchez LM, Goss J, Wagner J, Davies S, Savage DD, Hamilton DA, Clark BJ. Moderate prenatal alcohol exposure impairs performance by adult male rats in an object-place paired-associate task. Behav Brain Res 2018; 360:228-234. [PMID: 30529401 DOI: 10.1016/j.bbr.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Memory impairments, including spatial and object processing, are often observed in individuals with Fetal Alcohol Spectrum Disorders. The neurobiological basis of memory deficits after prenatal alcohol exposure (PAE) is often linked to structural and functional alterations in the medial temporal lobe, including the hippocampus. Recent evidence suggests that the medial temporal lobe plays a critical role in processing high-order sensory stimuli such as complex objects and their associated locations in space. In the first experiment, we tested male rat offspring with moderate PAE in a medial temporal-dependent object-place paired-associate (OPPA) task. The OPPA task requires a conditional discrimination between an identical pair of objects presented at two spatial locations 180° opposite arms of a radial arm maze. Food reinforcement is contingent upon selecting the correct object of the pair for a given spatial location. Adult rats were given a total of 10 trials per day over 14 consecutive days of training. PAE male rats made significantly more errors than male saccharin (SACC) control rats during acquisition of the OPPA task. In Experiment 2, rats performed an object-discrimination task in which a pair of objects were presented in a single arm of the maze. Moderate PAE and SACC control rats exhibited comparable performance. The results suggest that moderate PAE rats can learn to discriminate objects, but are impaired when required to discriminate between objects on the basis of spatial location in the environment.
Collapse
Affiliation(s)
- Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jonathan Goss
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer Wagner
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
26
|
Subbanna S, Joshi V, Basavarajappa BS. Activity-dependent Signaling and Epigenetic Abnormalities in Mice Exposed to Postnatal Ethanol. Neuroscience 2018; 392:230-240. [PMID: 30031835 DOI: 10.1016/j.neuroscience.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
Postnatal ethanol exposure has been shown to cause persistent defects in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms responsible for these abnormalities are less well studied. We evaluated the influence of postnatal ethanol exposure on several signaling and epigenetic changes and on expression of the activity-regulated cytoskeletal (Arc) protein in the hippocampus of adult offspring under baseline conditions and after a Y-maze spatial memory (SP) behavior (activity). Postnatal ethanol treatment impaired pCaMKIV and pCREB in naïve mice without affecting H4K8ac, H3K14ac and H3K9me2 levels. The Y-maze increased pCaMKIV, pCREB, H4K8ac and H3K14ac levels in saline-treated mice but not in ethanol-treated mice; while H3K9me2 levels were enhanced in ethanol-exposed animals compared to saline groups. Like previous observations, ethanol not only reduced Arc expression in naïve mice but also behaviorally induced Arc expression. ChIP results suggested that reduced H3K14ac and H4K8ac in the Arc gene promoter is because of impaired CBP, and increased H3K9me2 is due to the enhanced recruitment of G9a. The CB1R antagonist and a G9a/GLP inhibitor, which were shown to rescue postnatal ethanol-triggered synaptic plasticity and learning and memory deficits, were able to prevent the negative effects of ethanol on activity-dependent signaling, epigenetics and Arc expression. Together, these findings provide a molecular mechanism involving signaling and epigenetic cascades that collectively are responsible for the neurobehavioral deficits associated with an animal model of fetal alcohol spectrum disorders (FASD).
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Macchione AF, Anunziata F, Haymal BO, Abate P, Molina JC. Brief ethanol exposure and stress-related factors disorganize neonatal breathing plasticity during the brain growth spurt period in the rat. Psychopharmacology (Berl) 2018; 235:983-998. [PMID: 29464303 DOI: 10.1007/s00213-017-4815-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022]
Abstract
RATIONALE The effects of early ethanol exposure upon neonatal respiratory plasticity have received progressive attention given a multifactorial perspective related with sudden infant death syndrome or hypoxia-associated syndromes. The present preclinical study was performed in 3-9-day-old pups, a stage in development characterized by a brain growth spurt that partially overlaps with the 3rd human gestational trimester. METHODS Breathing frequencies and apneas were examined in pups receiving vehicle or a relatively moderate ethanol dose (2.0 g/kg) utilizing a whole body plethysmograph. The experimental design also considered possible associations between drug administration stress and exteroceptive cues (plethysmographic context or an artificial odor). Ethanol exposure progressively exerted a detrimental effect upon breathing frequencies. A test conducted at PD9 when pups were under the state of sobriety confirmed ethanol's detrimental effects upon respiratory plasticity (breathing depression). RESULTS Pre-exposure to the drug also resulted in a highly disorganized respiratory response following a hypoxic event, i.e., heightened apneic episodes. Associative processes involving drug administration procedures and placement in the plethysmographic context also affected respiratory plasticity. Pups that experienced intragastric administrations in close temporal contiguity with such a context showed diminished hyperventilation during hypoxia. In a 2nd test conducted at PD9 while pups were intoxicated and undergoing hypoxia, an attenuated hyperventilatory response was observed. In this test, there were also indications that prior ethanol exposure depressed breathing frequencies during hypoxia and a recovery normoxia phase. CONCLUSION As a whole, the results demonstrated that brief ethanol experience and stress-related factors significantly disorganize respiratory patterns as well as arousal responses linked to hypoxia in neonatal rats.
Collapse
Affiliation(s)
- A F Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - B O Haymal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - P Abate
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J C Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina. .,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina. .,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
28
|
Davis-Anderson KL, Wesseling H, Siebert LM, Lunde-Young ER, Naik VD, Steen H, Ramadoss J. Fetal regional brain protein signature in FASD rat model. Reprod Toxicol 2018; 76:84-92. [PMID: 29408587 DOI: 10.1016/j.reprotox.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/30/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) describe neurodevelopmental deficits in children exposed to alcohol in utero. We hypothesized that gestational alcohol significantly alters fetal brain regional protein signature. Pregnant rats were binge-treated with alcohol or pair-fed and nutritionally-controlled. Mass spectrometry identified 1806, 2077, and 1456 quantifiable proteins in the fetal hippocampus, cortex, and cerebellum, respectively. A stronger effect of alcohol exposure on the hippocampal proteome was noted: over 600 hippocampal proteins were significantly (P < .05) altered, including annexin A2, nucleobindin-1, and glypican-4, regulators of cellular growth and developmental morphogenesis. In the cerebellum, cadherin-13, reticulocalbin-2, and ankyrin-2 (axonal growth regulators) were significantly (P < .05) altered; altered cortical proteins were involved in autophagy (endophilin-B1, synaptotagmin-1). Ingenuity analysis identified proteins involved in protein homeostasis, oxidative stress, mitochondrial dysfunction, and mTOR as major pathways in the cortex and hippocampus significantly (P < .05) affected by alcohol. Thus, neurodevelopmental protein changes may directly relate to FASD neuropathology.
Collapse
Affiliation(s)
- Katie L Davis-Anderson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Hendrik Wesseling
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Lara M Siebert
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Emilie R Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Hanno Steen
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
29
|
Varaschin RK, Allen NA, Rosenberg MJ, Valenzuela CF, Savage DD. Prenatal Alcohol Exposure Increases Histamine H 3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus. Alcohol Clin Exp Res 2018; 42:295-305. [PMID: 29315624 PMCID: PMC5785429 DOI: 10.1111/acer.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H3 receptor number and function. METHODS Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. RESULTS Radiohistochemical studies in adult offspring revealed that specific [3 H]-A349821 binding to histamine H3 receptors was not different in PAE rats compared to controls. However, H3 receptor-mediated Gi /Go protein-effector coupling, as measured by methimepip-stimulated [35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H3 receptor population without significantly altering the affinities of H3 receptor subpopulations. In agreement with the [35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. CONCLUSIONS These results suggest that a PAE-induced elevation in H3 receptor-mediated inhibition of glutamate release from perforant path terminals as 1 mechanism contributing the LTP deficits previously observed in the dentate gyrus of PAE rats, as well as providing a mechanistic basis for the efficacy of H3 receptor inverse agonists for ameliorating these deficits.
Collapse
Affiliation(s)
- Rafael K Varaschin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Nyika A Allen
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Martina J Rosenberg
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| |
Collapse
|
30
|
Comasco E, Rangmar J, Eriksson UJ, Oreland L. Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf) 2018; 222. [PMID: 28470828 DOI: 10.1111/apha.12892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023]
Abstract
Several explanations for the diverse results in research on foetal alcohol spectrum disorders or alcohol-related neurodevelopmental disorder might be at hand: timing, amount and patterns of alcohol exposure, as well as complex epigenetic responses. The genetic background of the offspring and its interaction with other prenatal and post-natal environmental cues are likely also of importance. In the present report, key findings about the possible effects of low and moderate doses of maternal alcohol intake on the neuropsychological development of the offspring are reviewed and plausible mechanisms discussed. Special focus is put on the serotonergic system within developmental and gene-environment frameworks. The review also suggests guidelines for future studies and also summarizes some of to-be-answered questions of relevance to clinical practice. Contradictory findings and paucity of studies on the effects of exposure to low alcohol levels during foetal life for the offspring's neuropsychological development call for large prospective studies, as well as for studies including neuroimaging and multi-omics analyses to dissect the neurobiological underpinnings of alcohol exposure-related phenotypes and to identify biomarkers. Finally, it remains to be investigated whether any safe threshold of alcohol drinking during pregnancy can be identified.
Collapse
Affiliation(s)
- E. Comasco
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - J. Rangmar
- Department of Psychology; University of Gothenburg; Gothenburg Sweden
| | - U. J. Eriksson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - L. Oreland
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
31
|
Lange S, Probst C, Rehm J, Popova S. Prevalence of binge drinking during pregnancy by country and World Health Organization region: Systematic review and meta-analysis. Reprod Toxicol 2017; 73:214-221. [DOI: 10.1016/j.reprotox.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
|
32
|
Cantacorps L, Alfonso-Loeches S, Moscoso-Castro M, Cuitavi J, Gracia-Rubio I, López-Arnau R, Escubedo E, Guerri C, Valverde O. Maternal alcohol binge drinking induces persistent neuroinflammation associated with myelin damage and behavioural dysfunctions in offspring mice. Neuropharmacology 2017; 123:368-384. [DOI: 10.1016/j.neuropharm.2017.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023]
|
33
|
Jakubowska‐Dogru E, Elibol B, Dursun I, Yürüker S. Effects of prenatal binge‐like ethanol exposure and maternal stress on postnatal morphological development of hippocampal neurons in rats. Int J Dev Neurosci 2017. [DOI: 10.1016/j.ijdevneu.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ewa Jakubowska‐Dogru
- Middle East Technical UniversityFaculty of Science and Arts, Department of Biological SciencesAnkaraTurkey
| | - Birsen Elibol
- Bezmialem Vakif University, Faculty of MedicineDepartment of Medical BiologyIstanbulTurkey
| | - Ilknur Dursun
- Istanbul Kemerburgaz University, Faculty of MedicineDepartment of PhysiologyIstanbulTurkey
| | - Sinan Yürüker
- Hacettepe University, Faculty of MedicineDepartment of Histology and EmbryologyAnkaraTurkey
| |
Collapse
|
34
|
Carvalho ICS, Martinelli CDSM, Milhan NVM, Marchini AMPDS, Dutra TP, de Souza DM, da Rocha RF. Prenatal alcohol exposure reduces mandibular calcium and phosphorus concentrations in newborn rats. J Oral Sci 2017; 58:439-44. [PMID: 27665985 DOI: 10.2334/josnusd.16-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Previous studies suggest that prenatal alcohol exposure affects fetal bone development, including bone quality. This study evaluated the chemical composition of mandibles from newborn rats after maternal 20% alcohol consumption before and throughout gestation. Nine rats were initially distributed into three groups: an Alcohol group, Pair-fed group, and Control group. The groups were fed prespecified diets for 8 weeks before and the 3 weeks during pregnancy. At age 5 days, eight newborns from each group were euthanized (total, n = 24). Using energy dispersive spectrometry, we evaluated samples of mandibles from newborns to identify changes in bone mineralization, specifically Ca and P concentrations. Ca and P concentrations were lower in the Alcohol group than in the Control and Pair-fed groups (P = 0.003 and P = 0.001, respectively). In summary, alcohol exposure before and throughout gestation reduces mandibular Ca and P concentrations in newborn rats. (J Oral Sci 58, 439-444, 2016).
Collapse
Affiliation(s)
- Isabel C S Carvalho
- Research and Development Institute, Laboratory Dynamics of Cellular Compartments, University of Paraiba Valley
| | | | | | | | | | | | | |
Collapse
|
35
|
Acevedo MB, D'Aloisio G, Haymal OB, Molina JC. Brain Acetaldehyde Exposure Impacts upon Neonatal Respiratory Plasticity and Ethanol-Related Learning in Rodents. Front Behav Neurosci 2017; 11:39. [PMID: 28377702 PMCID: PMC5359529 DOI: 10.3389/fnbeh.2017.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
Prior studies indicate that neonates are very sensitive to ethanol's positive reinforcing effects and to its depressant effects upon breathing. Acetaldehyde (ACD) appears to play a major role in terms of modulating early reinforcing effects of the drug. Yet, there is no pre-existing literature relative to the incidence of this metabolite upon respiratory plasticity. The present study analyzed physiological and behavioral effects of early central administrations of ethanol, acetaldehyde or vehicle. Respiration rates (breaths/min) were registered at post-natal days (PDs) 2 and 4 (post-administration time: 5, 60, or 120 min). At PD5, all pups were placed in a context (plethysmograph) where they had previously experienced the effects of central administrations and breathing patterns were recorded. Following this test, pups were evaluated using and operant conditioning procedure where ethanol or saccharin served as positive reinforcers. Body temperatures were also registered prior to drug administrations as well as at the beginning and the end of each specific evaluation. Across days, breathing responses were high at the beginning of the evaluation session and progressively declined as a function of the passage of time. At PDs 2 and 4, shortly after central administration (5 min), ACD exerted a significant depression upon respiration frequencies. At PD5, non-intoxicated pups with a prior history of ACD central administrations, exhibited a marked increase in respiratory frequencies; a result that probably indicates a conditioned compensatory response. When operant testing procedures were conducted, prior ethanol or ACD central administrations were found to reduce the reinforcing effects of ethanol. This was not the case when saccharin was employed as a reinforcer. As a whole, the results indicate a significant role of central ACD upon respiratory plasticity of the neonate and upon ethanol's reinforcing effects; phenomena that affect the physiological integrity of the immature organism and its subsequent affinity for ethanol operationalized through self-administration procedures.
Collapse
Affiliation(s)
- María B Acevedo
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba Córdoba, Argentina
| | - Génesis D'Aloisio
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de CórdobaCórdoba, Argentina; Experimental Psychobiology Chair, Department of Psychology, Universidad Nacional de CórdobaCórdoba, Argentina
| | - Olga B Haymal
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba Córdoba, Argentina
| | - Juan C Molina
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de CórdobaCórdoba, Argentina; Experimental Psychobiology Chair, Department of Psychology, Universidad Nacional de CórdobaCórdoba, Argentina
| |
Collapse
|
36
|
du Plooy CP, Malcolm-Smith S, Adnams CM, Stein DJ, Donald KA. The Effects of Prenatal Alcohol Exposure on Episodic Memory Functioning: A Systematic Review: Table 1. Arch Clin Neuropsychol 2016; 31:710-726. [DOI: 10.1093/arclin/acw067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 01/04/2023] Open
|
37
|
Rodriguez CI, Davies S, Calhoun V, Savage DD, Hamilton DA. Moderate Prenatal Alcohol Exposure Alters Functional Connectivity in the Adult Rat Brain. Alcohol Clin Exp Res 2016; 40:2134-2146. [PMID: 27570053 DOI: 10.1111/acer.13175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Past studies of moderate prenatal alcohol exposure (PAE) have focused on specific brain regions, neurotransmitter systems, and behaviors. However, the effects of PAE on brain function and behavior are complex and not limited to discrete brain regions. Thus, there is a critical need to understand the global effects of moderate PAE on neural function. A primary aim of this research was to explore the functional relationships in neural activity of spatially distinct areas by applying a widely used computational algorithm-group-independent component analysis (gICA)-to resting-state functional magnetic resonance imaging data from rats exposed to either an alcohol or saccharin control solution via maternal consumption during pregnancy. METHODS Long-Evans rat dams consumed either 5% (v/v) alcohol or a saccharin control solution throughout gestation. Adult offspring from each prenatal treatment group were anesthetized for functional, structural, and perfusion magnetic resonance-based image acquisition sequences. gICA was applied to the functional data to extract components. To determine connectivity, component time-course correlations were computed and compared. Additionally, spectral power analyses were utilized as an additional measure of functional connectivity. Finally, blood perfusion-assessed by arterial spin labeling-and whole-brain volumetric analyses were evaluated. RESULTS Analyses revealed 17 components in several brain regions such as the cortex, hippocampus, and thalamus. PAE was associated with reductions in coordinated activity between components, especially in males. PAE was also associated with reductions in low-frequency spectral power, an effect that was more robust in females. Brain volumetric analyses revealed sex-dependent reductions in females while blood flow analyses revealed sex-dependent reductions in males. CONCLUSIONS Moderate PAE leads to persistent changes in functional connectivity in the absence of whole-brain volume or blood flow measures. Future studies will investigate the relationships between alterations in functional network connectivity and behavior.
Collapse
Affiliation(s)
- Carlos I Rodriguez
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico.
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Vince Calhoun
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico.,The Mind Research Network and LBERI, Albuquerque, New Mexico
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Derek A Hamilton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
38
|
Homberg JR, Kyzar EJ, Scattoni ML, Norton WH, Pittman J, Gaikwad S, Nguyen M, Poudel MK, Ullmann JFP, Diamond DM, Kaluyeva AA, Parker MO, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Res Bull 2016; 125:79-91. [PMID: 27113433 DOI: 10.1016/j.brainresbull.2016.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of prevalent neuropsychiatric illnesses with various degrees of social, cognitive, motor, language and affective deficits. NDDs are caused by aberrant brain development due to genetic and environmental perturbations. Common NDDs include autism spectrum disorder (ASD), intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit hyperactivity disorder. Genetic and epigenetic/environmental factors play a key role in these NDDs with significant societal impact. Given the lack of their efficient therapies, it is important to gain further translational insights into the pathobiology of NDDs. To address these challenges, the International Stress and Behavior Society (ISBS) has established the Strategic Task Force on NDDs. Summarizing the Panel's findings, here we discuss the neurobiological mechanisms of selected common NDDs and a wider NDD+ spectrum of associated neuropsychiatric disorders with developmental trajectories. We also outline the utility of existing preclinical (animal) models for building translational and cross-diagnostic bridges to improve our understanding of various NDDs.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | | | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Michael Nguyen
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA; New York University School of Medicine, NY, NY, USA
| | - Manoj K Poudel
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Jeremy F P Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA; J.A. Haley Veterans Hospital, Research and Development Service, Tampa, FL, USA
| | - Aleksandra A Kaluyeva
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
39
|
Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol 2016; 51:1-15. [PMID: 26992695 DOI: 10.1016/j.alcohol.2015.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD.
Collapse
|
40
|
Carvalho ICS, Dutra TP, De Andrade DP, Balducci I, Pacheco-Soares C, Rocha RFD. High doses of alcohol during pregnancy cause DNA damages in osteoblasts of newborns rats. ACTA ACUST UNITED AC 2015; 106:122-32. [DOI: 10.1002/bdra.23468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isabel Chaves Silva Carvalho
- Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos (SP), Department of Biosciences and Oral Diagnosis; Sao Jose dos Campos; Sao Paulo Brazil
| | - Tamires Pereira Dutra
- Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos (SP), Department of Biosciences and Oral Diagnosis; Sao Jose dos Campos; Sao Paulo Brazil
| | - Dennia Perez De Andrade
- Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments; Sao Jose dos Campos; Sao Paulo Brazil
| | - Ivan Balducci
- Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos (SP), Department of Social Science and Pediatric Dentristy; Sao Jose dos Campos; Sao Paulo Brazil
| | - Cristina Pacheco-Soares
- Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments; Sao Jose dos Campos; Sao Paulo Brazil
| | - Rosilene Fernandes da Rocha
- Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos (SP), Department of Biosciences and Oral Diagnosis; Sao Jose dos Campos; Sao Paulo Brazil
| |
Collapse
|
41
|
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sci 2015; 5:456-93. [PMID: 26529026 PMCID: PMC4701023 DOI: 10.3390/brainsci5040456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
Collapse
|
42
|
Zhang CR, Ho MF, Vega MCS, Burne THJ, Chong S. Prenatal ethanol exposure alters adult hippocampal VGLUT2 expression with concomitant changes in promoter DNA methylation, H3K4 trimethylation and miR-467b-5p levels. Epigenetics Chromatin 2015; 8:40. [PMID: 26421062 PMCID: PMC4587775 DOI: 10.1186/s13072-015-0032-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Maternal consumption of alcohol during pregnancy is associated with a range of physical, cognitive and behavioural outcomes in the offspring which are collectively called foetal alcohol spectrum disorders. We and others have proposed that epigenetic modifications, such as DNA methylation and post-translational histone modifications, mediate the effects of prenatal alcohol exposure on gene expression and, ultimately, phenotype. Here we use an inbred C57BL/6J mouse model of early gestational ethanol exposure equivalent, developmentally, to the first 3-4 weeks of pregnancy in humans to examine the long-term effects on gene expression and epigenetic state in the hippocampus. RESULTS Gene expression analysis in the hippocampus revealed sex- and age-specific up-regulation of solute carrier family 17 member 6 (Slc17a6), which encodes vesicular glutamate transporter 2 (VGLUT2). Transcriptional up-regulation correlated with decreased DNA methylation and enrichment of histone H3 lysine 4 trimethylation, an active chromatin mark, at the Slc17a6 promoter. In contrast to Slc17a6 mRNA levels, hippocampal VGLUT2 protein levels were significantly decreased in adult ethanol-exposed offspring, suggesting an additional level of post-transcriptional control. MicroRNA expression profiling in the hippocampus identified four ethanol-sensitive microRNAs, of which miR-467b-5p was predicted to target Slc17a6. In vitro reporter assays showed that miR-467b-5p specifically interacted with the 3'UTR of Slc17a6, suggesting that it contributes to the reduction of hippocampal VGLUT2 in vivo. A significant correlation between microRNA expression in the hippocampus and serum of ethanol-exposed offspring was also observed. CONCLUSIONS Prenatal ethanol exposure has complex transcriptional and post-transcriptional effects on Slc17a6 (VGLUT2) expression in the mouse hippocampus. These effects are observed following a relatively moderate exposure that is restricted to early pregnancy, modelling human consumption of alcohol before pregnancy is confirmed, and are only apparent in male offspring in adulthood. Our findings are consistent with the idea that altered epigenetic and/or microRNA-mediated regulation of glutamate neurotransmission in the hippocampus contributes to the cognitive and behavioural phenotypes observed in foetal alcohol spectrum disorders. Although further work is needed in both mice and humans, the results also suggest that circulating microRNAs could be used as biomarkers of early gestational ethanol exposure and hippocampal dysfunction.
Collapse
Affiliation(s)
- Christine R Zhang
- Mater Research Institute, The University of Queensland, Translational Research Institute, Level 4, 37 Kent St, Woolloongabba, QLD 4102 Australia
| | - Mei-Fong Ho
- Mater Research Institute, The University of Queensland, Translational Research Institute, Level 4, 37 Kent St, Woolloongabba, QLD 4102 Australia
| | | | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Suyinn Chong
- Mater Research Institute, The University of Queensland, Translational Research Institute, Level 4, 37 Kent St, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
43
|
Abstract
Evidence from both human and preclinical studies seems to indicate that maternal smoking, alcohol drinking, or other drug use during pregnancy can affect offspring outcomes. It also suggests that maternal substance use during pregnancy is a major preventable cause of adverse infant outcomes. Nonetheless, more recent studies applying genetically sensitive designs cast some doubt on the causality of the relationship between prenatal maternal substance use and infant and child behavioral outcomes. In this review, recent findings in this field of research are provided, with attention to correlated risk factors of maternal substance use during pregnancy and preclinical studies focusing on plausible biological pathways. Next, evidence-based interventions targeting maternal substance use during pregnancy are discussed. Finally, possible interventions targeting the correlated risk factors and recommendations for clinical work are presented.
Collapse
Affiliation(s)
- Anja C. Huizink
- Department of Developmental Psychology and Department of Clinical Child and Family Studies, VU University Amsterdam, The Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Brolese G, Lunardi P, de Souza DF, Lopes FM, Leite MC, Gonçalves CA. Pre- and postnatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal glutamate uptake in adolescent offspring. PLoS One 2015; 10:e0127845. [PMID: 25978644 PMCID: PMC4433332 DOI: 10.1371/journal.pone.0127845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control), non-alcoholic beer (vehicle) or 10% (v/v) beer solution (moderate prenatal alcohol exposure—MPAE). Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2). The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge) with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH) content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood.
Collapse
Affiliation(s)
- Giovana Brolese
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Paula Lunardi
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniela F. de Souza
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda M. Lopes
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina C. Leite
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
45
|
Oshiro W, Beasley T, McDaniel K, Evansky P, Martin S, Moser V, Gilbert M, Bushnell P. Prenatal exposure to vapors of gasoline–ethanol blends causes few cognitive deficits in adult rats. Neurotoxicol Teratol 2015; 49:59-73. [DOI: 10.1016/j.ntt.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/30/2015] [Accepted: 04/05/2015] [Indexed: 01/09/2023]
|
46
|
Bushnell PJ, Beasley TE, Evansky PA, Martin SA, McDaniel KL, Moser VC, Luebke RW, Norwood J, Copeland CB, Kleindienst TE, Lonneman WA, Rogers JM. Toxicological assessments of rats exposed prenatally to inhaled vapors of gasoline and gasoline–ethanol blends. Neurotoxicol Teratol 2015; 49:19-30. [DOI: 10.1016/j.ntt.2015.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 01/20/2023]
|
47
|
Martin SA, McLanahan ED, Bushnell PJ, Hunter ES, El-Masri H. Species extrapolation of life-stage physiologically-based pharmacokinetic (PBPK) models to investigate the developmental toxicology of ethanol using in vitro to in vivo (IVIVE) methods. Toxicol Sci 2014; 143:512-35. [PMID: 25410581 DOI: 10.1093/toxsci/kfu246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To provide useful alternatives to in vivo animal studies, in vitro assays for dose-response assessments of xenobiotic chemicals must use concentrations in media and target tissues that are within biologically-plausible limits. Determining these concentrations is a complex matter, which can be facilitated by applying physiologically-based pharmacokinetic (PBPK) models in an in vitro to in vivo extrapolation (IVIVE) paradigm. We used ethanol (EtOH), a ubiquitous chemical with defined metrics for in vivo and in vitro embryotoxicity, as a model chemical to evaluate this paradigm. A published series of life-stage PBPK models for rats was extended to mice, yielding simulations that adequately predicted in vivo blood EtOH concentrations (BECs) from oral, intraperitoneal, and intravenous routes in nonpregnant and pregnant adult mice. The models were then extrapolated to nonpregnant and pregnant humans, replicating BEC data within a factor of two. The rodent models were then used to conduct IVIVEs for rodent and whole-embryo culture embryotoxicity data (neural tube closure defects, morphological changes). A second IVIVE was conducted for exposure scenarios in pregnant women during critical windows of susceptibility for developmental toxicity, such as the first 6-to-8 weeks (prerecognition period) or mid-to-late pregnancy period, when EtOH consumption is associated with fetal alcohol spectrum disorders. Incorporation of data from human embryonic stem cell studies led to a model-supported linkage of in vitro concentrations with plausible exposure ranges for pregnant women. This effort demonstrates benefits and challenges associated with use of multispecies PBPK models to estimate in vivo tissue concentrations associated with in vitro embryotoxicity studies.
Collapse
Affiliation(s)
- Sheppard A Martin
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - Eva D McLanahan
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - Philip J Bushnell
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - E Sidney Hunter
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - Hisham El-Masri
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| |
Collapse
|
48
|
Subbanna S, Nagre NN, Umapathy NS, Pace BS, Basavarajappa BS. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int J Neuropsychopharmacol 2014; 18:pyu028. [PMID: 25609594 PMCID: PMC4376538 DOI: 10.1093/ijnp/pyu028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. METHODS In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. RESULTS We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. CONCLUSIONS Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.
Collapse
MESH Headings
- AIDS-Related Complex/metabolism
- Acetylation/drug effects
- Age Factors
- Animals
- Animals, Newborn/metabolism
- Animals, Newborn/psychology
- CREB-Binding Protein/metabolism
- Central Nervous System Depressants/toxicity
- Epigenesis, Genetic/drug effects
- Ethanol/toxicity
- Exons/drug effects
- Female
- Gene Expression Regulation/drug effects
- Hippocampus/drug effects
- Hippocampus/metabolism
- Histones/genetics
- Male
- Memory Disorders/chemically induced
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neocortex/drug effects
- Neocortex/metabolism
- Neurodegenerative Diseases/chemically induced
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/psychology
- Phosphorylation/drug effects
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Social Behavior
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Nagavedi S Umapathy
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Betty S Pace
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa).
| |
Collapse
|
49
|
Staples MC, Porch MW, Savage DD. Impact of combined prenatal ethanol and prenatal stress exposures on markers of activity-dependent synaptic plasticity in rat dentate gyrus. Alcohol 2014; 48:523-32. [PMID: 25129673 DOI: 10.1016/j.alcohol.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
Abstract
Prenatal ethanol exposure and prenatal stress can each cause long-lasting deficits in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms underlying these perturbations following a learning event are still poorly understood. We examined the effects of prenatal ethanol exposure and prenatal stress exposure, either alone or in combination, on the cytosolic expression of activity-regulated cytoskeletal (ARC) protein and the synaptosomal expression of AMPA-glutamate receptor subunits (GluA1 and GluA2) in dentate gyrus of female adult offspring under baseline conditions and after 2-trial trace conditioning (TTTC). Surprisingly, baseline cytoplasmic ARC expression was significantly elevated in both prenatal treatment groups. In contrast, synaptosomal GluA1 receptor subunit expression was decreased in both prenatal treatment groups. GluA2 subunit expression was elevated in the prenatal stress group. TTTC did not alter ARC levels compared to an unpaired behavioral control (UPC) group in any of the 4 prenatal treatment groups. In contrast, TTTC significantly elevated both synaptosomal GluA1 and GluA2 subunit expression relative to the UPC group in control offspring, an effect that was not observed in any of the other 3 prenatal treatment groups. Given ARC's role in regulating synaptosomal AMPA receptors, these results suggest that prenatal ethanol-induced or prenatal stress exposure-induced increases in baseline ARC levels could contribute to reductions in both baseline and activity-dependent changes in AMPA receptors in a manner that diminishes the role of AMPA receptors in dentate gyrus synaptic plasticity and hippocampal-sensitive learning.
Collapse
Affiliation(s)
- Miranda C Staples
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Morgan W Porch
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
50
|
Subbanna S, Basavarajappa BS. Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice. Exp Neurol 2014; 261:34-43. [PMID: 25017367 DOI: 10.1016/j.expneurol.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|