1
|
Samanta S, Bagchi D, Gold MS, Badgaiyan RD, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag 2024; 17:3485-3501. [PMID: 39411118 PMCID: PMC11479634 DOI: 10.2147/prbm.s473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The human brain not only controls the various physiological functions but is also the prime regulator of circadian rhythms, rewards, and behaviors. Environmental factors, professional stress, and social disintegration are regarded as the initial causative factors of addiction behavior. Shift work, artificial light exposure at night, and chronic and acute jet lag influence circadian rhythm dysfunction. The result is impaired neurotransmitter release, dysfunction of neural circuits, endocrine disturbance, and metabolic disorder, leading to advancement in substance use disorder. There is a bidirectional relationship between chronodisruption and addiction behavior. Circadian rhythm dysfunction, neuroadaptation in the reward circuits, and alteration in clock gene expression in the mesolimbic areas influence substance use disorder (SUD), and chronotherapy has potential benefits in the treatment strategies. This review explores the relationship among the circadian rhythm dysfunction, reward circuit, and SUD. The impact of chronotherapy on SUD has also been discussed.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX, 77004, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, BeloHorizonte, 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, 721172, West Bengal, India
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
- Institute of Psychology, Eotvos Loránd University, Budapest, 1053, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, 45435, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, 05405, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, 78701, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Kreifeldt M, Okhuarobo A, Dunning JL, Lopez C, Macedo G, Sidhu H, Contet C. Mouse parasubthalamic Crh neurons drive alcohol drinking escalation and behavioral disinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602357. [PMID: 39026704 PMCID: PMC11257461 DOI: 10.1101/2024.07.06.602357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Corticotropin-releasing factor (CRF, encoded by Crh) signaling is thought to play a critical role in the development of excessive alcohol drinking and the emotional and physical pain associated with alcohol withdrawal. Here, we investigated the parasubthalamic nucleus (PSTN) as a potential source of CRF relevant to the control of alcohol consumption, affect, and nociception in mice. We identified PSTN Crh neurons as a neuronal subpopulation that exerts a potent and unique influence on behavior by promoting not only alcohol but also saccharin drinking, while PSTN neurons are otherwise known to suppress consummatory behaviors. Furthermore, PSTN Crh neurons are causally implicated in the escalation of alcohol and saccharin intake produced by chronic intermittent ethanol (CIE) vapor inhalation, a mouse model of alcohol use disorder. In contrast to our predictions, the ability of PSTN Crh neurons to increase alcohol drinking is not mediated by CRF1 signaling. Moreover, the pattern of behavioral disinhibition and reduced nociception driven by their activation does not support a role of negative reinforcement as a motivational basis for the concomitant increase in alcohol drinking. Finally, silencing Crh expression in the PSTN slowed down the escalation of alcohol intake in mice exposed to CIE and accelerated their recovery from withdrawal-induced mechanical hyperalgesia. Altogether, our results suggest that PSTN Crh neurons may represent an important node in the brain circuitry linking alcohol use disorder with sweet liking and novelty seeking.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | | | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Giovana Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| |
Collapse
|
3
|
Huang G, Thompson SL, Taylor JR. MPEP Lowers Binge Drinking in Male and Female C57BL/6 Mice: Relationship with mGlu5/Homer2/Erk2 Signaling. Alcohol Clin Exp Res 2021; 45:732-742. [PMID: 33587295 PMCID: PMC8076072 DOI: 10.1111/acer.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGlu5) plays an important role in excessive alcohol use and the mGlu5/Homer2/Erk2 signaling pathway has been implicated in binge drinking. The mGlu5 negative allosteric modulator (NAM) 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) has been shown to reduce binge drinking in male mice, but less is known about its effect on female mice. Here, we sought to determine whether sex differences exists in the effects of MPEP on binge drinking and whether they relate to changes in the MPEP mGlu5/Homer2/Erk2 signaling. METHODS We measured the dose-response effect of MPEP on alcohol consumption in male and female mice using the Drinking in the Dark (DID) paradigm to assess potential sex differences. To rule out possible confounds of MPEP on locomotion, we measured the effects of MPEP on locomotor activity and drinking simultaneously during DID. Lastly, to test whether MPEP-induced changes in alcohol consumption were related to changes in Homer2 or Erk2 expression, we performed qPCR using brain tissue acquired from mice that had undergone 7 days of DID. RESULTS 30 mg/kg MPEP reduced binge alcohol consumption across female and male mice, with no sex differences in the dose-response relationship. Locomotor activity did not mediate the effects of MPEP on alcohol intake, but activity correlated with alcohol intake independent of MPEP. MPEP did not change the expression of Homer2 and Erk2 mRNA in the bed nucleus of the stria terminalis (BNST) or nucleus accumbens in mice whose drinking was reduced by MPEP, relative to saline. There was a positive relationship between alcohol intake and Homer2 expression in the BNST. CONCLUSIONS MPEP reduced alcohol consumption during DID in male and female C57BL/6 mice but did not change Homer2/Erk2 expression. Locomotor activity did not mediate the effects of MPEP on alcohol intake, though it correlated with alcohol intake. Alcohol intake during DID predicted BNST Homer2 expression. These data provide support for the regulation of alcohol consumption by mGlu5 across sexes.
Collapse
Affiliation(s)
- Gan Huang
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Summer L. Thompson
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R. Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Hillmer AT, Angarita GA, Esterlis I, Anderson JM, Nabulsi N, Lim K, Ropchan J, Carson RE, Krystal JH, Malley SSO, Cosgrove KP. Longitudinal imaging of metabotropic glutamate 5 receptors during early and extended alcohol abstinence. Neuropsychopharmacology 2021; 46:380-385. [PMID: 32919411 PMCID: PMC7852514 DOI: 10.1038/s41386-020-00856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Chronic alcohol use has important effects on the glutamate system. The metabotropic glutamate 5 (mGlu5) receptor has shown promise in preclinical models as a target to reduce drinking-related behaviors and cue-induced reinstatement, motivating human studies of mGlu5 receptor negative allosteric modulators. The goal of this work was to measure levels of mGlu5 receptor availability with positron emission tomography (PET) imaging using the mGlu5 receptor-specific radiotracer [18F]FPEB during early and extended alcohol abstinence. Subjects who met DSM-5 criteria for alcohol use disorder (AUD; n = 17) were admitted inpatient for the study duration. [18F]FPEB PET scans were acquired first during early abstinence (6 ± 4 days after last drink) and a second time during extended abstinence (n = 13; 27 ± 6 days after last drink). A single scan was acquired in healthy controls matched for sex and smoking status (n = 20). [18F]FPEB total volumes of distribution (VT) corrected for partial volume effects were measured using equilibrium analysis throughout the brain. A linear mixed model controlling for smoking status and sex identified significantly higher [18F]FPEB VT in AUD subjects at early abstinence compared to controls (F(1,32) = 7.23, p = 0.011). Post-hoc analyses revealed this effect to occur in cortical brain regions. No evidence for significant changes in [18F]FPEB VT over time were established. These findings provide human evidence consistent with a robust preclinical literature supporting mGlu5 receptor drugs as pharmacotherapies for AUD.
Collapse
Affiliation(s)
- Ansel T Hillmer
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Mikael Anderson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
6
|
Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018; 9:2188-2204. [PMID: 29792024 PMCID: PMC6192262 DOI: 10.1021/acschemneuro.8b00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing efficacious treatments for alcohol use disorder (AUD) has proven difficult. The insidious nature of the disease necessitates a deep understanding of its underlying biology as well as innovative approaches to ameliorate ethanol-related pathophysiology. Excessive ethanol seeking and relapse are generated by long-term changes to membrane properties, synaptic physiology, and plasticity throughout the limbic system and associated brain structures. Each of these factors can be modulated by metabotropic glutamate (mGlu) receptors, a diverse set of G protein-coupled receptors highly expressed throughout the central nervous system. Here, we discuss how different components of the mGlu receptor family modulate neurotransmission in the limbic system and other brain regions involved in AUD etiology. We then describe how these processes are dysregulated following ethanol exposure and speculate about how mGlu receptor modulation might restore such pathophysiological changes. To that end, we detail the current understanding of the behavioral pharmacology of mGlu receptor-directed drug-like molecules in animal models of AUD. Together, this review highlights the prominent position of the mGlu receptor system in the pathophysiology of AUD and provides encouragement that several classes of mGlu receptor modulators may be translated as viable treatment options.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Anel A. Jaramillo
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| |
Collapse
|
7
|
Bath KG, Russo SJ, Pleil KE, Wohleb ES, Duman RS, Radley JJ. Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development. Neurobiol Stress 2017; 7:137-151. [PMID: 29276735 PMCID: PMC5736942 DOI: 10.1016/j.ynstr.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Cognitive Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, United States
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, United States
| | - Eric S. Wohleb
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45237, United States
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Ronald S. Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
8
|
Kamens HM, Silva C, Peck C, Miller CN. Varenicline modulates ethanol and saccharin consumption in adolescent male and female C57BL/6J mice. Brain Res Bull 2017; 138:20-25. [PMID: 28778837 DOI: 10.1016/j.brainresbull.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
Adolescence is a critical period in brain development that coincides with the initiation of alcohol use. Nicotinic acetylcholine receptors (nAChR) have been shown to modulate ethanol behaviors in adult humans and in animal models; however, the role of these receptors in adolescent ethanol behaviors has not been explored. Throughout adolescence, nAChR expression undergoes large-scale developmental changes which may alter behavioral responses to ethanol. Here we examined the effect of varenicline, a nAChR partial agonist, on ethanol consumption, ataxia, sedation, and metabolism in adolescent male and female C57BL/6J mice. The effect of varenicline on ethanol consumption was tested through the Drinking-in-the-Dark (DID) paradigm that models binge-like ethanol consumption. To ensure that results were specific for ethanol, we also tested the effect of varenicline on saccharin consumption. Additionally, varenicline was administered 30min prior to an acute injection of ethanol before being tested for ataxia on the balance beam, sedation using the loss of righting reflex, or ethanol metabolism. Varenicline dose dependently decreased ethanol consumption, but also influenced saccharin intake. Varenicline showed no significant effect on ethanol metabolism, ataxia, or sedation. Unlike its effects in adult animals, varenicline is able to reduce ethanol consumption without increasing the ataxic and sedative effects of ethanol. This work suggests that the neurobiological mechanisms of ethanol behaviors may change across the lifespan and highlights the need for more research on the role of nAChRs in ethanol behaviors throughout development.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Constanza Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Colette Peck
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Carley N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| |
Collapse
|
9
|
α6β2 nicotinic acetylcholine receptors influence locomotor activity and ethanol consumption. Alcohol 2017; 61:43-49. [PMID: 28457669 DOI: 10.1016/j.alcohol.2017.02.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/13/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system have been implicated in ethanol behaviors. In particular, work in genetically engineered mice has demonstrated that α6-containing nAChRs are involved in ethanol consumption and sedation. A limitation of these studies is that the alteration in the receptor was present throughout development. The recently described α6β2 antagonist, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), now makes it possible to test for the involvement of these receptors using a pharmacological approach. The aim of this study was to examine the role of α6β2 nAChRs in ethanol behaviors using a pharmacological approach. Adolescent C57BL/6J mice were treated with bPiDI 30 min prior to testing the mice for binge-like ethanol consumption in the drinking-in-the-dark (DID) test, ethanol-induced motor incoordination using the balance beam, and ethanol-induced sedation using the Loss of Righting Reflex (LORR) paradigm. Adolescent animals were chosen because they express a high amount of α6 mRNA relative to adult animals. Control studies were also performed to determine the effect of bPiDI on locomotor activity and ethanol metabolism. Female mice treated with 20 mg/kg bPiDI had reduced locomotor activity compared to saline-treated animals during the first 30 min following an acute injection. Pretreatment with the α6β2 antagonist reduced adolescent ethanol consumption but also reduced saccharin consumption. No significant effects were observed on ethanol-induced ataxia, sedation, or metabolism. This study provides evidence that α6β2 nAChRs are involved in locomotor activity as well as ethanol and saccharin consumption in adolescent animals.
Collapse
|
10
|
Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol 2017; 22:581-615. [PMID: 26833803 DOI: 10.1111/adb.12349] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for the treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies, and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Megan M. Yardley
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
| | - Lara A. Ray
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
- Department of Psychiatry and Biobehavioral Sciences; University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
11
|
Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Res 2017; 6:298. [PMID: 28413623 PMCID: PMC5365217 DOI: 10.12688/f1000research.9609.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.
Collapse
Affiliation(s)
- Lara Hwa
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Thomas Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
McMurray KMJ, Sidhu PS, Cook JM, Arnold LA, Palmer AA. Genetic and pharmacological manipulation of glyoxalase 1 regulates voluntary ethanol consumption in mice. Addict Biol 2017; 22:381-389. [PMID: 26691867 DOI: 10.1111/adb.12333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/14/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Abstract
Previous studies have identified an association between the gene glyoxalase 1 (Glo1) and anxiety-like behavior in mice and have shown that the substrate of GLO1, methylglyoxal, is a competitive partial agonist at GABAA receptors. Given the well-established role of GABAA receptors in the behavioral effects of ethanol (EtOH), we investigated the role of Glo1 in voluntary EtOH consumption in mice using the drinking in the dark (DID) paradigm. Transgenic mice overexpressing Glo1 on both FVB/NJ (FVB) or C57BL/6J (B6) backgrounds showed increased voluntary EtOH consumption compared to their wild-type littermates in DID. Furthermore, transgenic Glo1 knockdown mice on a B6 background showed decreased voluntary EtOH consumption in DID. These genetic manipulations of Glo1 had no effect on sucrose, saccharin or water consumption. Finally, we found that a small molecule GLO1 inhibitor (S-bromobenzylglutathione cyclopentyl diester (pBBG; 6.25, 12.5 mg/kg)) reduced EtOH consumption compared to vehicle treated B6 mice without altering saccharin or water consumption. Sucrose consumption was only reduced by the higher (12.5 mg/kg) dose of pBBG. We did not observe differences in the loss of righting reflex (LORR) or EtOH-induced foot slips on the balance beam in response to acute EtOH administration (LORR: 4 g/kg, Balance Beam: 1.25 g/kg) in B6 or FVB mice overexpressing Glo1, nor in B6 mice treated with pBBG. These data are the first to implicate Glo1 in EtOH-related behaviors and suggest that GLO1 inhibitors may have therapeutic potential for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Committee on Neurobiology; University of Chicago; Chicago IL 60637 USA
- Department of Human Genetics; University of Chicago; Chicago IL 60637 USA
| | - Preetpal S. Sidhu
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee and the Milwaukee Institute for Drug Discovery; Milwaukee WI USA
| | - James M. Cook
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee and the Milwaukee Institute for Drug Discovery; Milwaukee WI USA
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee and the Milwaukee Institute for Drug Discovery; Milwaukee WI USA
| | - Abraham A. Palmer
- Department of Human Genetics; University of Chicago; Chicago IL 60637 USA
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago; Chicago IL 60637 USA
- Department of Psychiatry; University of Californian San Diego; La Jolla CA 92093 USA
| |
Collapse
|
13
|
Goodwani S, Saternos H, Alasmari F, Sari Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 2017; 77:14-31. [PMID: 28242339 DOI: 10.1016/j.neubiorev.2017.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.
Collapse
Affiliation(s)
- Sunil Goodwani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA; The Neurodegeneration Consortium, Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Hannah Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
14
|
Sari Y. Commentary: Targeting NMDA Receptor and Serotonin Transporter for the Treatment of Comorbid Alcohol Dependence and Depression. Alcohol Clin Exp Res 2017; 41:275-278. [PMID: 28102547 DOI: 10.1111/acer.13310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| |
Collapse
|
15
|
Salcedo-Arellano MJ, Lozano R, Tassone F, Hagerman RJ, Saldarriaga W. Alcohol use dependence in fragile X syndrome. Intractable Rare Dis Res 2016; 5:207-13. [PMID: 27672544 PMCID: PMC4995423 DOI: 10.5582/irdr.2016.01046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
Abstract
Alcohol use disorders (AUDs) have been reported in a limited number of individuals with cognitive impairment but rarely in those with fragile X syndrome (FXS). However, in Colombia, culturally, alcohol consumption is very common. Here, we report eight cases of patients with FXS who have frequent alcohol consumption in Ricaurte, Colombia. Some of these patients have also used tobacco and illegal substances, including cocaine, which use has not been previously reported in those with FXS. Alcohol and substance use dependence is associated with exacerbation of their behavioral problems, such as increased impulsivity and aggression, as well as of medical problems such as an increased frequency of seizures.
Collapse
Affiliation(s)
- María J Salcedo-Arellano
- School of Medicine, Universidad del Valle, Cali, Colombia
- Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Reymundo Lozano
- Seaver Autism Center. Departments of Genomic Sciences, Psychiatry and Pediatrics. Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Wilmar Saldarriaga
- School of Medicine, Universidad del Valle, Cali, Colombia
- Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia
- Departments of Morphology and Obstetrics & Gynecology, Universidad del Valle, Hospital Universitario Del Valle, Cali, Colombia
| |
Collapse
|
16
|
Ho AMC, Qiu Y, Jia YF, Aguiar FS, Hinton DJ, Karpyak VM, Weinshilboum RM, Choi DS. Combined Effects of Acamprosate and Escitalopram on Ethanol Consumption in Mice. Alcohol Clin Exp Res 2016; 40:1531-9. [PMID: 27184383 DOI: 10.1111/acer.13099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Major depression is one of the most prevalent psychiatry comorbidities of alcohol use disorders (AUD). As negative emotions can trigger craving and increase the risk of relapse, treatments that target both conditions simultaneously may augment treatment success. Previous studies showed a potential synergistic effect of Food and Drug Administration approved medication for AUD acamprosate and the antidepressant escitalopram. In this study, we investigated the effects of combining acamprosate and escitalopram on ethanol (EtOH) consumption in stress-induced depressed mice. METHODS Forty singly housed C57BL/6J male mice were subjected to chronic unpredictable stress. In parallel, 40 group-housed male mice were subjected to normal husbandry. After 3 weeks, depressive- and anxiety-like behaviors and EtOH consumption were assessed. For the next 7 days, mice were injected with saline, acamprosate (200 mg/kg; twice/d), escitalopram (5 mg/kg; twice/d), or their combination (n = 9 to 11/drug group/stress group). Two-bottle choice limited-access drinking of 15% EtOH and tap water was performed 3 hours into dark phase immediately after the daily dark phase injection. EtOH drinking was monitored for another 7 days without drug administration. RESULTS Mice subjected to the chronic unpredictable stress paradigm for 3 weeks showed apparent depression- and anxiety-like behaviors compared to their nonstressed counterparts including longer immobility time in the forced swim test and lower sucrose preference. Stressed mice also displayed higher EtOH consumption and preference in a 2-bottle choice drinking test. During the drug administration period, the escitalopram-only and combined drug groups showed significant reduction in EtOH consumption in nonstressed mice, while only the combined drug group showed significantly reduced consumption in stressed mice. However, such reduction did not persist into the postdrug administration period. CONCLUSIONS The combination of acamprosate and escitalopram suppressed EtOH intake in both nonstressed and stressed mice; hence, this combination is potentially helpful for AUD individuals with or without comorbid depression to reduce alcohol use.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yanyan Qiu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Felipe S Aguiar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Neurobiology of Disease Program, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Neurobiology of Disease Program, Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
17
|
Fritz BM, Boehm SL. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:297-308. [PMID: 26021391 PMCID: PMC4668238 DOI: 10.1016/j.pnpbp.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/02/2015] [Accepted: 05/21/2015] [Indexed: 02/03/2023]
Abstract
Binge ethanol consumption has widespread negative consequences for global public health. Rodent models offer exceptional power to explore the neurobiology underlying and affected by binge-like drinking as well as target potential prevention, intervention, and treatment strategies. An important characteristic of these models is their ability to consistently produce pharmacologically-relevant blood ethanol concentration. This review examines the current available rodent models of voluntary, pre-dependent binge-like ethanol consumption and their utility in various research strategies. Studies have demonstrated that a diverse array of neurotransmitters regulate binge-like drinking, resembling some findings from other drinking models. Furthermore, repeated binge-like drinking recruits neuroadaptive mechanisms in mesolimbocortical reward circuitry. New opportunities that these models offer in the current context of mechanistic research are also discussed.
Collapse
Affiliation(s)
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
18
|
Mihov Y, Hasler G. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window. Int J Neuropsychopharmacol 2016; 19:pyw002. [PMID: 26802568 PMCID: PMC4966271 DOI: 10.1093/ijnp/pyw002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. METHODS Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. RESULTS MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. CONCLUSION Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders.
Collapse
Affiliation(s)
- Yoan Mihov
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| |
Collapse
|
19
|
Prosser RA, Glass JD. Assessing ethanol's actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol 2015; 49:321-339. [PMID: 25457753 DOI: 10.1016/j.alcohol.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022]
Abstract
Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.
Collapse
|
20
|
Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption. Alcohol 2015; 49:37-46. [PMID: 25557834 DOI: 10.1016/j.alcohol.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
Abstract
The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature.
Collapse
|
21
|
Erickson CA, Ray B, Maloney B, Wink LK, Bowers K, Schaefer TL, McDougle CJ, Sokol DK, Lahiri DK. Impact of acamprosate on plasma amyloid-β precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res 2014; 59:220-8. [PMID: 25300441 PMCID: PMC4253657 DOI: 10.1016/j.jpsychires.2014.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Understanding of the pathophysiology of autism spectrum disorder (ASD) remains limited. Brain overgrowth has been hypothesized to be associated with the development of ASD. A derivative of amyloid-β precursor protein (APP), secreted APPα (sAPPα), has neuroproliferative effects and has been shown to be elevated in the plasma of persons with ASD compared to control subjects. Reduction in sAPPα holds promise as a novel molecular target of treatment in ASD. Research into the neurochemistry of ASD has repeatedly implicated excessive glutamatergic and deficient GABAergic neurotransmission in the disorder. With this in mind, acamprosate, a novel modulator of glutamate and GABA function, has been studied in ASD. No data is available on the impact of glutamate or GABA modulation on sAPPα function. METHODS Plasma APP derivative levels pre- and post-treatment with acamprosate were determined in two pilot studies involving youth with idiopathic and fragile X syndrome (FXS)-associated ASD. We additionally compared baseline APP derivative levels between youth with FXS-associated or idiopathic ASD. RESULTS Acamprosate use was associated with a significant reduction in plasma sAPP(total) and sAPPα levels but no change occurred in Aβ40 or Aβ42 levels in 15 youth with ASD (mean age: 11.1 years). Youth with FXS-associated ASD (n = 12) showed increased sAPPα processing compared to age-, gender- and IQ-match youth with idiopathic ASD (n = 11). CONCLUSIONS Plasma APP derivative analysis holds promise as a potential biomarker for use in ASD targeted treatment. Reduction in sAPP (total) and sAPPα may be a novel pharmacodynamic property of acamprosate. Future study is required to address limitations of the current study to determine if baseline APP derivative analysis may predict subgroups of persons with idiopathic or FXS-associated ASD who may respond best to acamprosate or to potentially other modulators of glutamate and/or GABA neurotransmission.
Collapse
Affiliation(s)
| | - Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Logan K. Wink
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine Bowers
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tori L. Schaefer
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher J. McDougle
- Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah K. Sokol
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Corresponding Author: Debomoy K. Lahiri, Ph.D., Professor, Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Institute of Psychiatric Research, Neuroscience Research Building, 320 West 15th Street, NB 200C, Indianapolis, IN 46202-2266, USA, Tel: (317) 274-2706; Fax: (317) 231-0200
| |
Collapse
|
22
|
Erickson CA, Wink LK, Early MC, Stiegelmeyer E, Mathieu-Frasier L, Patrick V, McDougle CJ. Brief report: Pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder. J Autism Dev Disord 2014; 44:981-7. [PMID: 24052275 DOI: 10.1007/s10803-013-1943-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE An excitatory/inhibitory (E:I) imbalance marked by enhanced glutamate and deficient gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of autism spectrum disorders (ASD). OBJECTIVES We report on the first single-blind placebo lead-in trial of acamprosate, a drug with putative mechanisms restoring E:I imbalance, in twelve youth with ASD. MATERIALS AND METHODS We conducted a 12-week single-blind, placebo lead-in study of acamprosate in youth age 5-17 years with autistic disorder. RESULTS Six of nine subjects who received active drug treatment were deemed treatment responders (defined by a score at final visit of "very much improved" or "much improved" on the Clinical Global Impressions Improvement scale) and ≥25% improvement on the Aberrant Behavior Checklist Social Withdrawal subscale. CONCLUSION Future larger-scale dose finding studies of acamprosate in ASD may be warranted given this preliminary indication of benefit.
Collapse
Affiliation(s)
- Craig A Erickson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA,
| | | | | | | | | | | | | |
Collapse
|
23
|
Sharma R, Sahota P, Thakkar MM. Rapid tolerance development to the NREM sleep promoting effect of alcohol. Sleep 2014; 37:821-4. [PMID: 24899768 DOI: 10.5665/sleep.3598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
STUDY OBJECTIVES Alcohol tolerance is a major contributor towards the development of alcohol dependence. Does alcohol intake result in rapid tolerance development to alcohol induced NREM sleep promotion? This has never been examined. Our objective was to examine whether two bouts of alcohol consumption on consecutive days results in rapid tolerance development to alcohol-induced NREM sleep promotion. DESIGN N/A. SETTING N/A. PATIENTS OR PARTICIPANTS C57BL/6J mice. INTERVENTIONS Mice (N = 5) were implanted with sleep electrodes using standard surgical conditions. Following postoperative recovery and habituation, the experiment was begun. On baseline day, water bottle changes were performed at 10:00 (3 h after dark onset) and 14:00 to mimic conditions during alcohol consumption days. On next 2 days, (Days 1 and 2) mice were allowed to self-administer alcohol (20% v/v) for 4 h beginning at 10:00 and ending at 14:00. Sleep-wakefulness was continuously recorded from 10:00 to 18:00 (8 h; 4 h during alcohol + 4 h post-alcohol) on all 3 days. MEASUREMENTS AND RESULTS Although mice consumed comparable amounts of alcohol on Days 1 and 2, NREM sleep and wakefulness were significantly and differentially affected during 4 h post-alcohol period. A robust alcohol-induced NREM sleep promotion was observed on Day 1. However, no such sleep promotion was observed on Day 2, suggesting rapid tolerance development. CONCLUSIONS Our study is the first to demonstrate that alcohol consumption for two consecutive days results in development of rapid tolerance to alcohol-induced sleep promotion.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO
| |
Collapse
|
24
|
Kumar J, Hapidin H, Bee YTG, Ismail Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behav Brain Funct 2013; 9:43. [PMID: 24279870 PMCID: PMC4222772 DOI: 10.1186/1744-9081-9-43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/23/2013] [Indexed: 11/22/2022] Open
Abstract
Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety.
Collapse
Affiliation(s)
- Jaya Kumar
- BRAINetwork Centre for Neurocognitive Science, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| | | | | | | |
Collapse
|
25
|
The role of clock in ethanol-related behaviors. Neuropsychopharmacology 2013; 38:2393-400. [PMID: 23722243 PMCID: PMC3799058 DOI: 10.1038/npp.2013.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023]
Abstract
Mice with a mutation in the Clock gene (ClockΔ19) exhibit increased preference for stimulant rewards and sucrose. They also have an increase in dopaminergic activity in the ventral tegmental area (VTA) and a general increase in glutamatergic tone that might underlie these behaviors. However, it is unclear if their phenotype would extend to a very different class of drug (ethanol), and if so, whether these systems might be involved in their response. Continuous access voluntary ethanol intake was evaluated in ClockΔ19 mutants and wild-type (WT) mice. We found that ClockΔ19 mice exhibited significantly increased ethanol intake in a two-bottle choice paradigm. Interestingly, this effect was more robust in female mice. Moreover, chronic ethanol experience resulted in a long-lasting decrease in VTA Clock expression. To determine the importance of VTA Clock expression in ethanol intake, we knocked down Clock expression in the VTA of WT mice via RNA interference. We found that reducing Clock expression in the VTA resulted in significantly increased ethanol intake similar to the ClockΔ19 mice. Interestingly, we also discovered that ClockΔ19 mice exhibit significantly augmented responses to the sedative effects of ethanol and ketamine, but not pentobarbital. However, their drinking behavior was not affected by acamprosate, an FDA-approved drug for the treatment of alcoholism, suggesting that their increased glutamatergic tone might underlie the increased sensitivity to the sedative/hypnotic properties of ethanol but not the rewarding properties of ethanol. Taken together, we have identified a significant role for Clock in the VTA as a negative regulator of ethanol intake and implicate the VTA dopamine system in this response.
Collapse
|
26
|
Abstract
RATIONALE An increasingly compelling literature points to a major role for the glutamate system in mediating the effects of alcohol on behavior and the pathophysiology of alcoholism. Preclinical studies indicate that glutamate signaling mediates certain aspects of ethanol's intoxicating and rewarding effects, and undergoes adaptations following chronic alcohol exposure that may contribute to the withdrawal, craving and compulsive drug-seeking that drive alcohol abuse and alcoholism. OBJECTIVES We discuss the potential for targeting the glutamate system as a novel pharmacotherapeutic approach to treating alcohol use disorders, focusing on five major components of the glutamate system: the N-methyl-D-aspartate (NMDA) receptor and specific NMDA subunits, the glycineB site on the NMDA receptors (NMDAR), L-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ionotropic (AMPA) and kainate (KAR) receptors, metabotropic receptors (mGluR), and glutamate transporters. RESULTS Chronic alcohol abuse produces a hyperglutamatergic state, characterized by elevated extracellular glutamate and altered glutamate receptors and transporters. Pharmacologically manipulating glutamatergic neurotransmission alters alcohol-related behaviors including intoxication, withdrawal, and alcohol-seeking, in rodents and human subjects. Blocking NMDA and AMPA receptors reduces alcohol consumption in rodents, but side-effects may limit this as a therapeutic approach. Selectively targeting NMDA and AMPA receptor subunits (e.g., GluN2B, GluA3), or the NMDAR glycineB site offers an alternative approach. Blocking mGluR5 potently affects various alcohol-related behaviors in rodents, and mGluR2/3 agonism also suppresses alcohol consumption. Finally, glutamate transporter upregulation may mitigate behavioral and neurotoxic sequelae of excess glutamate caused by alcohol. CONCLUSIONS Despite the many challenges that remain, targeting the glutamate system offers genuine promise for developing new treatments for alcoholism.
Collapse
|
27
|
Cui C, Noronha A, Morikawa H, Alvarez VA, Stuber GD, Szumlinski KK, Kash TL, Roberto M, Wilcox MV. New insights on neurobiological mechanisms underlying alcohol addiction. Neuropharmacology 2012; 67:223-32. [PMID: 23159531 DOI: 10.1016/j.neuropharm.2012.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 11/15/2022]
Abstract
Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence.
Collapse
Affiliation(s)
- Changhai Cui
- Division of Neuroscience and Behavior, NIAAA/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ary AW, Cozzoli DK, Finn DA, Crabbe JC, Dehoff MH, Worley PF, Szumlinski KK. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity. Alcohol 2012; 46:377-87. [PMID: 22444953 DOI: 10.1016/j.alcohol.2011.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 10/28/2022]
Abstract
Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.
Collapse
|
29
|
Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, Rinker JA, Jijon AM, Peňa J, Navarro M, Kash TL, Thiele TE. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 2012; 37:1409-21. [PMID: 22218088 PMCID: PMC3327846 DOI: 10.1038/npp.2011.327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
Collapse
Affiliation(s)
- Angela M Sparrow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Chia Li
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin R Cox
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Ana M Jijon
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - José Peňa
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology, University of North Carolina Davie Hall, CB #3270 Chapel Hill, NC 27599-3270, USA, Tel: +1 919 966 1519, Fax: +1 919-962-2537, E-mail:
| |
Collapse
|
30
|
Cozzoli DK, Courson J, Caruana AL, Miller BW, Greentree DI, Thompson AB, Wroten MG, Zhang PW, Xiao B, Hu JH, Klugmann M, Metten P, Worley PF, Crabbe JC, Szumlinski KK. Nucleus accumbens mGluR5-associated signaling regulates binge alcohol drinking under drinking-in-the-dark procedures. Alcohol Clin Exp Res 2012; 36:1623-33. [PMID: 22432643 DOI: 10.1111/j.1530-0277.2012.01776.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/11/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alcohol increases the expression of Group 1 metabotropic glutamate receptors (mGluRs) and their associated scaffolding protein Homer2 and stimulates phosphatidylinositol 3-kinase (PI3K) within the nucleus accumbens (NAC). Moreover, functional studies suggest that NAC Group 1 mGluR/Homer2/PI3K signaling may be a potential target for pharmacotherapeutic intervention in alcoholism. METHODS Immunoblotting was conducted to examine the effects of alcohol consumption under drinking-in-the-dark (DID) procedures on Group 1 mGluR-associated proteins in C57BL/6J (B6) mice. Follow-up behavioral studies examined the importance of Group 1 mGluR/Homer2/PI3K signaling within the NAC shell for limited-access alcohol drinking. Finally, immunoblotting examined whether the NAC expression of Group 1 mGluR-associated proteins is a genetic correlate of high alcohol drinking using a selectively bred high DID (HDID-1) mouse line. RESULTS Limited-access alcohol drinking under DID procedures up-regulated NAC shell Homer2 levels, concomitant with increases in mGluR5 and NR2B. Intra-NAC shell blockade of mGluR5, Homer2, or PI3K signaling, as well as transgenic disruption of the Homer binding site on mGluR5, decreased alcohol consumption in B6 mice. Moreover, transgenic disruption of the Homer binding site on mGluR5 and Homer2 deletion both prevented the attenuating effect of mGluR5 and PI3K blockade upon intake. Finally, the basal NAC shell protein expression of mGluR1 and Homer2 was increased in offspring of HDID-1 animals. CONCLUSIONS Taken together, these data further implicate Group 1 mGluR signaling through Homer2 within the NAC in excessive alcohol consumption.
Collapse
Affiliation(s)
- Debra K Cozzoli
- Department of Psychological and Brain Sciences, The Neuroscience Research Institute, University of California, Santa Barbara, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brager AJ, Prosser RA, Glass JD. Circadian and acamprosate modulation of elevated ethanol drinking in mPer2 clock gene mutant mice. Chronobiol Int 2012; 28:664-72. [PMID: 21929298 DOI: 10.3109/07420528.2011.601968] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The PER2 clock gene modulates ethanol consumption, such that mutant mice not expressing functional mPer2 have altered circadian behavior that promotes higher ethanol intake and preference. Experiments were undertaken to characterize circadian-related behavioral effects of mPer2 deletion on ethanol intake and to explore how acamprosate (used to reduce alcohol dependence) alters diurnal patterns of ethanol intake. Male mPer2 mutant and WT (wild-type) mice were entrained to a 12:12 h light-dark (12L:12D) photocycle, and their locomotor and drinking activities were recorded. Circadian locomotor measurements confirmed that mPer2 mutants had an advanced onset of nocturnal activity of about 2 h relative to WTs, and an increased duration of nocturnal activity (p < .01). Also, mPer2 mutants preferred and consumed more ethanol and had more daily ethanol drinking episodes vs. WTs. Measurements of systemic ethanol using subcutaneous microdialysis confirmed the advanced rise in ethanol intake in the mPer2 mutants, with 24-h averages being ∼60 vs. ∼25 mM for WTs (p < .01). A 6-day regimen of single intraperitoneal (i.p.) acamprosate injections (300 mg/kg) at zeitgeber time (ZT) 10 did not alter the earlier onset of nocturnal ethanol drinking in the mPer2 mutants, but reduced the overall amplitude of drinking and preference (both p < .01). Acamprosate also reduced these parameters in WTs. These results suggest that elevated ethanol intake in mPer2 mutants may be a partial consequence of an earlier nighttime activity onset and increase in nocturnal drinking activity. The suppressive action of acamprosate on ethanol intake is not due to an altered diurnal pattern of drinking, but rather a decrease in the number of daily drinking bouts and amount of drinking per bout.
Collapse
Affiliation(s)
- Allison J Brager
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA
| | | | | |
Collapse
|
32
|
Sprow GM, Thiele TE. The neurobiology of binge-like ethanol drinking: evidence from rodent models. Physiol Behav 2012; 106:325-31. [PMID: 22245775 DOI: 10.1016/j.physbeh.2011.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Binge alcohol (ethanol) drinking is a destructive pattern of ethanol consumption that may precipitate ethanol dependence-a chronic, debilitating, and prevalent health problem. While an abundance of research has focused on the neurochemical underpinnings of ethanol dependence, relatively little is known about the mechanisms underlying the heavy consumption characteristic of binge ethanol drinking. Recently, a simple preclinical model termed "drinking in the dark" (DID) was developed to examine binge-like ethanol consumption in a rodent population. This assay capitalizes on the predisposition of C57BL/6J mice to voluntarily consume substantial quantities of a high concentration (20% v/v) ethanol solution, resulting in pharmacologically relevant blood ethanol concentrations (BECs). This review provides a comprehensive overview of recent literature utilizing this model to investigate the neuromodulatory systems that may influence binge ethanol drinking. Studies examining the glutamatergic and opioidergic systems not only provide evidence for these systems in the modulation of binge-like ethanol consumption, but also suggest this preclinical model has predictive validity and may be an appropriate tool for screening novel pharmacological compounds aimed at treating binge ethanol drinking in the human population. Additionally, this review presents evidence for the involvement of the GABAergic, dopaminergic, nicotinic, and endocannabinoid systems in modulating binge-like ethanol consumption. Finally, recent evidence shows that corticotropin-releasing factor (CRF), agouti-related protein (AgRP), neuropeptide Y (NPY), and ghrelin are also implicated as impacting this pattern of ethanol consumption.
Collapse
Affiliation(s)
- Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599-3270, USA
| | | |
Collapse
|
33
|
Erickson CA, Early M, Stigler KA, Wink LK, Mullett JE, McDougle CJ. An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolesc Psychopharmacol 2011; 21:565-9. [PMID: 22136091 PMCID: PMC3243460 DOI: 10.1089/cap.2011.0034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To date, placebo-controlled drug trials targeting the core social impairment of autistic disorder (autism) have had uniformly negative results. Given this, the search for new potentially novel agents targeting the core social impairment of autism continues. Acamprosate is U.S. Food and Drug Administration-approved drug to treat alcohol dependence. The drug likely impacts both gamma-aminobutyric acid and glutamate neurotransmission. This study describes our initial open-label experience with acamprosate targeting social impairment in youth with autism. In this naturalistic report, five of six youth (mean age, 9.5 years) were judged treatment responders to acamprosate (mean dose 1,110 mg/day) over 10 to 30 weeks (mean duration, 20 weeks) of treatment. Acamprosate was well tolerated with only mild gastrointestinal adverse effects noted in three (50%) subjects.
Collapse
Affiliation(s)
- Craig A Erickson
- Department of Psychiatry, Christian Sarkine Autism Treatment Center, Indiana University School of Medicine, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Bulwa ZB, Sharlin JA, Clark PJ, Bhattacharya TK, Kilby CN, Wang Y, Rhodes JS. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol 2011; 45:631-9. [PMID: 21803530 DOI: 10.1016/j.alcohol.2011.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/14/2011] [Accepted: 06/20/2011] [Indexed: 11/24/2022]
Abstract
Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards.
Collapse
|
35
|
Ripley TL, Stephens DN. Critical thoughts on current rodent models for evaluating potential treatments of alcohol addiction and withdrawal. Br J Pharmacol 2011; 164:1335-56. [PMID: 21470204 PMCID: PMC3229765 DOI: 10.1111/j.1476-5381.2011.01406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/27/2022] Open
Abstract
Despite years of neurobiological research that have helped to identify potential therapeutic targets, we do not have a reliable pharmacological treatment for alcoholism. There are a range of possible explanations for this failure, including arguments that alcoholism is a spectrum disorder and that different population subtypes may respond to different treatments. This view is supported by categorisations such as early- and late-onset alcoholism, whilst multifactorial genetic factors may also alter responsivity to pharmacological agents. Furthermore, experience of alcohol withdrawal may play a role in future drinking in a way that may distinguish alcoholism from other forms of addiction. Additionally, our neurobiological models, based largely upon results from rodent studies, may not mimic specific aspects of the human condition and may reflect different underlying phenomena and biological processes from the clinical pattern. As a result, potential treatments may be targeting inappropriate aspects of alcohol-related behaviours. Instead, we suggest a more profitable approach is (a) to identify well-defined intermediate behavioural phenotypes in human experimental models that reflect defined aspects of the human clinical disorder and (b) to develop animal models that are homologous with those phenotypes in terms of psychological processes and underlying neurobiological mechanisms. This review describes an array of animal models currently used in the addiction field and what they tell us about alcoholism. We will then examine how established pharmacological agents have been developed using only a limited number of these models, before describing some alternative novel approaches to achieving homology between animal and human experimental measures.
Collapse
Affiliation(s)
- Tamzin L Ripley
- School of Psychology, University of Sussex, Falmer, Brighton, UK.
| | | |
Collapse
|
36
|
Steffensen SC, Bradley KD, Hansen DM, Wilcox JD, Wilcox RS, Allison DW, Merrill CB, Edwards JG. The role of connexin-36 gap junctions in alcohol intoxication and consumption. Synapse 2011; 65:695-707. [PMID: 21638336 PMCID: PMC3051038 DOI: 10.1002/syn.20885] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/31/2010] [Indexed: 11/06/2022]
Abstract
Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption.
Collapse
Affiliation(s)
- Scott C Steffensen
- Department of Psychology and Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bell RL, Rodd ZA, Smith RJ, Toalston JE, Franklin KM, McBride WJ. Modeling binge-like ethanol drinking by peri-adolescent and adult P rats. Pharmacol Biochem Behav 2011; 100:90-7. [PMID: 21824488 DOI: 10.1016/j.pbb.2011.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/27/2023]
Abstract
Alcohol binge-drinking, especially among adolescents and young adults, is a serious public health concern. The present study examined ethanol binge-like drinking by peri-adolescent [postnatal days (PNDs 30-72)] and adult (PNDs 90-132) alcohol-preferring (P) rats with a drinking-in-the-dark-multiple-scheduled-access (DID-MSA) procedure used by our laboratory. Male and female P rats were provided concurrent access to 15% and 30% ethanol for three 1-h sessions across the dark cycle 5 days/week. For the 1st week, adolescent and adult female P rats consumed 3.4 and 1.6g/kg of ethanol, respectively, during the 1st hour of access, whereas for male rats the values were 3.5 and 1.1g/kg of ethanol, respectively. Adult intakes increased to ~2.0 g/kg/h and adolescent intakes decreased to ~2.5 g/kg/h across the 6 weeks of ethanol access. The daily ethanol intake of adult DID-MSA rats approximated or modestly exceeded that seen in continuous access (CA) rats or the selection criterion for P rats (≥5 g/kg/day). However, in general, the daily ethanol intake of DID-MSA peri-adolescent rats significantly exceeded that of their CA counterparts. BELs were assessed at 15-min intervals across the 3rd hour of access during the 4th week. Ethanol intake was 1.7 g/kg vs. 2.7 g/kg and BELs were 57 mg% vs. 100mg% at 15- and 60-min, respectively. Intoxication induced by DID-MSA in female P rats was assessed during the 1st vs. 4th week of ethanol access. Level of impairment did not differ between the 2 weeks (106 vs. 97 s latency to fall, 120 s criterion) and was significant (vs. naïve controls) only during the 4th week. Overall, these findings support the use of the DID-MSA procedure in rats, and underscore the presence of age- and sex-dependent effects mediating ethanol binge-like drinking in P rats.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Brager A, Prosser RA, Glass JD. Acamprosate-responsive brain sites for suppression of ethanol intake and preference. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1032-43. [PMID: 21697518 DOI: 10.1152/ajpregu.00179.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before ethanol reintroduction, mice received bilateral blank or acamprosate-containing microimplants releasing ∼50 ng/day into reward [ventral tegmental (VTA), peduculopontine tegmentum (PPT), and nucleus accumbens (NA)] and circadian [intergeniculate leaflet (IGL) and suprachiasmatic nucleus (SCN)] areas. The hippocampus was also targeted. Circadian locomotor activity was measured throughout. Ethanol intake and preference were greater in mPer2 mutants than in wild-type (WT) mice (27 g·kg(-1)·day(-1) vs. 13 g·kg(-1)·day(-1) and 70% vs. 50%, respectively; both, P < 0.05). In WTs, acamprosate in all areas, except hippocampus, suppressed ethanol intake and preference (by 40-60%) during ethanol reintroduction. In mPer2 mutants, acamprosate in the VTA, PPT, and SCN suppressed ethanol intake and preference by 20-30%. These data are evidence that acamprosate's suppression of ethanol intake and preference are manifest through actions within major reward and circadian sites.
Collapse
Affiliation(s)
- Allison Brager
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA
| | | | | |
Collapse
|
39
|
Tanchuck MA, Yoneyama N, Ford MM, Fretwell AM, Finn DA. Assessment of GABA-B, metabotropic glutamate, and opioid receptor involvement in an animal model of binge drinking. Alcohol 2011; 45:33-44. [PMID: 20843635 DOI: 10.1016/j.alcohol.2010.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 01/29/2023]
Abstract
Drinking to intoxication or binge drinking is a hallmark characteristic of alcohol abuse. Although hard to model in rodents, the scheduled high alcohol consumption (SHAC) procedure generates high, stable ethanol intake and blood ethanol concentrations in mice to levels consistent with definitions of binge drinking. The purpose of the present studies was to determine the effects of pharmacological manipulation of the opioidergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic systems on binge drinking with the SHAC procedure. Parallel manipulations were conducted in mice trained in operant self-administration of either sucrose or ethanol. For the SHAC procedure, genetically heterogeneous Withdrawal Seizure Control mice were given varying periods of fluid access, with a 30-min ethanol session every third day (total of seven). Mice were pretreated intraperitoneally with naltrexone (0, 0.6, or 1.25 mg/kg), baclofen (0, 2.5, or 5.0 mg/kg), or 2-methyl-6-(phenylethynyl)-pyridine (MPEP; 0, 3.0, or 10.0 mg/kg) before each ethanol session. For the operant self-administration procedure, separate groups of C57BL/6 mice were trained to complete a single response requirement (16 presses on the active lever) to gain 30 min of access to an ethanol or a sucrose solution. Mice received pretreatments of the same doses of naltrexone, MPEP, or baclofen before the self-administration sessions, with saline injections on intervening days. Naltrexone produced a dose-dependent decrease in binge drinking, and the highest dose also significantly decreased operant self-administration of ethanol and sucrose. Both doses of baclofen significantly decreased binge alcohol consumption, but the higher dose also tended to decrease water intake. The highest dose of baclofen also significantly decreased operant self-administration of sucrose. MPEP (10 mg/kg) significantly decreased binge alcohol consumption and sucrose self-administration. These results indicate that manipulation of the opioidergic, glutamatergic, and GABAergic systems significantly decreased binge drinking.
Collapse
|
40
|
Potential therapeutic interventions for fragile X syndrome. Trends Mol Med 2010; 16:516-27. [PMID: 20864408 DOI: 10.1016/j.molmed.2010.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP); FMRP deficiency in neurons of patients with FXS causes intellectual disability (IQ<70) and several behavioural problems, including hyperactivity and autistic-like features. In the brain, no gross morphological malformations have been found, although subtle spine abnormalities have been reported. FXS has been linked to altered group I metabotropic glutamate receptor (mGluR)-dependent and independent forms of synaptic plasticity. Here, we discuss potential targeted therapeutic strategies developed to specifically correct disturbances in the excitatory mGluR and the inhibitory gamma-aminobutyric (GABA) receptor pathways that have been tested in animal models and/or in clinical trials with patients with FXS.
Collapse
|
41
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
42
|
CRF-1 antagonist and CRF-2 agonist decrease binge-like ethanol drinking in C57BL/6J mice independent of the HPA axis. Neuropsychopharmacology 2010; 35:1241-52. [PMID: 20130533 PMCID: PMC2927867 DOI: 10.1038/npp.2009.209] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that corticotropin-releasing factor (CRF) receptor (CRFR) signaling is involved in modulating binge-like ethanol consumption in C57BL/6J mice. In this report, a series of experiments were performed to further characterize the role of CRFR signaling in binge-like ethanol consumption. The role of central CRFR signaling was assessed with intracerebroventricular (i.c.v.) infusion of the nonselective CRFR antagonist, alpha-helical CRF(9-41) (0, 1, 5, 10 microg/1 microl). The contribution of central CRF type 2 receptor (CRF(2)R) signaling was assessed with i.c.v. infusion of the selective CRF(2)R agonist, urocortin (Ucn) 3 (0, 0.05, 0.1, or 0.5 microg/1 microl). The role of the hypothalamic-pituitary-adrenal (HPA) axis was assessed by pretreating mice with intraperitoneal (i.p.) injection of (1) the corticosterone synthesis inhibitor, metyrapone (0, 50, 100, 150 mg/kg) or (2) the glucocorticoid receptor antagonist, mifepristone (0, 25, 50 mg/kg), and (3) by using radioimmunoassay to determine whether binge-like ethanol intake influenced plasma corticosterone levels. Finally, we determined whether the ability of the CRF(1)R antagonist, CP-154,526 (CP; 0, 10, 15 mg/kg, i.p.), to blunt binge-like drinking required normal HPA axis signaling by comparing the effectiveness of CP in adrenalectomized (ADX) and normal mice. Results showed that i.c.v. infusion of a 1 microg dose of alpha-helical CRF(9-41) significantly attenuated binge-like ethanol consumption relative to vehicle treatment, and i.c.v. infusion of Ucn 3 dose-dependently blunted binge-like drinking. On the other hand, metyrapone nonselectively reduced both ethanol and sucrose consumption, mifepristone did not alter ethanol drinking, and binge-like drinking did not correlate with plasma corticosterone levels. Finally, i.p. injection of CP significantly attenuated binge-like ethanol intake in both ADX and normal mice. Together, these results suggest that binge-like ethanol intake in C57BL/6J mice is modulated by CRF(1)R and CRF(2)R signaling, such that blockade of CRF(1)R or activation of CRF(2)R effectively reduces excessive ethanol intake. Furthermore, normal HPA axis signaling is not necessary to achieve binge-like drinking behavior.
Collapse
|
43
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
44
|
Navarro M, Cubero I, Ko L, Thiele TE. Deletion of agouti-related protein blunts ethanol self-administration and binge-like drinking in mice. GENES BRAIN AND BEHAVIOR 2009; 8:450-8. [PMID: 19566712 DOI: 10.1111/j.1601-183x.2009.00493.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). Recent pharmacological and genetic evidence suggests that melanocortin receptor (MCR) signaling modulates neurobiological responses to ethanol and ethanol intake. Agouti-related protein (AgRP) is synthesized by neurons in the arcuate nucleus of the hypothalamus and is a natural antagonist of MCRs. Because central administration of the functionally active AgRP fragment AgRP-(83-132) increases ethanol intake by C57BL/6 J mice, we determined if mutant mice lacking normal production of AgRP (AgRP(-/-)) and maintained on a C57BL/6 J genetic background would show reduced self-administration of ethanol relative to littermate wild-type (AgRP(+/+)) mice. AgRP(-/-) mice showed reduced 8% (v/v) ethanol-reinforced lever-pressing behavior relative to AgRP(+/+) mice in daily 2-h sessions, but normal sucrose-, saccharin- and water-reinforced lever-pressing. Similarly, AgRP(-/-) mice showed reduced consumption of 8% ethanol in a two-bottle limited access test (2 h/day), although this effect was largely sex-dependent. Using drinking-in-the-dark (DID) procedures, AgRP(-/-) mice showed blunted binge-like drinking of 20% (v/v) ethanol which was associated with lower blood ethanol levels (85 mg/dl) relative to AgRP(+/+) mice (133 mg/dl) after 4 h of intake. AgRP(-/-) mice showed normal ethanol metabolism and did not show altered sensitivity to the sedative effects of ethanol. These observations with genetically altered mice are consistent with previous pharmacological data and suggest that endogenous AgRP signaling modulates the reinforcing properties of ethanol and binge-like ethanol drinking.
Collapse
Affiliation(s)
- M Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599-3270, USA
| | | | | | | |
Collapse
|
45
|
Linsenbardt DN, Boehm SL. Agonism of the endocannabinoid system modulates binge-like alcohol intake in male C57BL/6J mice: involvement of the posterior ventral tegmental area. Neuroscience 2009; 164:424-34. [PMID: 19665522 DOI: 10.1016/j.neuroscience.2009.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
Abstract
Recent studies have indicated a role for the endocannabinoid system in the behavioral and physiological effects of alcohol (ethanol), particularly ethanol seeking behaviors. However, its role in modulating binge-like intake and/or the mechanism by which it may exert these effects remain poorly understood. The current study used a newly developed strain-specific animal model of binge drinking, dubbed 'Drinking In the Dark' (DID), to determine if facilitation of the endocannabinoid system with the synthetic cannabinoid agonist WIN 55-212,2 (WIN) modulates binge-like ethanol intake in male C57BL/6J (B6) mice. Based on the results of these systemic (i.p.) manipulations, and evidence in support of the involvement of subregions of the Ventral Tegmental Area (VTA) in governing self-administration of ethanol (Rodd-Henricks et al., (2000) Psychopharmacology (Berl) 149(3):217-224) as well as binge-like intake using the DID model (Moore & Boehm, (2009 Behav Neurosci 123(3):555-563), we extended these findings to evaluate the role of the endocannabinoid system within the anterior and posterior sub regions of the VTA using site-specific microinjections. Consistent with previous research, the lowest systemic dose of WIN (0.5 mg/kg) significantly increased ethanol intake in the first 30 minutes of access whereas the two highest doses (1 and 2 mg/kg) decreased ethanol intake within this time interval. Intra-posterior ventral tegmental area (pVTA) (but not aVTA (anterior ventral tegmental area) microinjections elicited time-dependent and dose-dependent increases (0.25 and 0.5 mug/side) and decreases (2.5 mug/side) in ethanol intake. Importantly, follow-up studies revealed that in some cases alterations in fluid consumption may have been influenced by competing locomotor activity (or inactivity). The present data are consistent with previous research in that agonism of the endocannabinoid system increases ethanol intake in rodents and implicate the pVTA in the modulation of drinking to intoxication. Moreover, the dose-dependent alterations in locomotor activity emphasize the importance of directly assessing multiple (possibly competing) behaviors when evaluating drug effects on voluntary consumption.
Collapse
Affiliation(s)
- D N Linsenbardt
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA.
| | | |
Collapse
|