1
|
Gu J, Luo Y, Liang M, Fan Y, Zhang X, Ji G, Jin X. A novel framework for industrial pesticide effluent assessment: Integrating chemical screening, multi-endpoint responses and literature-based validation. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137830. [PMID: 40058200 DOI: 10.1016/j.jhazmat.2025.137830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Industrial pesticide effluents pose substantial risks to aquatic ecosystems, yet comprehensive understanding of their toxicological impacts remains limited. This study presents an integrated approach to evaluate the ecological risks of pesticide manufacturing effluents through chemical screening and multi-endpoints biological responses. Using zebrafish embryos as a model organism, we demonstrated that effluent discharge point (EDP) sample induced 100 % mortality, while diluted samples exhibited significant developmental toxicity, cardiovascular injury, immunosuppression, and behavioral alterations. Non-targeted metabolomics analysis revealed the molecular mechanisms underlying these toxic responses. Through chemical screening and targeted quantification, we identified three predominant azole fungicides - propiconazole (2.11 μg/L), hexaconazole (13.3 μg/L), and tebuconazole (18.66 μg/L) - that exhibited synergistic toxicity. Notably, our innovative meta-analysis framework based on literature data validated the toxicological profiles of detected compounds, providing an efficient alternative to conventional bioassays. This study establishes a comprehensive framework for assessing industrial effluent toxicity and demonstrates the value of integrating chemical analysis with biological responses for environmental risk assessment.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yiwen Luo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yue Fan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
2
|
Roychowdhury S, Pant B, Cross E, Scheraga R, Vachharajani V. Effect of ethanol exposure on innate immune response in sepsis. J Leukoc Biol 2024; 115:1029-1041. [PMID: 38066660 PMCID: PMC11136611 DOI: 10.1093/jleuko/qiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Alcohol use disorder, reported by 1 in 8 critically ill patients, is a risk factor for death in sepsis patients. Sepsis, the leading cause of death, kills over 270,000 patients in the United States alone and remains without targeted therapy. Immune response in sepsis transitions from an early hyperinflammation to persistent inflammation and immunosuppression and multiple organ dysfunction during late sepsis. Innate immunity is the first line of defense against pathogen invasion. Ethanol exposure is known to impair innate and adaptive immune response and bacterial clearance in sepsis patients. Specifically, ethanol exposure is known to modulate every aspect of innate immune response with and without sepsis. Multiple molecular mechanisms are implicated in causing dysregulated immune response in ethanol exposure with sepsis, but targeted treatments have remained elusive. In this article, we outline the effects of ethanol exposure on various innate immune cell types in general and during sepsis.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Bishnu Pant
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| |
Collapse
|
3
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
4
|
Baldin SL, de Pieri Pickler K, de Farias ACS, Bernardo HT, Scussel R, da Costa Pereira B, Pacheco SD, Dondossola ER, Machado-de-Ávila RA, Wanderley AG, Rico EP. Gallic acid modulates purine metabolism and oxidative stress induced by ethanol exposure in zebrafish brain. Purinergic Signal 2022; 18:307-315. [PMID: 35687211 DOI: 10.1007/s11302-022-09869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.
Collapse
Affiliation(s)
- Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Rahisa Scussel
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Suzielen Damin Pacheco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil. .,Laboratory of Translational Biomedicine Laboratory, University of Southern Santa Catarina (UNESC), Criciuma, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Wu Z, Han Z, Zhou W, Sun X, Chen L, Yang S, Hu J, Li C. Insight into the Nucleoside Transport and Inhibition of Human ENT1. Curr Res Struct Biol 2022; 4:192-205. [PMID: 35677775 PMCID: PMC9168172 DOI: 10.1016/j.crstbi.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
The human equilibrative nucleoside transporter 1 (hENT1) is an effective controller of adenosine signaling by regulating its extracellular and intracellular concentration, and has become a solid drug target of clinical used adenosine reuptake inhibitors (AdoRIs). Currently, the mechanisms of adenosine transport and inhibition for hENT1 remain unclear, which greatly limits the in-depth understanding of its inner workings as well as the development of novel inhibitors. In this work, the dynamic details of hENT1 underlie adenosine transport and the inhibition mechanism of the non-nucleoside AdoRIs dilazep both were investigated by comparative long-time unbiased molecular dynamics simulations. The calculation results show that the conformational transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. One of the trimethoxyphenyl rings in dilazep serves as the adenosyl moiety of the endogenous adenosine substrate to competitively occupy the orthosteric site of hENT1. Due to extensive and various VDW interactions with N30, M33, M84, P308 and F334, the other trimethoxyphenyl ring is stuck in the opportunistic site near the extracellular side preventing the complete occlusion of thin gate simultaneously. Obviously, dilazep shows significant inhibitory activity by disrupting the local induce-fit action in substrate binding cavity and blocking the transport cycle of whole protein. This study not only reveals the nucleoside transport mechanism by hENT1 at atomic level, but also provides structural guidance for the subsequent design of novel non-nucleoside AdoRIs with enhanced pharmacologic properties. The transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. The induce-fit action by adenosine recognition precedes. inward contraction of the extracellular side. Dilazep exerts its special hENT1 inhibitory function through competitive binding and allosteric regulation. A gating strategy of extracellular loop is revealed to ensure adenosine is firmly located in the transport cavity.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Wenxue Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Lei Chen
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Shuang Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- Corresponding author. Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Corresponding author. Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
6
|
N 6-substituated adenosine analog J4 attenuates anxiety-like behaviors in mice. Psychopharmacology (Berl) 2022; 239:887-895. [PMID: 35102423 PMCID: PMC9063204 DOI: 10.1007/s00213-022-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
RATIONALE Withdrawal from chronic alcohol exposure produces various physical and mental withdrawal symptoms. Activation of adenosine receptors is known to inhibit withdrawal-induced excitation. However, limited studies investigate how adenosine analogs may prove helpful tools to alleviate alcohol withdrawal-related affective behaviors. OBJECTIVES This study aimed to investigate the effects of J4 compared with saline using the mice vapor or voluntary ethanol drinking model on behavioral endpoints representing ethanol-withdrawal negative emotionality commonly observed during abstinence from chronic alcohol use. METHODS We subjected C57BL/6 J mice to chronic intermittent ethanol (CIE) exposure schedule to investigate how 72-h withdrawal from alcohol alters affective-like behavior. Next, we determined how treatment with J4, a second-generation adenosine analog, influenced affective behaviors produced by alcohol withdrawal. Finally, we determined how J4 treatment alters voluntary ethanol drinking using the two-bottle-choice drinking paradigm. RESULTS Our results show that 72-h withdrawal from chronic intermittent ethanol exposure produces limited affective-like disturbances in male C57BL/6 J mice exposed to 4 cycles ethanol vapor. Most importantly, J4 treatment irrespective of ethanol exposure decreases innate anxiety-like behavior in mice. CONCLUSIONS Withdrawal from chronic intermittent ethanol exposure and subsequent behavioral testing 72 h later produces minimal affective-like behavior. J4 treatment did however reduce marble-burying behavior and increased time spent in open arms of the elevated plus maze, suggesting J4 may be useful as a general anxiolytic.
Collapse
|
7
|
Lutsenko RV. ON THE QUESTION OF ADENOSINE SYSTEM PARTICIPATION IN THE PATHOGENESIS OF NEUROSES. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-76-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Shang P, Baker M, Banks S, Hong SI, Choi DS. Emerging Nondopaminergic Medications for Parkinson's Disease: Focusing on A2A Receptor Antagonists and GLP1 Receptor Agonists. J Mov Disord 2021; 14:193-203. [PMID: 34399565 PMCID: PMC8490190 DOI: 10.14802/jmd.21035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by classic motor features associated with the loss of dopaminergic neurons and appearance of Lewy bodies in the substantia nigra. Due to the complexity of PD, a definitive diagnosis in the early stages and effective management of symptoms in later stages are difficult to achieve in clinical practice. Previous research has shown that colocalization of A2A receptors (A2AR) and dopamine D2 receptors (D2R) may induce an antagonistic interaction between adenosine and dopamine. Clinical trials have found that the A2AR antagonist istradefylline decreases dyskinesia in PD and could be used as an adjuvant to levodopa treatment. Meanwhile, the incretin hormone glucagon-like peptide 1 (GLP1) mainly facilitates glucose homeostasis and insulin signaling. Preclinical experiments and clinical trials of GLP1 receptor (GLP1R) agonists show that they may be effective in alleviating neuroinflammation and sustaining cellular functions in the central nervous system of patients with PD. In this review, we summarize up-to-date findings on the usefulness of A2AR antagonists and GLP1R agonists in PD management. We explain the molecular mechanisms of these medications and their interactions with other neurotransmitter receptors. Furthermore, we discuss the efficacy and limitations of A2AR antagonists and GLP1R agonists in clinical practice.
Collapse
Affiliation(s)
- Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Samantha Banks
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Neuroscience Program, Mayo Clinic, College of Medicine, Rochester, MN, USA
| |
Collapse
|
9
|
Abstract
P2X4 receptors are found throughout the central nervous system, and studies have shown that these purinergic receptors are important regulators of alcohol intake. The ventral tegmental area (VTA) is an important region for the rewarding and reinforcing properties of alcohol, but the role of P2X4 receptors in this region is unknown. Using both immunohistochemical and electrophysiological methods, we examined the interaction between P2X4 receptors and alcohol on VTA neurons. Incubation of brain slices containing the VTA for 2 h with siRNA targeting P2X4 receptors resulted in about a 25% reduction in P2X4 immunoreactivity in tyrosine hydroxylase positive VTA neurons. In electrophysiological experiments, ATP (0.5-3 mM) produced a reduction in the spontaneous firing rate, and ethanol significantly reduced this inhibition. Exposure to siP2X4 for 2 h via the recording micropipette resulted in a suppression of the response of VTA neurons to ATP, but no significant reduction in the ethanol inhibition of the ATP response was observed after this P2X4 downregulation. These results support the idea that VTA neurons are inhibited by ATP, ethanol antagonizes this inhibition, and the ethanol-sensitive component of ATP inhibition is mediated by P2X4 receptors. This interaction of ethanol with P2X4 receptors may be an important regulator of the rewarding effects of ethanol, making P2X4 receptors an intriguing target for the development of agents to treat alcohol use disorders.
Collapse
|
10
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
11
|
Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol 2021; 12:645834. [PMID: 33897694 PMCID: PMC8059410 DOI: 10.3389/fimmu.2021.645834] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.
Collapse
Affiliation(s)
- Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
12
|
Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology 2021; 46:500-508. [PMID: 32464636 PMCID: PMC8027025 DOI: 10.1038/s41386-020-0721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are fundamental building blocks of the central nervous system. Their dysfunction has been implicated in many psychiatric disorders, including alcohol use disorder, yet our understanding of their functional role in ethanol intoxication and consumption is very limited. Astrocytes regulate behavior through multiple intracellular signaling pathways, including G-protein coupled-receptor (GPCR)-mediated calcium signals. To test the hypothesis that GPCR-induced calcium signaling is also involved in the behavioral effects of ethanol, we expressed astrocyte-specific excitatory DREADDs in the prefrontal cortex (PFC) of mice. Activating Gq-GPCR signaling in PFC astrocytes increased drinking in ethanol-naïve mice, but not in mice with a history of ethanol drinking. In contrast, reducing calcium signaling with an astrocyte-specific calcium extruder reduced ethanol intake. Cortical astrocyte calcium signaling also altered the acute stimulatory and sedative-hypnotic effects of ethanol. Astrocyte-specific Gq-DREADD activation increased both the locomotor-activating effects of low dose ethanol and the sedative-hypnotic effects of a high dose, while reduced astrocyte calcium signaling diminished sensitivity to the hypnotic effects. In addition, we found that adenosine A1 receptors were required for astrocyte calcium activation to increase ethanol sedation. These results support integral roles for PFC astrocytes in the behavioral actions of ethanol that are due, at least in part, to adenosine receptor activation.
Collapse
|
13
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
14
|
Warnecke AMP, Kang MS, Jakowec MW, Davies DL. The macrocyclic lactones ivermectin and moxidectin show differential effects on rotational behavior in the 6-hydroxydopamine mouse model of Parkinson's disease. Behav Brain Res 2020; 393:112804. [PMID: 32668263 DOI: 10.1016/j.bbr.2020.112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor and cognitive deficits, the result of dopamine (DA)-depletion within the basal ganglia. Currently, DA replacement therapy in the form of Sinemet (L-DOPA plus Carbidopa) provides symptomatic motor benefits and remains the "gold standard" for treatment. Several pharmacological approaches can enhance DA neurotransmission including the administration of DA receptor agonists, the inhibition of DA metabolism, and enhancing pre-synaptic DA release. DA neurotransmission is regulated by several receptor subtypes including signaling through the purinergic system. P2 × 4 receptors (P2 × 4Rs) are a class of cation-permeable ligand-gated ion channels activated by the synaptic release of extracellular adenosine 5'-triphosphate (ATP). P2 × 4Rs are expressed throughout the central nervous system including the dopaminergic circuitry of the substantia nigra, basal ganglia, and related reward networks. Previous studies have demonstrated that P2 × 4Rs can modulate several DA-dependent characteristics including motor, cognitive, and reward behaviors. Ivermectin (IVM) and moxidectin (MOX) are two macrocyclic lactones that can potentiate P2 × 4Rs. In this study, we sought to investigate the role of P2 × 4Rs in mediating DA neurotransmission by exploring their impact on DA-dependent behavior, specifically rotation frequency in the unilateral 6-hydroxydopamine-lesioned mouse model of DA-depletion. While we did not observe any differences in the degree of lesioning based on immunostaining for tyrosine hydroxylase between sexes, male mice displayed a greater number of rotations with L-DOPA compared to female mice. In contrast, we observed that IVM plus L-DOPA increased the number of rotations (per 10 min) in female, but not male mice. These findings highlight the potential role of pharmacologically targeting the purinergic receptor system in modulating DA neurotransmission as well as the importance of sex differences impacting outcome measures.
Collapse
Affiliation(s)
- Alicia M P Warnecke
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Moon S Kang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Jia Y, Vadnie CA, Ho AM, Peyton L, Veldic M, Wininger K, Matveyenko A, Choi D. Type 1 equilibrative nucleoside transporter (ENT1) regulates sex-specific ethanol drinking during disruption of circadian rhythms. Addict Biol 2020; 25:e12801. [PMID: 31267611 DOI: 10.1111/adb.12801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruptions in circadian rhythms are risk factors for excessive alcohol drinking. The ethanol-sensitive adenosine equilibrative nucleoside transporter type 1 (ENT1, slc29a1) regulates ethanol-related behaviors, sleep, and entrainment of circadian rhythms. However, the mechanism underlying the increased ethanol consumption in ENT1 knockout (KO) mice in constant light (LL) and whether there are sex differences in ethanol consumption in ENT1 mice are less studied. Here, we investigated the effects of loss of ENT1, LL, and sex on ethanol drinking using two-bottle choice. In addition, we monitored the locomotor activity rhythms. We found that LL increased ethanol drinking and reduced accumbal ENT1 expression and adenosine levels in male but not female mice, compared with control mice. Interestingly, only LL-exposed male, not female, ENT1 KO mice exhibited higher ethanol drinking and a longer circadian period with a higher amplitude compared with wild-type (WT) mice. Furthermore, viral-mediated rescue of ENT1 expression in the NAc of ENT1 KO mice reduced ethanol drinking, demonstrating a possible causal link between ENT1 expression and ethanol drinking in males. Together, our findings indicate that deficiency of ENT1 expression contributes to excessive ethanol drinking in a sex-dependent manner.
Collapse
Affiliation(s)
- Yun‐Fang Jia
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
| | | | - Ada Man‐Choi Ho
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
- Department of Psychiatry & PsychologyMayo Clinic Rochester MN USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
| | - Marin Veldic
- Department of Psychiatry & PsychologyMayo Clinic Rochester MN USA
| | | | - Aleksey Matveyenko
- Department of Physiology and Biomedical EngineeringMayo Graduate School Mayo Clinic Rochester MN USA
| | - Doo‐Sup Choi
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
- Department of Psychiatry & PsychologyMayo Clinic Rochester MN USA
- Neuroscience ProgramMayo Clinic Rochester MN USA
| |
Collapse
|
16
|
Hong SI, Bullert A, Baker M, Choi DS. Astrocytic equilibrative nucleoside transporter type 1 upregulations in the dorsomedial and dorsolateral striatum distinctly coordinate goal-directed and habitual ethanol-seeking behaviours in mice. Eur J Neurosci 2020; 52:3110-3123. [PMID: 32306482 DOI: 10.1111/ejn.14752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Two distinct dorsal striatum regions, dorsomedial striatum (DMS) and dorsolateral striatum (DLS), are attributed to conditioned goal-directed and habitual reward-seeking behaviours, respectively. Previously, our study shows that the ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), regulates ethanol-drinking behaviours. Although ENT1 is expressed in both neurons and astrocytes, astrocytic ENT1 is thought to regulate adenosine levels in response to ethanol. However, the role of DMS and DLS astrocytic ENT1 in goal-directed and habitual ethanol-seeking is not well known. Here, we identified whether the upregulation of astrocytic ENT1 in the DMS and DLS differentially regulates operant seeking behaviours towards the 10% sucrose (10S); 10% ethanol and 10% sucrose (10E10S); and 10% ethanol (10E) in mice. Using 4 days of random interval (RI), mice exhibited habitual seeking for 10S, but goal-directed seeking towards 10E10S. Using the same mice conditioned with 10E10S, we examined 10E-seeking behaviour on a fixed ratio (FR) for 6 days and RI for 8 days. On the other hand, during FR and the first 4 days of RI schedules, mice showed goal-directed seeking for 10E, whereas mice exhibited habitual seeking for 10E during the last 4 days of RI schedule. Interestingly, DMS astrocytic ENT1 upregulation promotes shift from habitual to goal-directed reward-seeking behaviours. By contrast, DLS astrocytic ENT1 upregulation showed no effects on behavioural shift. Taken together, our findings demonstrate that DMS astrocytic ENT1 contributes to reward-seeking behaviours.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amanda Bullert
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Neuroscience Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
17
|
Paalme V, Rump A, Mädo K, Teras M, Truumees B, Aitai H, Ratas K, Bourge M, Chiang CS, Ghalali A, Tordjmann T, Teras J, Boudinot P, Kanellopoulos JM, Rüütel Boudinot S. Human Peripheral Blood Eosinophils Express High Levels of the Purinergic Receptor P2X4. Front Immunol 2019; 10:2074. [PMID: 31552031 PMCID: PMC6746186 DOI: 10.3389/fimmu.2019.02074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of cell activation and trigger multiple responses via membrane receptors known as purinergic receptors (P2). P2X receptors are ligand-gated ion channels, activated by extracellular ATP. P2X4 is one of the most sensitive purinergic receptors, that is typically expressed by neurons, microglia, and some epithelial and endothelial cells. P2X4 mediates neuropathic pain via brain-derived neurotrophic factor and is also involved in inflammation in response to high ATP release. It is therefore involved in multiple inflammatory pathologies as well as neurodegenerative diseases. We have produced monoclonal antibodies (mAb) directed against this important human P2X4 receptor. Focusing on two mAbs, we showed that they also recognize mouse and rat P2X4. We demonstrated that these mAbs can be used in flow cytometry, immunoprecipitation, and immunohistochemistry, but not in Western blot assays, indicating that they target conformational epitopes. We also characterized the expression of P2X4 receptor on mouse and human peripheral blood lymphocytes (PBL). We showed that P2X4 is expressed at the surface of several leukocyte cell types, with the highest expression level on eosinophils, making them potentially sensitive to adenosine triphosphate (ATP). P2X4 is expressed by leucocytes, in human and mouse, with a significant gender difference, males having higher surface expression levels than females. Our findings reveal that PBL express significant levels of P2X4 receptor, and suggest an important role of this receptor in leukocyte activation by ATP, particularly in P2X4high expressing eosinophils.
Collapse
Affiliation(s)
- Viiu Paalme
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Airi Rump
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kati Mädo
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Marina Teras
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | | | - Helen Aitai
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristel Ratas
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu, Taiwan
| | - Aram Ghalali
- Institute of Environment Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jüri Teras
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy en Josas, France
| | - Jean M Kanellopoulos
- Department of Biochemistry Biophysics and Structural Biology, I2BC-CNRS, Université Paris-Sud, Orsay, France
| | - Sirje Rüütel Boudinot
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
18
|
Dhuna K, Felgate M, Bidula SM, Walpole S, Bibic L, Cromer BA, Angulo J, Sanderson J, Stebbing MJ, Stokes L. Ginsenosides Act As Positive Modulators of P2X4 Receptors. Mol Pharmacol 2019; 95:210-221. [PMID: 30545933 PMCID: PMC6334005 DOI: 10.1124/mol.118.113696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
We investigated the selectivity of protopanaxadiol ginsenosides from Panax ginseng acting as positive allosteric modulators on P2X receptors. ATP-induced responses were measured in stable cell lines overexpressing human P2X4 using a YOPRO-1 dye uptake assay, intracellular calcium measurements, and whole-cell patch-clamp recordings. Ginsenosides CK and Rd were demonstrated to enhance ATP responses at P2X4 by ∼twofold, similar to potentiation by the known positive modulator ivermectin. Investigations into the role of P2X4 in mediating a cytotoxic effect showed that only P2X7 expression in HEK-293 cells induces cell death in response to high concentrations of ATP, and that ginsenosides can enhance this process. Generation of a P2X7-deficient clone of BV-2 microglial cells using CRISPR/Cas9 gene editing enabled an investigation of endogenous P2X4 in a microglial cell line. Compared with parental BV-2 cells, P2X7-deficient BV-2 cells showed minor potentiation of ATP responses by ginsenosides, and insensitivity to ATP- or ATP+ ginsenoside-induced cell death, indicating a primary role for P2X7 receptors in both of these effects. Computational docking to a homology model of human P2X4, based on the open state of zfP2X4, yielded evidence of a putative ginsenoside binding site in P2X4 in the central vestibule region of the large ectodomain.
Collapse
Affiliation(s)
- Kshitija Dhuna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Matthew Felgate
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Stefan M Bidula
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Samuel Walpole
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Lucka Bibic
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Brett A Cromer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Jesus Angulo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Julie Sanderson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Martin J Stebbing
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| | - Leanne Stokes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia (B.A.C.); and Florey Institute of Neuroscience and Mental Health, Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia (M.J.S.)
| |
Collapse
|
19
|
Szopa A, Poleszak E, Bogatko K, Wyska E, Wośko S, Doboszewska U, Świąder K, Wlaź A, Dudka J, Wróbel A, Wlaź P, Serefko A. DPCPX, a selective adenosine A1 receptor antagonist, enhances the antidepressant-like effects of imipramine, escitalopram, and reboxetine in mice behavioral tests. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1361-1371. [PMID: 30094458 PMCID: PMC6208968 DOI: 10.1007/s00210-018-1551-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
The main goal of the present study was to evaluate the influence of the adenosine A1 receptor (A1R) antagonist — DPCPX — on depressive-like behavior in mice, as well as the effect of DPCPX on the activity of imipramine, escitalopram, and reboxetine, each at non-effective doses. The influence of DPCPX on behavior and its influence on the activity of selected antidepressants was evaluated in the forced swim test (FST) and the tail suspension test (TST) in mice. Locomotor activity was measured to verify and exclude false-positive data obtained in the FST and TST. Moreover, serum and brain concentrations of tested antidepressants were determined using HPLC. DPCPX, at doses of 2 and 4 mg/kg, exhibited antidepressant activity in the FST and TST, which was not related to changes in the spontaneous locomotor activity. Co-administration of DPCPX with imipramine, escitalopram, or reboxetine, each at non-active doses, significantly reduced the immobilization period in the FST and TST in mice, which was not due to the increase in locomotor activity. Both antagonists of 5-HT receptors (WAY 100635 and ritanserin) completely antagonized the effect elicited by DPCPX in the behavioral tests. Results of assessment of the nature of the interaction between DPCPX and test drugs show that in the case of DPCPX and imipramine or reboxetine, there were pharmacodynamic interactions, whereas the DPCPX-escitalopram interaction is at least partially pharmacokinetic in nature. Presented outcomes indicate that an inhibition of A1Rs and an increase of monoaminergic transduction in the CNS may offer a novel strategy for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Karolina Bogatko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| |
Collapse
|
20
|
Khoja S, Huynh N, Asatryan L, Jakowec MW, Davies DL. Reduced expression of purinergic P2X4 receptors increases voluntary ethanol intake in C57BL/6J mice. Alcohol 2018; 68:63-70. [PMID: 29477921 DOI: 10.1016/j.alcohol.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Abstract
Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ionotropic receptors that are gated by adenosine 5'-triphosphate (ATP). Accumulating evidence indicates that P2X4Rs play an important role in regulation of ethanol intake. At the molecular level, ethanol's inhibitory effects on P2X4Rs are antagonized by ivermectin (IVM), in part, via action on P2X4Rs. Behaviorally, male mice deficient in the p2rx4 gene (P2X4R knockout [KO]) have been shown to exhibit a transient increase in ethanol intake over a period of 4 days, as demonstrated by social and binge drinking paradigms. Furthermore, IVM reduced ethanol consumption in male and female rodents, whereas male P2X4R KO mice were less sensitive to the anti-alcohol effects of IVM, compared to wildtype (WT) mice, further supporting a role for P2X4Rs as targets of IVM's action. The current investigation extends testing the hypothesis that P2X4Rs play a role in regulation of ethanol intake. First, we tested the response of P2X4R KO mice to ethanol for a period of 5 weeks. Second, to gain insights into the changes in ethanol intake, we employed a lentivirus-shRNA (LV-shRNA) methodology to selectively knockdown P2X4R expression in the nucleus accumbens (NAc) core in male C57BL/6J mice. In agreement with our previous study, male P2X4R KO mice exhibited higher ethanol intake than WT mice. Additionally, reduced expression of P2X4Rs in the NAc core significantly increased ethanol intake and preference. Collectively, the findings support the hypothesis that P2X4Rs play a role in regulation of ethanol intake and that P2X4Rs represent a novel drug target for treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Sheraz Khoja
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Nhat Huynh
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
21
|
Lindberg D, Andres-Beck L, Jia YF, Kang S, Choi DS. Purinergic Signaling in Neuron-Astrocyte Interactions, Circadian Rhythms, and Alcohol Use Disorder. Front Physiol 2018; 9:9. [PMID: 29467662 PMCID: PMC5808134 DOI: 10.3389/fphys.2018.00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Alcohol use disorder (AUD) is a debilitating condition marked by cyclic patterns of craving, use, and withdrawal. These pathological behaviors are mediated by multiple neurotransmitter systems utilizing glutamate, GABA, dopamine, ATP, and adenosine. In particular, purines such as ATP and adenosine have been demonstrated to alter the phase and function of the circadian clock and are reciprocally regulated by the clock itself. Importantly, chronic ethanol intake has been demonstrated to disrupt the molecular circadian clock and is associated with altered circadian patterns of activity and sleep. Moreover, ethanol has been demonstrated to disrupt purinergic signaling, while dysfunction of the purinergic system has been implicated in conditions of drug abuse such as AUD. In this review, we summarize our current knowledge regarding circadian disruption by ethanol, focusing on the reciprocal relationship that exists between oscillatory neurotransmission and the molecular circadian clock. In particular, we offer detailed explanations and hypotheses regarding the concerted regulation of purinergic signaling and circadian oscillations by neurons and astrocytes, and review the diverse mechanisms by which purinergic dysfuction may contribute to circadian disruption or alcohol abuse. Finally, we describe the mechanisms by which ethanol may disrupt or hijack endogenous circadian rhythms to induce the maladaptive behavioral patterns associated with AUD.
Collapse
Affiliation(s)
- Daniel Lindberg
- Neurobiology of Disease, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lindsey Andres-Beck
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Doo-Sup Choi
- Neurobiology of Disease, Mayo Clinic College of Medicine, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
22
|
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. Front Pharmacol 2017; 8:291. [PMID: 28588493 PMCID: PMC5441391 DOI: 10.3389/fphar.2017.00291] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Adenosine 5′-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom.,School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Janice A Layhadi
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Kshitija Dhuna
- School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
23
|
Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol 2017; 22:581-615. [PMID: 26833803 DOI: 10.1111/adb.12349] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for the treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies, and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Megan M. Yardley
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
| | - Lara A. Ray
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
- Department of Psychiatry and Biobehavioral Sciences; University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
24
|
Oliveros A, Starski P, Lindberg D, Choi S, Heppelmann CJ, Dasari S, Choi DS. Label-Free Neuroproteomics of the Hippocampal-Accumbal Circuit Reveals Deficits in Neurotransmitter and Neuropeptide Signaling in Mice Lacking Ethanol-Sensitive Adenosine Transporter. J Proteome Res 2017; 16:1445-1459. [PMID: 27998058 DOI: 10.1021/acs.jproteome.6b00830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The neural circuit of the dorsal hippocampus (dHip) and nucleus accumbens (NAc) contributes to cue-induced learning and addictive behaviors, as demonstrated by the escalation of ethanol-seeking behaviors observed following deletion of the adenosine equilibrative nucleoside transporter 1 (ENT1-/-) in mice. Here we perform quantitative LC-MS/MS neuroproteomics in the dHip and NAc of ENT1-/- mice. Using Ingenuity Pathway Analysis, we identified proteins associated with increased long-term potentiation, ARP2/3-mediated actin cytoskeleton signaling and protein expression patterns suggesting deficits in glutamate degradation, GABAergic signaling, as well as significant changes in bioenergetics and energy homeostasis (oxidative phosphorylation, TCA cycle, and glycolysis). These pathways are consistent with previously reported behavioral and biochemical phenotypes that typify mice lacking ENT1. Moreover, we validated decreased expression of the SNARE complex protein VAMP1 (synaptobrevin-1) in the dHip as well as decreased expression of pro-dynorphin (PDYN), neuroendocrine convertase (PCSK1), and Leu-Enkephalin (dynorphin-A) in the NAc. Taken together, our proteomic approach provides novel pathways indicating that ENT1-regulated signaling is essential for neurotransmitter release and neuropeptide processing, both of which underlie learning and reward-seeking behaviors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Phillip Starski
- Neurobiology of Disease Program, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Daniel Lindberg
- Neurobiology of Disease Program, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Carrie J Heppelmann
- Proteomics Research Center, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, Minnesota 55905, United States.,Neurobiology of Disease Program, Mayo Clinic , Rochester, Minnesota 55905, United States.,Department of Psychiatry and Psychology, Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|
25
|
Kasten CR, Boehm SL. Preclinical Medication Development: New Targets and New Drugs. Alcohol Clin Exp Res 2016; 40:1418-24. [PMID: 27177689 PMCID: PMC4930385 DOI: 10.1111/acer.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Chelsea R. Kasten
- Department of Psychology and Indiana Alcohol Research Center, Indiana University – Purdue University of Indianapolis, Indianapolis, IN 46202
| | - Stephen L. Boehm
- Department of Psychology and Indiana Alcohol Research Center, Indiana University – Purdue University of Indianapolis, Indianapolis, IN 46202
| |
Collapse
|
26
|
Ruby CL, Vadnie CA, Hinton DJ, Abulseoud OA, Walker DL, O'Connor KM, Noterman MF, Choi DS. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light. Neuropsychopharmacology 2014; 39:2432-40. [PMID: 24755889 PMCID: PMC4138755 DOI: 10.1038/npp.2014.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Chelsea A Vadnie
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David J Hinton
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Denise L Walker
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katheryn M O'Connor
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Maria F Noterman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel: +1 507 284 5602, Fax: +1 507 266 0824, E-mail:
| |
Collapse
|
27
|
Gofman L, Cenna JM, Potula R. P2X4 receptor regulates alcohol-induced responses in microglia. J Neuroimmune Pharmacol 2014; 9:668-78. [PMID: 25135400 DOI: 10.1007/s11481-014-9559-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022]
Abstract
Mounting evidence indicates that alcohol-induced neuropathology may result from multicellular responses in which microglia cells play a prominent role. Purinergic receptor signaling plays a key role in regulating microglial function and, more importantly, mediates alcohol-induced effects. Our findings demonstrate that alcohol increases expression of P2X4 receptor (P2X4R), which alters the function of microglia, including calcium mobilization, migration and phagocytosis. Our results show a significant up-regulation of P2X4 gene expression as analyzed by real-time qPCR (***p < 0.002) and protein expression as analyzed by flow cytometry (**p < 0.004) in embryonic stem cell-derived microglial cells (ESdM) after 48 hours of alcohol treatment, as compared to untreated controls. Calcium mobilization in ethanol treated ESdM cells was found to be P2X4R dependent using 5-BDBD, a P2X4R selective antagonist. Alcohol decreased migration of microglia towards fractalkine (CX3CL1) by 75 % following 48 h of treatment compared to control (***p < 0.001). CX3CL1-dependent migration was confirmed to be P2X4 receptor-dependent using the antagonist 5-BDBD, which reversed the effects as compared to alcohol alone (***p < 0.001). Similarly, 48 h of alcohol treatment significantly decreased phagocytosis of microglia by 15 % compared to control (*p < 0.05). 5-BDBD pre-treatment prior to alcohol treatment significantly increased microglial phagocytosis (***p < 0.001). Blocking P2X4R signaling with 5-BDBD decreased the level of calcium mobilization compared to ethanol treatment alone. These findings demonstrate that P2X4 receptor may play a role in modulating microglial function in the context of alcohol abuse.
Collapse
Affiliation(s)
- Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 3500 N. Broad Street, MERB 845A, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
28
|
Dar MS. Functional interaction and cross-tolerance between ethanol and Δ9-THC: Possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors. Behav Brain Res 2014; 270:287-94. [DOI: 10.1016/j.bbr.2014.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 11/15/2022]
|
29
|
Franklin KM, Asatryan L, Jakowec MW, Trudell JR, Bell RL, Davies DL. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci 2014; 8:176. [PMID: 25009459 PMCID: PMC4068020 DOI: 10.3389/fnins.2014.00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/05/2014] [Indexed: 12/19/2022] Open
Abstract
Alcohol use disorders (AUDs) have a staggering socioeconomic impact. Few therapeutic options are available, and they are largely inadequate. These shortcomings highlight the urgent need to develop effective medications to prevent and/or treat AUDs. A critical barrier is the lack of information regarding the molecular target(s) by which ethanol (EtOH) exerts its pharmacological activity. This review highlights findings implicating P2X4 receptors (P2X4Rs) as a target for the development of therapeutics to treat AUDs and discusses the use of ivermectin (IVM) as a potential clinical tool for treatment of AUDs. P2XRs are a family of ligand-gated ion channels (LGICs) activated by extracellular ATP. Of the P2XR subtypes, P2X4Rs are expressed the most abundantly in the CNS. Converging evidence suggests that P2X4Rs are involved in the development and progression of AUDs. First, in vitro studies report that pharmacologically relevant EtOH concentrations can negatively modulate ATP-activated currents. Second, P2X4Rs in the mesocorticolimbic dopamine system are thought to play a role in synaptic plasticity and are located ideally to modulate brain reward systems. Third, alcohol-preferring (P) rats have lower functional expression of the p2rx4 gene than alcohol-non-preferring (NP) rats suggesting an inverse relationship between alcohol intake and P2X4R expression. Similarly, whole brain p2rx4 expression has been shown to relate inversely to innate 24 h alcohol preference across 28 strains of rats. Fourth, mice lacking the p2rx4 gene drink more EtOH than wildtype controls. Fifth, IVM, a positive modulator of P2X4Rs, antagonizes EtOH-mediated inhibition of P2X4Rs in vitro and reduces EtOH intake and preference in vivo. These findings suggest that P2X4Rs contribute to EtOH intake. The present review summarizes recent findings focusing on the P2X4R as a molecular target of EtOH action, its role in EtOH drinking behavior and modulation of its activity by IVM as a potential therapy for AUDs.
Collapse
Affiliation(s)
- Kelle M Franklin
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - James R Trudell
- Beckman Program for Molecular and Genetic Medicine, Department of Anesthesia, Stanford University Palo Alto, CA, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
30
|
Wyatt LR, Finn DA, Khoja S, Yardley MM, Asatryan L, Alkana RL, Davies DL. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res 2014; 39:1127-39. [PMID: 24671605 DOI: 10.1007/s11064-014-1271-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/15/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.
Collapse
Affiliation(s)
- Letisha R Wyatt
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sharma R, Sahota P, Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep 2014; 37:525-33. [PMID: 24587575 DOI: 10.5665/sleep.3490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. DESIGN Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. SETTING N/A. PATIENTS OR PARTICIPANTS N/A. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. CONCLUSIONS Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans' Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans' Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans' Hospital and Department of Neurology, University of Missouri, Columbia, MO
| |
Collapse
|
32
|
Adenosine and glutamate in neuroglial interaction: implications for circadian disorders and alcoholism. ADVANCES IN NEUROBIOLOGY 2014; 11:103-19. [PMID: 25236726 DOI: 10.1007/978-3-319-08894-5_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. In fact, astrocytes are essential for neuronal activity in the brain and play an important role in the regulation of complex behavior. Astrocytes actively participate in synapse formation and brain information processing by releasing and uptaking glutamate, D-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine-mediated neuronal activity modulates the actions of other neurotransmitter systems. Adenosinergic fine-tuning of the glutamate system in particular has been shown to regulate circadian rhythmicity and sleep, as well as alcohol-related behavior and drinking. Adenosine gates both photic (light-induced) glutamatergic and nonphotic (alerting) input to the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Astrocytic, SNARE-mediated ATP release provides the extracellular adenosine that drives homeostatic sleep. Acute ethanol increases extracellular adenosine, which mediates the ataxic and hypnotic/sedative effects of alcohol, while chronic ethanol leads to downregulated adenosine signaling that underlies insomnia, a major predictor of relapse. Studies using mice lacking the equilibrative nucleoside transporter 1 have illuminated how adenosine functions through neuroglial interactions involving glutamate uptake transporter GLT-1 [referred to as excitatory amino acid transporter 2 (EAAT2) in human] and possibly water channel aquaporin 4 to regulate ethanol sensitivity, reward-related motivational processes, and alcohol intake.
Collapse
|
33
|
Wang J, Du H, Ma X, Pittman B, Castracane L, Li TK, Behar KL, Mason GF. Metabolic products of [2-(13) C]ethanol in the rat brain after chronic ethanol exposure. J Neurochem 2013; 127:353-64. [PMID: 24033360 PMCID: PMC6145094 DOI: 10.1111/jnc.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 01/05/2023]
Abstract
Most ingested ethanol is metabolized in the liver to acetaldehyde and then to acetate, which can be oxidized by the brain. This project assessed whether chronic exposure to alcohol can increase cerebral oxidation of acetate. Through metabolism, acetate may contribute to long-term adaptation to drinking. Two groups of adult male Sprague-Dawley rats were studied, one treated with ethanol vapor and the other given room air. After 3 weeks the rats received an intravenous infusion of [2-(13) C]ethanol via a lateral tail vein for 2 h. As the liver converts ethanol to [2-(13) C]acetate, some of the acetate enters the brain. Through oxidation the (13) C is incorporated into the metabolic intermediate α-ketoglutarate, which is converted to glutamate (Glu), glutamine (Gln), and GABA. These were observed by magnetic resonance spectroscopy and found to be (13) C-labeled primarily through the consumption of ethanol-derived acetate. Brain Gln, Glu, and, GABA (13) C enrichments, normalized to (13) C-acetate enrichments in the plasma, were higher in the chronically treated rats than in the ethanol-naïve rats, suggesting increased cerebral uptake and oxidation of circulating acetate. Chronic ethanol exposure increased incorporation of systemically derived acetate into brain Gln, Glu, and GABA, key neurochemicals linked to brain energy metabolism and neurotransmission. The liver converts ethanol to acetate, which may contribute to long-term adaptation to drinking. Astroglia oxidize acetate and generate neurochemicals, while neurons and glia may also oxidize ethanol. When (13) C-ethanol is administered intravenously, (13) C-glutamine, glutamate, and GABA, normalized to (13) C-acetate, were higher in chronic ethanol-exposed rats than in control rats, suggesting that ethanol exposure increases cerebral oxidation of circulating acetate.
Collapse
Affiliation(s)
- Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, Hubei, China, 430071
- Department of Diagnostic Radiology
| | - Hongying Du
- Department of Diagnostic Radiology
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R.China, 430070
| | | | - Brian Pittman
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| | | | - Ting-Kai Li
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA, 27710
| | - Kevin L. Behar
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| | - Graeme F. Mason
- Department of Diagnostic Radiology
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| |
Collapse
|
34
|
Houchi H, Persyn W, Legastelois R, Naassila M. The adenosine A2A receptor agonist CGS 21680 decreases ethanol self-administration in both non-dependent and dependent animals. Addict Biol 2013; 18:812-25. [PMID: 23301633 DOI: 10.1111/adb.12032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is emerging evidence that the adenosinergic system might be involved in drug addiction and alcohol dependence. We have already demonstrated the involvement of A2A receptors (A2AR) in ethanol-related behaviours in mice. Here, we investigated whether the A2AR agonist CGS 21680 can reduce ethanol operant self-administration in both non-dependent and ethanol-dependent Wistar rats. To rule out a potential involvement of the A1R in the effects of CGS 21680, we also tested its effectiveness to reduce ethanol operant self-administration in both heterozygous and homozygous A1R knockout mice. Our results demonstrated that CGS 21680 (0.065, 0.095 and 0.125 mg/kg, i.p.) had a bimodal effect on 10% ethanol operant self-administration in non-dependent rats. The intermediate dose was also effective in reducing 2% sucrose self-administration. Interestingly, the intermediate dose reduced 10% ethanol self-administration in dependent animals more effectively (75% decrease) when compared with non-dependent animals (57% decrease). These results suggest that the A2AR are involved in CGS 21680 effects since the reduction of ethanol self-administration was not dependent upon the presence of A1R in mice. In conclusion, our findings demonstrated the effectiveness of the A2AR agonist CGS 21680 in a preclinical model of alcohol addiction and suggested that the adenosinergic pathway is a promising target to treat alcohol addiction.
Collapse
Affiliation(s)
- Hakim Houchi
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| | | | - Rémi Legastelois
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| | - Mickaël Naassila
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| |
Collapse
|
35
|
Pitchon DN, Zook M, Rhoads DE. A Pattern of Adolescent Caffeine Consumption that Reduces Alcohol Withdrawal Severity. JOURNAL OF CAFFEINE RESEARCH 2013. [DOI: 10.1089/jcr.2013.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Darsi N. Pitchon
- Department of Biology, Monmouth University, W. Long Branch, New Jersey
| | - Michelle Zook
- Department of Biology, Monmouth University, W. Long Branch, New Jersey
| | - Dennis E. Rhoads
- Department of Biology, Monmouth University, W. Long Branch, New Jersey
| |
Collapse
|
36
|
Nam HW, Bruner RC, Choi DS. Adenosine signaling in striatal circuits and alcohol use disorders. Mol Cells 2013; 36:195-202. [PMID: 23912595 PMCID: PMC3887972 DOI: 10.1007/s10059-013-0192-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 01/19/2023] Open
Abstract
Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Robert C. Bruner
- Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
37
|
Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. Int J Neuropsychopharmacol 2013; 16:1059-70. [PMID: 23174033 PMCID: PMC3593990 DOI: 10.1017/s1461145712000909] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5'-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X(4) receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X(4) receptor in behavioural organization remains poorly investigated. To study the effects of P2X(4) activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5-10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X(4) knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X(4) receptors may play a role in the regulation of sensorimotor gating.
Collapse
|
38
|
Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, Koretski J, Harman S, Petrakis IL, Krystal JH, Mason GF. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 2013; 123:1605-14. [PMID: 23478412 DOI: 10.1172/jci65153] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022] Open
Abstract
When a person consumes ethanol, the body quickly begins to convert it to acetic acid, which circulates in the blood and can serve as a source of energy for the brain and other organs. This study used 13C magnetic resonance spectroscopy to test whether chronic heavy drinking is associated with greater brain uptake and oxidation of acetic acid, providing a potential metabolic reward or adenosinergic effect as a consequence of drinking. Seven heavy drinkers, who regularly consumed at least 8 drinks per week and at least 4 drinks per day at least once per week, and 7 light drinkers, who consumed fewer than 2 drinks per week were recruited. The subjects were administered [2-13C]acetate for 2 hours and scanned throughout that time with magnetic resonance spectroscopy of the brain to observe natural 13C abundance of N-acetylaspartate (NAA) and the appearance of 13C-labeled glutamate, glutamine, and acetate. Heavy drinkers had approximately 2-fold more brain acetate relative to blood and twice as much labeled glutamate and glutamine. The results show that acetate transport and oxidation are faster in heavy drinkers compared with that in light drinkers. Our finding suggests that a new therapeutic approach to supply acetate during alcohol detoxification may be beneficial.
Collapse
Affiliation(s)
- Lihong Jiang
- Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nam HW, Hinton DJ, Kang NY, Kim T, Lee MR, Oliveros A, Adams C, Ruby CL, Choi DS. Adenosine transporter ENT1 regulates the acquisition of goal-directed behavior and ethanol drinking through A2A receptor in the dorsomedial striatum. J Neurosci 2013; 33:4329-38. [PMID: 23467349 PMCID: PMC3622260 DOI: 10.1523/jneurosci.3094-12.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 02/08/2023] Open
Abstract
Adenosine signaling has been implicated in the pathophysiology of many psychiatric disorders including alcoholism. Striatal adenosine A2A receptors (A2AR) play an essential role in both ethanol drinking and the shift from goal-directed action to habitual behavior. However, direct evidence for a role of striatal A2AR signaling in ethanol drinking and habit development has not been established. In the present study, we found that decreased A2AR-mediated CREB activity in the dorsomedial striatum (DMS) enhanced initial behavioral acquisition of goal-directed behaviors and the vulnerability to progress to excessive ethanol drinking during operant conditioning in mice lacking ethanol-sensitive adenosine transporter ENT1 (ENT1(-/-)). Using mice expressing β-galactosidase (lacZ) under the control of seven repeated CRE sites in both genotypes (CRE-lacZ/ENT1(+/+) mice and CRE-lacZ/ENT1(-/-) mice) and the dominant-negative form of CREB, we found that reduced CREB activity in the DMS was causally associated with decreased A2AR signaling and increased goal-directed ethanol drinking. Finally, we have demonstrated that the A2AR antagonist ZM241385 dampened protein kinase A activity-mediated signaling in the DMS and promoted excessive ethanol drinking in ENT1(+/+) mice, but not in ENT1(-/-) mice. Our results indicate that A2AR-mediated CREB signaling in the DMS is a key determinant in enhancing the development of goal-directed ethanol drinking in mice.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - David J. Hinton
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Na Young Kang
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Taehyun Kim
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Moonnoh R. Lee
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Alfredo Oliveros
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Chelsea Adams
- Departments of Molecular Pharmacology and Experimental Therapeutics and
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Christina L. Ruby
- Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Doo-Sup Choi
- Departments of Molecular Pharmacology and Experimental Therapeutics and
- Psychiatry and Psychology, and
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
40
|
López-Cruz L, Salamone JD, Correa M. The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. JOURNAL OF CAFFEINE RESEARCH 2013; 3:9-21. [PMID: 24761272 PMCID: PMC3643311 DOI: 10.1089/jcr.2013.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption and abuse, has become a topic of great interest due to the rise in popularity of the so-called energy drinks. Energy drinks high in caffeine are frequently taken in combination with ethanol under the popular belief that caffeine can offset some of the intoxicating effects of ethanol. However, scientific research has not universally supported the idea that caffeine can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating the caffeine-ethanol interactions are not well understood. Caffeine and ethanol have a common biological substrate; both act on neurochemical processes related to the neuromodulator adenosine. Caffeine acts as a nonselective adenosine A1 and A2A receptor antagonist, while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple mechanisms. Since adenosine transmission modulates multiple behavioral processes, the interaction of both drugs can regulate a wide range of effects related to alcohol consumption and the development of ethanol addiction. In the present review, we discuss the relatively small number of animal studies that have assessed the interactions between caffeine and ethanol, as well as the interactions between ethanol and subtype-selective adenosine receptor antagonists, to understand the basic findings and determine the possible mechanisms of action underlying the caffeine-ethanol interactions.
Collapse
Affiliation(s)
| | - John D. Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
41
|
Dar MS, Al-Rejaie S. Tonic modulatory role of mouse cerebellar α- and β-adrenergic receptors in the expression of ethanol-induced ataxia: role of AC-cAMP. Behav Brain Res 2012; 241:154-60. [PMID: 23246526 DOI: 10.1016/j.bbr.2012.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 01/25/2023]
Abstract
To further study neurochemical basis of ethanol-induced ataxia (EIA), we investigated role of cerebellar α and β-adrenergic receptors. Male CD-1 mice received intracerebellar microinfusion of adrenergic drugs to evaluate their effect on EIA (2g/kg; ip) by Rotorod. Isoproterenol, phenylephrine (4, 8, 16 ng each), methoxamine (8 ng), and atenolol (2, 4, 8 ng), propranolol (4, 8, 16 ng), markedly attenuated and accentuated, respectively, EIA indicating the tonic nature of modulation. The attenuation of EIA by isoproterenol is β(1)-receptor mediated because it is blocked by atenolol. Tonic β(1) modulation is functionally correlated with EIA potentiation by atenolol and propranolol. The prazosin-induced attenuation of EIA, initially thought of α(1)-receptor mediated, appeared instead β(1)-receptor modulated because of: (i) blockade by atenolol; and (ii) phosphodiesterase inhibition by prazosin. The phenylephrine/methoxamine-induced attenuation of EIA seems paradoxical as the response is similar to antagonist prazosin. However, functionally the attenuation seems β(1) receptor-mediated since atenolol blocked it but prazosin did not. Also norepinephrine (NE) attenuated EIA that was inhibited by atenolol suggesting role of β(1) receptors. Similarly yohimbine and rauwolscine attenuated EIA that indicates α(2)-receptor modulation associated with stimulation of AC-cAMP pathway. The results of study support the hypothesis that attenuation and potentiation of EIA is mediated by activation and inhibition of AC-cAMP pathway, respectively, in agreement with our previous reports, via direct and/or indirect activation of β-receptor.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
42
|
Davies DL, Bortolato M, Finn DA, Ramaker MJ, Barak S, Ron D, Liang J, Olsen RW. Recent advances in the discovery and preclinical testing of novel compounds for the prevention and/or treatment of alcohol use disorders. Alcohol Clin Exp Res 2012; 37:8-15. [PMID: 22671690 DOI: 10.1111/j.1530-0277.2012.01846.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence. Unfortunately, these medications have provided only limited success as indicated by the continued high rates of alcohol abuse and alcoholism. The lack of currently available effective treatment strategies is highlighted by the urgent call by the NIAAA to find new and paradigm-changing therapeutics to either prevent or treat alcohol-related problems. This mini-review highlights recent findings from 4 laboratories with a focus on compounds that have the potential to be novel therapeutic agents that can be developed for the prevention and/or treatment of AUDs.
Collapse
Affiliation(s)
- Daryl L Davies
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yardley MM, Wyatt L, Khoja S, Asatryan L, Ramaker MJ, Finn DA, Alkana RL, Huynh N, Louie SG, Petasis NA, Bortolato M, Davies DL. Ivermectin reduces alcohol intake and preference in mice. Neuropharmacology 2012; 63:190-201. [PMID: 22465817 DOI: 10.1016/j.neuropharm.2012.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
Abstract
The high rate of therapeutic failure in the management of alcohol use disorders (AUDs) underscores the urgent need for novel and effective strategies that can deter ethanol consumption. Recent findings from our group showed that ivermectin (IVM), a broad-spectrum anthelmintic with high tolerability and optimal safety profile in humans and animals, antagonized ethanol-mediated inhibition of P2X4 receptors (P2X4Rs) expressed in Xenopus oocytes. This finding prompted us to hypothesize that IVM may reduce alcohol consumption; thus, in the present study we investigated the effects of this agent on several models of alcohol self-administration in male and female C57BL/6 mice. Overall, IVM (1.25-10 mg/kg, intraperitoneal) significantly reduced 24-h alcohol consumption and intermittent limited access (4-h) binge drinking, and operant alcohol self-administration (1-h). The effects on alcohol intake were dose-dependent with the significant reduction in intake at 9 h after administration corresponding to peak IVM concentrations (C(max)) in the brain. IVM also produced a significant reduction in 24-h saccharin consumption, but did not alter operant sucrose self-administration. Taken together, the findings indicate that IVM reduces alcohol intake across several different models of self-administration and suggest that IVM may be useful in the treatment of AUDs.
Collapse
Affiliation(s)
- Megan M Yardley
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nam HW, McIver SR, Hinton DJ, Thakkar MM, Sari Y, Parkinson FE, Haydon PG, Choi DS. Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol Clin Exp Res 2012; 36:1117-25. [PMID: 22309182 DOI: 10.1111/j.1530-0277.2011.01722.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/03/2011] [Indexed: 12/27/2022]
Abstract
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. Especially, astrocytes are essential for neuronal activity in the brain. Astrocytes actively participate in synapse formation and brain information processing by releasing or uptaking gliotransmitters such as glutamate, d-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine plays an important role in regulating neuronal activity as well as in controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol (EtOH) increases extracellular adenosine levels, which regulates the ataxic and hypnotic/sedative (somnogenic) effects of EtOH. Adenosine signaling is also involved in the homeostasis of major inhibitory/excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions, which regulates the effect of EtOH and sleep. Adenosine transporters or astrocytic SNARE-mediated transmitter release regulates extracellular or synaptic adenosine levels. Adenosine then exerts its function through several adenosine receptors and regulates glutamate levels in the brain. This review presents novel findings on how neuron-glial interactions, particularly adenosinergic signaling and glutamate uptake activity involving glutamate transporter 1 (GLT1), are implicated in alcoholism and sleep disorders.
Collapse
Affiliation(s)
- Hyung W Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ruby CL, Walker DL, An J, Kim J, Choi DS. Sex-Specific Regulation of Depression, Anxiety-Like Behaviors and Alcohol Drinking in Mice Lacking ENT1. ACTA ACUST UNITED AC 2012; S4. [PMID: 23101030 DOI: 10.4172/2155-6105.s4-004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES: Adenosine signaling has been implicated in the pathophysiology of several psychiatric disorders including alcoholism, depression, and anxiety. Adenosine levels are controlled in part by transport across the cell membrane by equilibrative nucleoside transporters (ENTs). Recent evidence showed that a polymorphism in the gene encoding ENT1 is associated with comorbid depression and alcoholism in women. We have previously shown that deletion of ENT1 reduces ethanol intoxication and elevates alcohol intake in mice. Interestingly, ENT1 null mice display decreased anxiety-like behavior compared to wild-type littermates. However, our behavioral studies were performed only in male mice. Here, we extend our research to include female mice, and test the effect of ENT1 knockout on other behavioral correlates of alcohol drinking, including depressive and compulsive behavior, in mice. METHODS: To assess depression-like behavior, we used a forced swim test modified for mice. We examined anxiety-like behavior and locomotor activity in open field chambers, and perseverant behavior using the marble-burying test. Finally, we investigated alcohol consumption and preference in female mice using a two-bottle choice paradigm. RESULTS: ENT1 null mice of both sexes showed reduced immobility time in the forced swim test and increased time in the center of the open field compared to wild-type littermates. ENT1 null mice of both sexes showed similar locomotor activity levels and habituation to the open field chambers. Female ENT1 null mice displayed increased marble-burying compared to female wild-types, but no genotype difference was evident in males. Female ENT1 null mice showed increased ethanol consumption and preference compared to female wild-types. CONCLUSIONS: Our findings suggest that ENT1 contributes to several important behaviors involved in psychiatric disorders. Inhibition of ENT1 may be beneficial in treating depression and anxiety, while enhancement of ENT1 function may reduce compulsive behavior and drinking, particularly in females.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, USA
| | | | | | | | | |
Collapse
|
46
|
Ferré S, O'Brien MC. Alcohol and Caffeine: The Perfect Storm. JOURNAL OF CAFFEINE RESEARCH 2011; 1:153-162. [PMID: 24761263 DOI: 10.1089/jcr.2011.0017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although it is widely believed that caffeine antagonizes the intoxicating effects of alcohol, the molecular mechanisms underlying their interaction are incompletely understood. It is known that both caffeine and alcohol alter adenosine neurotransmission, but the relationship is complex, and may be dose dependent. In this article, we review the available literature on combining caffeine and alcohol. Ethical constraints prohibit laboratory studies that would mimic the high levels of alcohol intoxication achieved by many young people in real-world settings, with or without the addition of caffeine. We propose a possible neurochemical mechanism for the increase in alcohol consumption and alcohol-related consequences that have been observed in persons who simultaneously consume caffeine. Caffeine is a nonselective adenosine receptor antagonist. During acute alcohol intake, caffeine antagonizes the "unwanted" effects of alcohol by blocking the adenosine A1 receptors that mediate alcohol's somnogenic and ataxic effects. The A1 receptor-mediated "unwanted" anxiogenic effects of caffeine may be ameliorated by alcohol-induced increase in the extracellular concentration of adenosine. Moreover, by means of interactions between adenosine A2A and dopamine D2 receptors, caffeine-mediated blockade of adenosine A2A receptors can potentiate the effects of alcohol-induced dopamine release. Chronic alcohol intake decreases adenosine tone. Caffeine may provide a "treatment" for the withdrawal effects of alcohol by blocking the effects of upregulated A1 receptors. Finally, blockade of A2A receptors by caffeine may contribute to the reinforcing effects of alcohol.
Collapse
Affiliation(s)
- Sergi Ferré
- CNS Receptor-Receptor Interactions Unit, National Institute on Drug Abuse , Intramural Research Program, Department of Health and Human Services, Baltimore, Maryland
| | - Mary Claire O'Brien
- Department of Emergency Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina. ; Department of Social Sciences & Health Policy, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
47
|
Nam HW, Lee MR, Zhu Y, Wu J, Hinton DJ, Choi S, Kim T, Hammack N, Yin JC, Choi DS. Type 1 equilibrative nucleoside transporter regulates ethanol drinking through accumbal N-methyl-D-aspartate receptor signaling. Biol Psychiatry 2011; 69:1043-51. [PMID: 21489406 PMCID: PMC3090461 DOI: 10.1016/j.biopsych.2011.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/24/2010] [Accepted: 02/04/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mice lacking type 1 equilibrative nucleoside transporter (ENT1(-/-)) exhibit increased ethanol-preferring behavior compared with wild-type littermates. This phenotype of ENT1(-/-) mice appears to be correlated with increased glutamate levels in the nucleus accumbens (NAc). However, little is known about the downstream consequences of increased glutamate signaling in the NAc. METHODS To investigate the significance of the deletion of ENT1 and its effect on glutamate signaling in the NAc, we employed microdialysis and iTRAQ proteomics. We validated altered proteins using Western blot analysis. We then examined the pharmacological effects of the inhibition of the N-methyl-D-aspartate (NMDA) glutamate receptor and protein kinase Cγ (PKCγ) on alcohol drinking in wild-type mice. In addition, we investigated in vivo cyclic adenosine monophosphate response element binding activity using cyclic adenosine monophosphate response element-β-galactosidase mice in an ENT1(-/-) background. RESULTS We identified that NMDA glutamate receptor-mediated downregulation of intracellular PKCγ-neurogranin-calcium-calmodulin dependent protein kinase type II signaling is correlated with reduced cyclic adenosine monophosphate response element binding activity in ENT1(-/-) mice. Inhibition of PKCγ promotes ethanol drinking in wild-type mice to levels similar to those of ENT1(-/-) mice. In contrast, an NMDA glutamate receptor antagonist reduces ethanol drinking of ENT1(-/-) mice. CONCLUSIONS These findings demonstrate that the genetic deletion or pharmacological inhibition of ENT1 regulates NMDA glutamate receptor-mediated signaling in the NAc, which provides a molecular basis that underlies the ethanol-preferring behavior of ENT1(-/-) mice.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Moonnoh R. Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Yu Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jinhua Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - David J. Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Nora Hammack
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jerry C.P. Yin
- Department of Genetics and Neurology, University of Wisconsin, Madison, Wisconsin 53706
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
48
|
Regulation of ethanol-sensitive EAAT2 expression through adenosine A1 receptor in astrocytes. Biochem Biophys Res Commun 2011; 406:47-52. [PMID: 21291865 DOI: 10.1016/j.bbrc.2011.01.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 01/20/2023]
Abstract
Adenosine-regulated glutamate signaling in astrocytes is implicated in many neurological and neuropsychiatric disorders. In this study, we examined whether adenosine A1 receptor regulates EAAT2 expression in astrocytes using pharmacological agents and siRNAs. We found that adenosine A1 receptor-specific antagonist DPCPX or PSB36 decreased EAAT2 expression in a dose-dependent manner. Consistently, knockdown of A1 receptor in astrocytes decreased EAAT2 mRNA expression while overexpression of A1 receptor upregulated EAAT2 expression and function. Since A1 receptor activation is mainly coupled to inhibitory G-proteins and inhibits the activity of adenylate cyclase, we investigated the effect of forskolin, which activates adenylate cyclase activity, on EAAT2 mRNA levels. Interestingly, we found that forskolin reduced EAAT2 expression in dose- and time-dependent manners. In contrast, adenylate cyclase inhibitor SQ22536 increased EAAT2 expression in dose- and time-dependent manners. In addition, forskolin blocked ethanol-induced EAAT2 upregulation. Taken together, these results suggest that A1 receptor-mediated signaling regulates EAAT2 expression in astrocytes.
Collapse
|
49
|
Lee MR, Hinton DJ, Wu J, Mishra PK, Port JD, Macura SI, Choi DS. Acamprosate reduces ethanol drinking behaviors and alters the metabolite profile in mice lacking ENT1. Neurosci Lett 2010; 490:90-5. [PMID: 21172405 DOI: 10.1016/j.neulet.2010.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Acamprosate is clinically used to treat alcoholism. However, the precise molecular functionality of acamprosate in the central nervous system remains unclear, although it is known to antagonize glutamate action in the brain. Since elevated glutamate signaling, especially in the nucleus accumbens (NAc), is implicated in several aspects of alcoholism, we utilized mice lacking type 1 equilibrative nucleoside transporter (ENT1), which exhibit increased glutamate levels in the NAc as well as increased ethanol drinking behaviors. We found that acamprosate significantly reduced ethanol drinking of mice lacking ENT1 (ENT1(-/-)) while having no such effect in wild-type littermates. We then analyzed the basal and acamprosate-treated accumbal metabolite profiles of ENT1(-/-) and wild-type mice using in vivo 16.4T proton magnetic resonance spectroscopy (MRS). Our data show that basal glutamate+glutamine (Glx), glutamate, glutamine and N-acetylaspartatic acid (NAA) levels are increased in the nucleus accumbens (NAc) of ENT1(-/-) compared to wild-type mice. We then found that acamprosate treatment significantly reduced Glx and glutamine levels while increasing taurine levels in the NAc of only ENT1(-/-) compared to their saline-treated group while normalizing other metabolite compared to wild-type mice. This study will be useful in the understanding of the molecular basis of acamprosate in the brain.
Collapse
Affiliation(s)
- Moonnoh R Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|