1
|
Tian J, Liu X, Zhu D, Li J. Periostin regulates the activity of keloid fibroblasts by activating the JAK/STAT signaling pathway. Heliyon 2024; 10:e38821. [PMID: 39524886 PMCID: PMC11543875 DOI: 10.1016/j.heliyon.2024.e38821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
A keloid is secondary to skin trauma or has spontaneously manifested as an overgrowth and occurs when the skin heals abnormally after an injury. The main pathological manifestations are abnormal proliferation of keloid fibroblasts (KEL-FIB). This study researched periostin (POSTN) on keloid fibroblasts (KEL-FIB) and the associated mechanism, aiming to provide a reference for the targeted therapy of keloid. We got tissues from Second People's Hospital of Guangxi Zhuang Autonomous Region between June 2022 and March 2023. POSTN expression was increased in keloid skin tissue and KEL-FIB than normal skin tissue and normal fibroblasts. We collected and inoculated KEL-FIB cells, transfection of si-NC (Silencing of POSTN negative control), si-POSTN (Silencing of POSTN), pcDNA-NC (Overexpression of POSTN negative control), and POSTN (Overexpression of POSTN) (Thermo Fisher Scientific) used Lipofectamine 2000 transfection reagent. Wound closure, cell proliferation viability, migrated cell numbers, and POSTN, p-JAK2, p-STAT3 protein levels were reduced in the si-POSTN group. Wound closure, cell proliferation viability, migrated cell numbers, and POSTN, p-JAK2, p-STAT3 protein levels were elevated in the POSTN group. POSTN protein levels did not changed and wound closure, cell proliferation viability, migrated cell numbers, were reduced in the POSTN + S-Ruxolitinib group. The study results indicated that POSTN promotes cell migration and proliferation by activating the JAK/STAT pathway, promoting KEL-FIB development.
Collapse
Affiliation(s)
- Jiao Tian
- Zunyi Medical and Pharmaceutical College, Zunyi City, 563006, China
| | - Xin Liu
- Department of Burn Plastic Surgery, Zunyi Medical University Hospital, Zunyi City, 563000, China
| | - Dawei Zhu
- Zunyi Medical and Pharmaceutical College, Zunyi City, 563006, China
| | - Jianyi Li
- Department of Burn Plastic Surgery and Wound Repair, second People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi City, 541002, China
| |
Collapse
|
2
|
Huang NC, Huang NC, Kang LY, Hsieh PS, Dai LG, Dai NT, Huang CJ. Enhanced Diabetic Rat Wound Healing by Platelet-Rich Plasma Adhesion Zwitterionic Hydrogel. Ann Plast Surg 2024; 92:S2-S11. [PMID: 38285989 DOI: 10.1097/sap.0000000000003796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing. A dressing containing bioactive substances can absorb wound exudates and reduce adhesion between the wound and dressing, whereas growth factors, cytokines, and signaling factors can promote cell motility and proliferation. AIM AND OBJECTIVES We prepared a functional wound dressing by combining platelet-rich plasma (PRP) and zwitterionic hydrogels. Functional wound dressings are rich in various naturally occurring growth factors that can effectively promote the healing process in various types of tissues and absorb wound exudates to reduce adhesion between wounds and dressings. Furthermore, PRP-incorporated zwitterionic hydrogels have been used to repair full-thickness wounds in Sprague-Dawley rats with diabetes (DM SD). MATERIALS AND METHODS Fibroblasts and keratinocytes were cultured with PRP, zwitterionic hydrogels, and PRP-incorporated zwitterionic hydrogels to assess cell proliferation and specific gene expression. Furthermore, PRP-incorporated zwitterionic hydrogels were used to repair full-thickness skin defects in DM SD rats. RESULTS The swelling ratio of hydrogel, hydrogel + PRP1000 (108 platelets/mL), and hydrogel + PRP1000 (109 platelets/mL) groups were similar (~07.71% ± 1.396%, 700.17% ± 1.901%, 687.48% ± 4.661%, respectively) at 144 hours. The tensile strength and Young modulus of the hydrogel and hydrogel + PRP10000 groups were not significantly different. High concentrations of PRP (approximately 108 and 109 platelets/mL) effectively promoted the proliferation of fibroblasts and keratinocytes. The zwitterionic hydrogels were not cytotoxic to any cell type. High PRP concentration-incorporated zwitterionic hydrogels increased the rate of cell proliferation and significantly increased the expression of characteristic genes such as collagen, fibronectin, involucrin, and keratin. Subsequently, zwitterionic hydrogels with high PRP concentrations were used to repair full-thickness skin defects in DM SD rats, and a wound healing rate of more than 90% was recorded on day 12. CONCLUSIONS PRP contains high concentrations of growth factors that promote cell viability, enhance specific gene expression, and have a high medical value in cell therapy. Zwitterionic hydrogels have a 3-dimensional interconnected microporous structure and can resist cell adhesion without causing cytotoxicity. Platelet-rich plasma-incorporated zwitterionic hydrogels further enhance the cellular properties and provide an effective therapeutic option for wound healing.
Collapse
Affiliation(s)
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lien-Guo Dai
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | | |
Collapse
|
3
|
Carolo A, Melotti L, Zivelonghi G, Sacchetto R, Akyürek EE, Martinello T, Venerando A, Iacopetti I, Sugni M, Martinelli G, Roncoroni M, Marzorati S, Barbon S, Contran M, Incendi D, Perozzo F, Porzionato A, Vindigni V, Patruno M. Mutable Collagenous Tissue Isolated from Echinoderms Leads to the Production of a Dermal Template That Is Biocompatible and Effective for Wound Healing in Rats. Mar Drugs 2023; 21:506. [PMID: 37888441 PMCID: PMC10608188 DOI: 10.3390/md21100506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
The mutable collagenous tissue (MCT) of echinoderms possesses biological peculiarities that facilitate native collagen extraction and employment for biomedical applications such as regenerative purposes for the treatment of skin wounds. Strategies for skin regeneration have been developed and dermal substitutes have been used to cover the lesion to facilitate cell proliferation, although very little is known about the application of novel matrix obtained from marine collagen. From food waste we isolated eco-friendly collagen, naturally enriched with glycosaminoglycans, to produce an innovative marine-derived biomaterial assembled as a novel bi-layered skin substitute (Marine Collagen Dermal Template or MCDT). The present work carried out a preliminary experimental in vivo comparative analysis between the MCDT and Integra, one of the most widely used dermal templates for wound management, in a rat model of full-thickness skin wounds. Clinical, histological, and molecular evaluations showed that the MCDT might be a valuable tool in promoting and supporting skin wound healing: it is biocompatible, as no adverse reactions were observed, along with stimulating angiogenesis and the deposition of mature collagen. Therefore, the two dermal templates used in this study displayed similar biocompatibility and outcome with focus on full-thickness skin wounds, although a peculiar cellular behavior involving the angiogenesis process was observed for the MCDT.
Collapse
Affiliation(s)
- Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Tiziana Martinello
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Silvia Barbon
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Martina Contran
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Damiana Incendi
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Filippo Perozzo
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, 35128 Padova, Italy;
| | - Andrea Porzionato
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Vincenzo Vindigni
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| |
Collapse
|
4
|
Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022; 12:316. [PMID: 36276437 PMCID: PMC9547767 DOI: 10.1007/s13205-022-03331-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Shikha Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
5
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
6
|
In Vivo Comparison of Synthetic Macroporous Filamentous and Sponge-like Skin Substitute Matrices Reveals Morphometric Features of the Foreign Body Reaction According to 3D Biomaterial Designs. Cells 2022; 11:cells11182834. [PMID: 36139409 PMCID: PMC9496825 DOI: 10.3390/cells11182834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic macroporous biomaterials are widely used in the field of skin tissue engineering to mimic membrane functions of the native dermis. Biomaterial designs can be subclassified with respect to their shape in fibrous designs, namely fibers, meshes or fleeces, respectively, and porous designs, such as sponges and foams. However, synthetic matrices often have limitations regarding unfavorable foreign body responses (FBRs). Severe FBRs can result in unfavorable disintegration and rejection of an implant, whereas mild FBRs can lead to an acceptable integration of a biomaterial. In this context, comparative in vivo studies of different three-dimensional (3D) matrix designs are rare. Especially, the differences regarding FBRs between synthetically derived filamentous fleeces and sponge-like constructs are unknown. In the present study, the FBRs on two 3D matrix designs were explored after 25 days of subcutaneous implantation in a porcine model. Cellular reactions were quantified histopathologically to investigate in which way the FBR is influenced by the biomaterial architecture. Our results show that FBR metrics (polymorph-nucleated cells and fibrotic reactions) were significantly affected according to the matrix designs. Our findings contribute to a better understanding of the 3D matrix tissue interactions and can be useful for future developments of synthetically derived skin substitute biomaterials.
Collapse
|
7
|
Comparative Studies on the Antioxidant, Antifungal, and Wound Healing Activities of Solenostemma arghel Ethyl Acetate and Methanolic Extracts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Various herbal compounds are used for medical purposes due to their safety, as there are no or minimal side effects. This study was performed to assess the wound healing and antioxidant activities of ethyl acetate (EtOAc) and methanolic extract (MeoH) of Solenostemma arghel (S. arghel). Their antifungal activities were also evaluated against isolated swabs of equine wounds. They underwent GC-MS analysis for the characterization of both extracts. For wound healing evaluation, forty-five male albino rats were divided into three groups; the control group was treated with normal saline, and the other two groups were treated with S. arghel EtOAc and MeoH extract gels, respectively. The wounds were examined clinicopathologically and immunohistochemistry on the 3rd, 7th, and 14th days post-wounding. GC-Ms analysis of S. arghel recorded fifty-one volatile organic compounds (VOCs) within EtOAc extraction and thirty VOCs in MeoH extract. VOCs represented in EtOAc extract showed higher antioxidant activity and better and faster wound healing than VOCs of MeOH extract. The treated groups showed improved wound healing clinically and pathologically in comparison with the control group as they decreased the wound surface area (WSA) and percent (WSA%) and increased the wound contraction percent (WC%), epithelization, fibroblast proliferation with neovascularization, and reduced the inflammatory reaction. Moreover, the treated groups showed higher expression of vascular endothelial growth factor (VEGF) compared with the control. The EtOAc extract showed higher antifungal activity against Penicillium funiculosum, P. jensenii, M. cinctum, and Candida albicans, which were isolated from infected clinical equine wounds, than MeOH extract. The treated groups showed improved wound healing clinically and pathologically in comparison with the control group as they decreased the wound surface area (WSA) and percent (WSA%) and increased the wound contraction percent (WC%), epithelization, fibroblast proliferation with neovascularization, and reduced the inflammatory reaction. Moreover, the treated groups showed higher expression of vascular endothelial growth factor (VEGF) compared with the control. Additionally, the two extract gels showed promising healing of equine wounds. In conclusion, the study recommended the use of S. arghel EtOAc extract as it was proven to promote wound healing compared with MeoH extract.
Collapse
|
8
|
Golchin A, Shams F, Basiri A, Ranjbarvan P, Kiani S, Sarkhosh-Inanlou R, Ardeshirylajimi A, Gholizadeh-Ghaleh Aziz S, Sadigh S, Rasmi Y. Combination Therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Rev Rep 2022; 18:1892-1911. [PMID: 35080745 DOI: 10.1007/s12015-021-10309-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a serious obstacle due to the complexity of evaluation and management. While novel approaches to promoting chronic wound healing are of critical interest at the moment, several studies have demonstrated that combination therapy is critical for the treatment of a variety of diseases, particularly chronic wounds. Among the various approaches that have been proposed for wound care, regenerative medicine-based methods have garnered the most attention. As is well known, regenerative medicine's three primary tools are gene/cell therapy, biomaterials, and tissue engineering. Multifunctional biomaterials composed of synthetic and natural components are highly advantageous for exosome carriers, which utilizing them is an exciting wound healing method. Recently, stem cell-secreted exosomes and certain biomaterials have been identified as critical components of the wound healing process, and their combination therapy appears to produce significant results. This paper presents a review of literature and perspectives on the use of stem cell-derived exosomes and biomaterials in wound healing, particularly chronic wounds, and discusses the possibility of future clinical applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid, Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Roya Sarkhosh-Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sanaz Sadigh
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Effect of Allogeneic Oral Mucosa Mesenchymal Stromal Cells on Equine Wound Repair. Vet Med Int 2021; 2021:5024905. [PMID: 34950446 PMCID: PMC8692048 DOI: 10.1155/2021/5024905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To assess the clinical value and safety of the application of allogeneic equine oral mucosa mesenchymal stromal cells (OM-MSCs) to wounds. Animals. 8 healthy adult horses without front limb skin lesions or musculoskeletal disease. Procedures. Stem cells were isolated from the oral mucosa of a donor horse. Horses were subjected to the creation of eight full-thickness cutaneous wounds, two on each distal forelimb (FL) and two on both sides of the thorax (TH). Each wound was subjected to one out of four treatments: no medication (T1), hyaluronic acid- (HA-) gel containing OM-MSC (T2), HA-gel containing OM-MSC secretome (T3), and HA-gel alone (T4). Gross macroscopic evaluation and laser digital photographic documentation were regularly performed to allow wound assessment including wound surface area. Full-thickness skin punch biopsy was performed at each site before wound induction (D0, normal skin) and after complete wound healing (D62, repaired skin). Results All wounds healed without adverse effect at D62. Distal limb wounds are slower to heal than body wounds. OM-MSC and its secretome have a positive impact on TH wound contraction. OM-MSC has a positive impact on the contraction and epithelialization of FL wounds. No significant difference between wound sites before and after treatment was noted at histological examination. Conclusion and Clinical Relevance. Using horse cells harvested from oral mucosa is a feasible technique to produce OM-MSC or its secretome. The gel produced by the combination of these biologic components with HA shows a positive impact when applied during the early stage of wound healing.
Collapse
|
10
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
11
|
Prakoeswa CRS, Rindiastuti Y, Wirohadidjojo YW, Komaratih E, Nurwasis, Dinaryati A, Lestari NMI, Rantam FA. Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1160-1167. [PMID: 32902361 DOI: 10.1080/21691401.2020.1817057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-healing wounds have demonstrated aberrant regulation of several growth factors, thus using exogenous growth factors and cytokines in the clinical setting may improve the outcomes of non-healing wounds. Mesenchymal stem cells (MSCs) are the source of growth factors that show beneficial effect in promoting impaired wound healing. Certain culture condition should be developed to stimulate growth factor secretion from stem cell. Resveratrol, a small molecule found to increase MSCs therapeutic effectiveness. This study aims to investigate the effect of RV on secretion of wound healing related growth factors. We isolated and characterised MSCs from wharton's jelly (WJ), amniotic membrane (AM), and adipose tissue. We treated MSCs with serum deprived medium (SDM) supplemented with RV at 0.1 µM, 0.5 µM, 0.8 µM concentration. Our study revealed that RV at 0.1 µM was more effective to increase cell proliferation rate. Resveratrol at 0.1 µM promoted EGF, HGF, PDGF, and TGF-β1 secretion from MSCs. AD-MSCs showed the greatest response to RV stimulation in the term of cell proliferation and growth factors secretion. As conclusion, RV can facilitate cell proliferation and wound healing related growth factors secretion at dosage dependent manner.
Collapse
Affiliation(s)
- Cita R S Prakoeswa
- Department of Dermatovenerology, Faculty of Medicine Universitas Airlangga/Dr Soetomo, General Academic Hospital, Surabaya, Indonesia
| | - Yuyun Rindiastuti
- Department of Ophthalmology, Faculty of Medicine Universitas Airlangga/Dr Soetomo, General Academic Hospital, Surabaya, Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Department of Dermatovenerology, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito, General Academic Hospital, Yogyakarta, Indonesia
| | - Evelyn Komaratih
- Department of Ophthalmology, Faculty of Medicine Universitas Airlangga/Dr Soetomo, General Academic Hospital, Surabaya, Indonesia
| | - Nurwasis
- Department of Ophthalmology, Faculty of Medicine Universitas Airlangga/Dr Soetomo, General Academic Hospital, Surabaya, Indonesia
| | - Aristika Dinaryati
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Ni Made Inten Lestari
- Department of Dermatovenerology, Faculty of Medicine Universitas Airlangga/Dr Soetomo, General Academic Hospital, Surabaya, Indonesia
| | - Fedik A Rantam
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
Qi P, Niu Y, Wang B. MicroRNA-181a/b-1-encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. J Cell Mol Med 2021; 25:5744-5752. [PMID: 33991050 PMCID: PMC8184675 DOI: 10.1111/jcmm.16595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Bioactive nanofibres play a useful role in increasing the efficiency of tissue engineering scaffolds. MicroRNAs (miRs) alone, and in combination with tissue engineering scaffolds, can be effective in treating bone fractures and osteoporosis by regulating many post‐transcriptional cellular pathways. Herein, miR‐181a/b‐1 was incorporated in the electrospun poly (lactic‐co‐glycolic acid) (PLGA) nanofibres (PLGA‐miR). After characterization scaffolds, the osteoinductive capacity of the nanofibres was investigated when adipose‐derived mesenchymal stem cells (AT‐MSCs) were cultured on the PLGA and PLGA‐miR nanofibres. miR incorporating in the nanofibres has not any significant effect on the size and morphology of the nanofibres, but its biocompatibility was increased significantly compared to the empty nanofibres. Alkaline phosphatase (ALP) activity and calcium measures were evaluated as two important osteogenic markers, and the results revealed that the highest measures were observed in the AT‐MSCs cultured on PLGA‐miR nanofibres. Detected ALP activity and calcium measures in miR‐transduced AT‐MSCs cultured on TCPS were also significantly higher than AT‐MSCs cultured on PLGA and TCPS groups. The highest expression levels of bone‐related genes were observed in the AT‐MSCs cultured on PLGA‐miR nanofibres. This improvement in the osteogenic differentiation potential of the AT‐MSCs was also confirmed by evaluating osteopontin protein in the cells cultured on PLGA‐miR. It can be concluded that miR‐181a/b‐1 has a significant impact on the AT‐MSC osteogenic differentiation, and this impact synergistically increased when incorporated in the PLGA nanofibres.
Collapse
Affiliation(s)
- Peiyi Qi
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yali Niu
- Department of Lung Transplantation Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Thoracic Heart Surgery, Changyi People's Hospital, Weifang, China
| |
Collapse
|
13
|
Melotti L, Martinello T, Perazzi A, Iacopetti I, Ferrario C, Sugni M, Sacchetto R, Patruno M. A Prototype Skin Substitute, Made of Recycled Marine Collagen, Improves the Skin Regeneration of Sheep. Animals (Basel) 2021; 11:ani11051219. [PMID: 33922557 PMCID: PMC8145883 DOI: 10.3390/ani11051219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Marine ecosystems are a huge source of unexplored “blue” materials for different applications. The edible part of sea urchin is limited, and the vast majority of the product ends up as waste. Our studies intend to fully recycle wastes from the food industry and reconvert them in high added-value products, as innovative biocompatible skin substitutes for tissue regeneration. The aim of the present work is to apply the pioneering skin substitute in in vivo experimental wounds to test its regenerative potential and compare it, in a future study, to the available commercial membranes produced with collagen of bovine, porcine, and equine origin. Results are encouraging since the skin substitute made with marine collagen reduced inflammation, promoted the deposition of granulation tissue, and enhanced a proper re-epithelialization with the adequate development of skin appendages. In summary, our findings might be of great interest for processing industries and biotech companies which transform waste materials in high-valuable and innovative products for Veterinary advanced applications. Abstract Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.
Collapse
Affiliation(s)
- Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
| | - Tiziana Martinello
- Department of Veterinary Medicine, University of Bari, SP. Casamassima Km.3, Valenzano, 70010 Bari, Italy;
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
- Correspondence: (I.I.); (M.S.); (M.P.)
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133 Milan, Italy
- Correspondence: (I.I.); (M.S.); (M.P.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
- Correspondence: (I.I.); (M.S.); (M.P.)
| |
Collapse
|
14
|
Kao YC, Lin DZ, Lee SL, Chen C, Wang HJ, Chiu WK. Assisted therapy with platelet-rich plasma for burn patients: A meta-analysis and systematic review. Burns 2020; 47:1012-1023. [PMID: 33962831 DOI: 10.1016/j.burns.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Platelet-rich plasma (PRP) therapy has been used in different medical fields, but its effectiveness in burn wound healing remains debatable. In this study, we performed a systematic review and meta-analysis of the available evidence on burn patients treated with PRP to evaluate the safety and efficacy of the treatment. METHODS Randomized controlled trials evaluating the efficacy of PRP in patients with burn injuries were selected. Eligible retrospective studies were abstracted and assessed for the risk of bias by two reviewers and results of mean time to complete epithelization and wound closure rate in the included studies were analyzed. Studies on the correlation between PRP and burn wound healing published in English or Chinese before March 2020 were retrieved from PubMed. RESULTS Eight studies (including 449 patients) met our inclusion criteria. Qualitative analysis revealed that compared with the control group, the PRP group had significantly better wound closure rates at weeks 2 (mean difference (MD): 12.79 [95% confidence interval (CI): 7.08, 18.49]; I2: 0%; p < 0.0001) and 3 (MD: 12.66 [95% CI: 5.97, 19.34]; I2: 55%; p = 0.0002) and time to complete epithelialization (MD: -3.45 [95% CI: -4.87, -2.04] (days); I2: 0%; p < 0.00001). There was no significant difference in infection rate or graft take rate. CONCLUSIONS PRP application can accelerate wound closure, however, it has no effect on the rates of wound infection and graft take rate.
Collapse
Affiliation(s)
- Yu-Chien Kao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dai-Zhu Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Lian Lee
- Division of Plastic Surgery, Department of Surgery, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiehfeng Chen
- Division of Plastic Surgery, Department of Surgery, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
| | - Hsian-Jenn Wang
- Division of Plastic Surgery, Department of Surgery, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
15
|
Sparks HD, Sigaeva T, Tarraf S, Mandla S, Pope H, Hee O, Di Martino ES, Biernaskie J, Radisic M, Scott WM. Biomechanics of Wound Healing in an Equine Limb Model: Effect of Location and Treatment with a Peptide-Modified Collagen-Chitosan Hydrogel. ACS Biomater Sci Eng 2020; 7:265-278. [PMID: 33342210 DOI: 10.1021/acsbiomaterials.0c01431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The equine distal limb wound healing model, characterized by delayed re-epithelialization and a fibroproliferative response to wounding similar to that observed in humans, is a valuable tool for the study of biomaterials poised for translation into both the veterinary and human medical markets. In the current study, we developed a novel method of biaxial biomechanical testing to assess the functional outcomes of healed wounds in a modified equine model and discovered significant functional and structural differences in both unwounded and injured skin at different locations on the distal limb that must be considered when using this model in future work. Namely, the medial skin was thicker and displayed earlier collagen engagement, medial wounds experienced a greater proportion of wound contraction during closure, and proximal wounds produced significantly more exuberant granulation tissue. Using this new knowledge of the equine model of aberrant wound healing, we then investigated the effect of a peptide-modified collagen-chitosan hydrogel on wound healing. Here, we found that a single treatment with the QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine) peptide-modified hydrogel (Q-peptide hydrogel) resulted in a higher rate of wound closure and was able to modulate the biomechanical function toward a more compliant healed tissue without observable negative effects. Thus, we conclude that the use of a Q-peptide hydrogel provides a safe and effective means of improving the rate and quality of wound healing in a large animal model.
Collapse
Affiliation(s)
- Holly D Sparks
- Department of Veterinary Clinical & Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Taisiya Sigaeva
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Department of Civil Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Samar Tarraf
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S3G9, Canada.,Toronto General Research Institute, University of Toronto, Toronto M5S3G9, Canada
| | - Hannah Pope
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Olivia Hee
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Elena S Di Martino
- Department of Civil Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, Calgary, Alberta T2N 4N1, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S3G9, Canada.,Toronto General Research Institute, University of Toronto, Toronto M5S3G9, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S3G9, Canada
| | - W Michael Scott
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
16
|
Mardani M, Sadeghzadeh A, Tanideh N, Andisheh-Tadbir A, Lavaee F, Zarei M, Moayedi J. The effects of adipose tissue-derived stem cells seeded onto the curcumin-loaded collagen scaffold in healing of experimentally- induced oral mucosal ulcers in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1618-1627. [PMID: 33489037 PMCID: PMC7811821 DOI: 10.22038/ijbms.2020.48698.11171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Various therapeutic approaches, including stem-cell-based strategies and tissue engineering, have been proposed for oral ulcerative lesions. We investigated the effects of adipose tissue-derived stem cells (ADSCs) seeded onto the curcumin-loaded collagen scaffold in the mucosal healing of oral ulcers in rats. MATERIALS AND METHODS The current experimental study was conducted on 40 male Sprague-Dawley rats. Oral ulcers were created over both sides of buccal mucosa, and the rats were randomly divided into four equal groups: 1) an untreated group (negative control); 2) Teriadent-treated group (positive control); 3) group treated with curcumin-loaded collagen scaffold; and 4) group received the ADSCs (3 × 106 cells) seeded onto the curcumin-loaded collagen scaffold. Rats were sacrificed on 3rd and 7th day after ulceration for histopathological examination as well as measurement of tissue levels of myeloperoxidase (MPO), superoxide dismutase (SOD), and Interleukin-1 beta (IL-1β) activity. RESULTS Compared with the negative control, the tissue levels of MPO and IL-1β were significantly decreased in all treated groups (P<0.0001); however, the SOD activity was elevated (P<0.0001). The highest SOD activity as well as the lowest MPO and IL-1β levels were observed in the ADSCs-curcumin-loaded collagen scaffold group. The ulcer healing process at 3rd and 7th day follow-up was much more progressed in the ADSCs-curcumin-loaded collagen scaffold group in comparison with the untreated group (P=0.037 and P=0.004, respectively). CONCLUSION According to the findings of this study, ADSCs seeded onto the curcumin-loaded collagen scaffold seems to have a promising potential for oral ulcer healing applications.
Collapse
Affiliation(s)
- Maryam Mardani
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azita Sadeghzadeh
- Postgraduate Student, Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Andisheh-Tadbir
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Zarei
- West Pomeranian University of Technology, Szczecin, Department of Polymer and Biomaterials Science, Al. Piastow 45, 71-311 Szczecin, Poland
| | - Javad Moayedi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Ghezzi B, Parisi L, Vurro F, Alfieri I, Toffoli A, Meglioli M, Mozzoni B, Ghiacci G, Macaluso GM. Tetracalcium phosphate and biphasic tetracalcium phosphate/tricalcium phosphate powders' effects evaluation on human osteoblasts. ACTA ACUST UNITED AC 2020; 69:87-94. [PMID: 32181607 DOI: 10.23736/s0026-4970.20.04272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Calcium ions levels in bone niches have been demonstrated to severely influence new bone formation. Osteoinductive scaffolds containing calcium have been largely studied to control the release of calcium in bone regeneration and tissue engineering purpose. The aim of the present study was, firstly, to synthesize two different resorbable calcium phosphate-based powders, thought to be reservoirs of calcium ions, and secondary, to investigate their effects on human osteoblasts, in order to develop a suitable titanium coating material. METHODS Tetracalcium phosphate (A450) and biphasic tetracalcium phosphatae/tricalcium phosphate (A850) powders were prepared with an innovative method. The presence of calcium phosphate structures was chemically confirmed with XRD. Furthermore, powders macroscopic aspect was observed with a stereomicroscope. For in-vitro experiments, human osteoblastic cells were cultured in the presence of A450 and A850, and assayed for viability and metabolic activity through Crystal Violet and MTT, respectively. RESULTS Our synthesis led to the formation of calcium phosphates in both samples, even though A850 presented a higher level of crystallinity and a more powdery aspects than A450. Both the samples enhanced the viability of cultured cells, inhibiting cell metabolic activity in the case of A850, which furthermore showed to be internalized by cells. CONCLUSIONS We developed two different kind of calcium phosphate-based powders and we tested their effect on human osteoblasts, underlying the possibility of use calcium phosphate-based coatings to enhance cell response on implantable materials.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Ludovica Parisi
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy - .,Laboratory for Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Filippo Vurro
- Istituto dei Materiali per l'Elettronica e il Magnetisimo (IMEM-CNR), Parma, Italy
| | - Ilaria Alfieri
- Department of Chemical Sciences, Life and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Toffoli
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Matteo Meglioli
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Beatrice Mozzoni
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Giulia Ghiacci
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Guido M Macaluso
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy.,Istituto dei Materiali per l'Elettronica e il Magnetisimo (IMEM-CNR), Parma, Italy
| |
Collapse
|
18
|
Li XY, Weng XJ, Li XJ, Tian XY. TSG-6 Inhibits the Growth of Keloid Fibroblasts Via Mediating the TGF-β1/Smad Signaling Pathway. J INVEST SURG 2020; 34:947-956. [PMID: 31986937 DOI: 10.1080/08941939.2020.1716894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xin-Yi Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Juan Weng
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Jing Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Yu Tian
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
19
|
Yang F, Qin X, Zhang T, Lin H, Zhang C. Evaluation of Small Molecular Polypeptides from the Mantle of Pinctada Martensii on Promoting Skin Wound Healing in Mice. Molecules 2019; 24:E4231. [PMID: 31766365 PMCID: PMC6930615 DOI: 10.3390/molecules24234231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing, especially chronic wound healing, is a common challenging clinical problem. It is urgent to broaden the sources of bioactive substances that can safely and efficiently promote skin wound healing. This study aimed to observe the effects of small molecular peptides (SMPs) of the mantle of Pinctada martensii on wound healing. After physicochemical analysis of amino acids and mass spectrometry of SMPs, the effect of SMPs on promoting healing was studied through a whole cortex wound model on the back of mice for 18 consecutive days. The results showed that SMPs consisted of polypeptides with a molecular weight of 302.17-2936.43 Da. The content of polypeptides containing 2-15 amino acids accounted for 73.87%, and the hydrophobic amino acids accounted for 56.51%. Results of in vitro experimentation showed that SMPs possess a procoagulant effect, but no antibacterial activity. Results of in vivo experiments indicated that SMPs inhibit inflammatory response by secretion of anti-inflammatory factor IL-10 during the inflammatory phase; during the proliferative phase, SMPs promote the proliferation of fibroblasts and keratinocytes. The secretion of transforming growth factor-β1 and cyclin D1 accelerates the epithelialization and contraction of wounds. In the proliferative phase, SMPs effectively promote collagen deposition and partially inhibit superficial scar hyperplasia. These results show that SMPs promotes dermal wound healing in mice and have a tremendous potential for development and utilization in skin wound healing.
Collapse
Affiliation(s)
- Faming Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| | - Ting Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
20
|
Dahlgren LA. Regenerative Medicine Therapies for Equine Wound Management. Vet Clin North Am Equine Pract 2019; 34:605-620. [PMID: 30447771 DOI: 10.1016/j.cveq.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Wound management in horses can strike fear in some and passion in others. Wounds are common injuries in horses of all descriptions and requires exceptional knowledge and care to achieve a successful outcome. New treatments to overcome the critical challenges with equine wounds are always desired: managing dehisced and/or nonhealing wounds, managing exuberant granulation tissue, and ultimately achieving a functional tissue coverage. Regenerative medicine represents a broad set of tools with great promise to manipulate the deficiencies recognized in equine wound healing and improve the outcome.
Collapse
Affiliation(s)
- Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, 205 Duck Pond Drive, VA 24061-0442, USA.
| |
Collapse
|
21
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
22
|
Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E, Carrillo-Poveda JM, Cuervo-Serrato B, Peláez-Gorrea P, Sopena-Juncosa JJ. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J Funct Biomater 2018; 9:jfb9010010. [PMID: 29346333 PMCID: PMC5872096 DOI: 10.3390/jfb9010010] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process.
Collapse
Affiliation(s)
- Deborah Chicharro-Alcántara
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| | - Mónica Rubio-Zaragoza
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| | - Elena Damiá-Giménez
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| | - José M Carrillo-Poveda
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| | - Belén Cuervo-Serrato
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| | - Pau Peláez-Gorrea
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| | - Joaquín J Sopena-Juncosa
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
- García Cugat Foundation for Biomedical Research, 08006 Barcelona, Spain.
| |
Collapse
|
23
|
Iranpour S, Mahdavi-Shahri N, Miri R, Hasanzadeh H, Bidkhori HR, Naderi-Meshkin H, Zahabi E, Matin MM. Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications. Cell Tissue Bank 2018; 19:357-371. [PMID: 29313189 DOI: 10.1007/s10561-017-9680-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Human amniotic membrane (HAM) has been widely used as a natural scaffold in tissue engineering due to many of its unique biological properties such as providing growth factors, cytokines and tissue inhibitors of metalloproteinases. This study aimed at finding the most suitable and supportive layer of HAM as a delivery system for autologous or allogeneic cell transplantation. Three different layers of HAM were examined including basement membrane, epithelial and stromal layers. In order to prepare the basement membrane, de-epithelialization was performed using 0.5 M NaOH and its efficiency was investigated by histological stainings, DNA quantification, biomechanical testing and electron microscopy. Adipose-derived stromal cells (ASCs) and a human immortalized keratinocyte cell line (HaCaT) were seeded on the three different layers of HAM and cultured for 3 weeks. The potential of the three different layers of HAM to support the attachment and viability of cells were then monitored by histology, electron microscopy and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, mechanical strengths of the basement membrane were assessed before and after cell culture. The results indicated that the integrity of extra cellular matrix (ECM) components was preserved after de-epithelialization and resulted in producing an intact basement amniotic membrane (BAM). Moreover, all three layers of HAM could support the attachment and proliferation of cells with no visible cytotoxic effects. However, the growth and viability of both cell types on the BAM were significantly higher than the other two layers. We conclude that growth stimulating effectors of BAM and its increased mechanical strength after culturing of ASCs, besides lack of immunogenicity make it an ideal model for delivering allogeneic cells and tissue engineering applications.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasser Mahdavi-Shahri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Raheleh Miri
- Research Center for HIV/AIDS, HTLV and Viral Hepatitis, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Ehsan Zahabi
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
24
|
Li XY, Li T, Li XJ, Wang JN, Chen Z. TSG-6 Induces Apoptosis of Human Hypertrophic Scar Fibroblasts via Activation of the Fas/FasL Signalling Pathway. Folia Biol (Praha) 2018; 64:173-181. [PMID: 30938674 DOI: 10.14712/fb2018064050173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Tumour necrosis factor-stimulated gene 6 (TSG6) is a protective inflammatory reaction gene which is upregulated by inflammatory processes. Recent studies suggest that TSG-6 exhibits anti-scarring effects. However, the mechanism of TSG-6 action in the scar formation remains poorly understood. We investigated whether TSG-6 affects growth of the human hypertrophic scar fibroblasts (HSFs) via Fas/FasL signalling pathway. Cultured HSFs were transfected with a vector carrying the TSG6 gene (pLVX-Puro-TSG-6) or with a vector not containing the TSG6 gene (pLVX-Puro). Untransfected HSFs served as a control group to both transfected HSFs. The expressions level of TSG-6 was up-regulated in the pLVX-Puro-TSG-6 group at the protein and mRNA level. MTT and flow cytometry were used to assess the effect of TSG-6 on the growth and apoptotic status of HSFs. Finally, qRT-PCR and western blot were used to measure the expression levels of Fas, FasL, FADD, caspase-3 and caspase-8 in each group. The apoptosis rate was significantly enhanced and the growth rate reduced in the HSFs transfected with the TSG6 gene vector. The expression levels of Fas, FasL, FADD, caspase-3 and caspase- 8 were significantly raised in the TSG-6 overexpressing HSFs. It is concluded that increased expression of TSG-6 may induce apoptosis of human hypertrophic scar fibroblasts via activation of the Fas/FasL signalling pathway.
Collapse
Affiliation(s)
- X-Y Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - T Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - X-J Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - J-N Wang
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Z Chen
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Jeong SI, Kang YJ, Lee KS, Shin H, Lee BK. Efficacy of mechanically modified electrospun poly(l-lactide-co-ε-caprolactone)/gelatin membrane on full-thickness wound healing in rats. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0609-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Wound-healing markers after autologous and allogeneic epithelial-like stem cell treatment. Cytotherapy 2016; 18:562-9. [PMID: 26971684 DOI: 10.1016/j.jcyt.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/16/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Several cytokines and growth factors play an essential role in skin regeneration and epithelial-like stem cells (EpSCs) have beneficial effects on wound healing in horses. However, there are no reports available on the expression of these growth factors and cytokines after EpSC therapy. METHODS Wounds of 6 cm(2) were induced in the gluteus region of 6 horses and treated with (i) autologous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) untreated control. Real time polymerase chain reaction was performed on tissue biopsies taken 1 and 5 weeks after these treatments to evaluate mRNA expression of interferon (IFN)-γ, interleukin (IL)-6, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor (IGF)-1 and epidermal keratin (eKER). RESULTS One week after treatments, mRNA levels of IL-6 (P = 0.012) and VEGF (P = 0.008) were higher in allogeneic EpSC-treated wounds compared with controls. Also, mRNA levels of IGF-1 were higher at 1 week in both autologous (P = 0.027) and allogeneic (P = 0.035) EpSC-treated wounds. At week 5, all EpSC- and vehicle-treated wounds demonstrated significantly higher IFN-γ, VEGF and eKER mRNA expression compared with controls and compared with their respective levels at week 1. CONCLUSIONS Equine wounds treated with allogeneic EpSCs demonstrate a significant increase in mRNA expression of IL-6, VEGF and IGF-1 in the acute phase. In the longer term, an increase in IFN-γ, VEGF and eKER mRNA was detected in the wounds treated with allogenic EpSCs, autologous EpSCs or their vehicle.
Collapse
|
27
|
Russell JW, Russell TM, Vasey JR, Hall MS. Autologous bone marrow aspirate for treatment of superficial digital flexor tendonitis in 105 racehorses. Vet Rec 2016; 179:69. [PMID: 27206445 DOI: 10.1136/vr.103620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/04/2022]
Abstract
To evaluate a treatment protocol whereby superficial digital flexor (SDF) tendonitis in Thoroughbred and Standardbred racehorses was treated with autologous bone marrow aspirate (ABMA) obtained from the sternebrae. This treatment was combined with desmotomy of the accessory ligament of the SDF tendon (DAL-SDFT) in selected cases. Medical records of 105 horses treated using the reported protocol were reviewed. Signalment, history and details of treatment were recorded. Racing records were reviewed and performance recorded. Of Thoroughbreds, 82 per cent had one or more starts within the follow-up period and 59 per cent had five or more starts. Of Standardbreds, 76 per cent had one or more starts and 62 per cent had five or more starts. A statistically significant difference was found when comparing race starts between sexes, with females having less starts than males (≥1start P=0.017 and ≥5 starts P=0.008, respectively). The proportions of horses having one or more starts and five or more starts did not differ significantly if a DAL-SDFT was performed or not (P=0.31 and 0.63, respectively). Horses with a core lesion in the body of the SDFT have a good prognosis for return to racing following intralesional ABMA injection. Addition of DAL-SDFT to the treatment regimen did not significantly influence outcome.
Collapse
Affiliation(s)
- J W Russell
- Victorian Equine Group, Bendigo Equine Hospital, Victoria, Australia
| | - T M Russell
- Victorian Equine Group, Bendigo Equine Hospital, Victoria, Australia
| | - J R Vasey
- Victorian Equine Group, Bendigo Equine Hospital, Victoria, Australia
| | - M S Hall
- Victorian Equine Group, Bendigo Equine Hospital, Victoria, Australia
| |
Collapse
|
28
|
Ashrafi M, Alonso-Rasgado T, Baguneid M, Bayat A. The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals. Vet Dermatol 2016; 27:235-e57. [DOI: 10.1111/vde.12328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Centre for Dermatological Research; Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Teresa Alonso-Rasgado
- Bioengineering Group; School of Materials; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Mohamed Baguneid
- Wythenshawe Hospital; University Hospital South Manchester NHS Foundation Trust; Southmoor Road Manchester M23 9LT UK
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Centre for Dermatological Research; Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT UK
| |
Collapse
|
29
|
|
30
|
Broeckx SY, Borena BM, Van Hecke L, Chiers K, Maes S, Guest DJ, Meyer E, Duchateau L, Martens A, Spaas JH. Comparison of autologous versus allogeneic epithelial-like stem cell treatment in an in vivo equine skin wound model. Cytotherapy 2015. [PMID: 26212608 DOI: 10.1016/j.jcyt.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Several studies report beneficial effects of autologous and allogeneic stem cells on wound healing. However, no comparison between autologous versus allogeneic epithelial-like stem cells (EpSCs) has been made so far. For this reason, we first hypothesize that both EpSC types enhance wound healing in comparison to vehicle treatment and untreated controls. Second, on the basis of other studies, we hypothesized that there would be no difference between autologous and allogeneic EpSCs. METHODS Twelve full-thickness skin wounds were created in six horses. Each horse was subjected to (i) autologous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) untreated control. Wound evaluation was performed at day 3, 7 and 14 through wound exudates and at week 1, 2 and 5 through biopsies. RESULTS Wound circumference and surface were significantly smaller in autologous EpSC-treated wounds. A significantly lower amount of total granulation tissue (overall) and higher vascularization (week 1) was observed after both EpSC treatments. Significantly more major histocompatibility complex II-positive and CD20-positive cells were noticed in EpSC-treated wounds at week 2. In autologous and allogeneic groups, the number of EpSCs in center biopsies was low after 1 week (11.7% and 6.1%), decreased to 7.6% and 1.7%, respectively (week 2), and became undetectable at week 5. CONCLUSIONS These results confirm the first hypothesis and partially support the second hypothesis. Besides macroscopic improvements, both autologous and allogeneic EpSCs had similar effects on granulation tissue formation, vascularization and early cellular immune response.
Collapse
Affiliation(s)
- Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium; Pell Cell Medicals, ANACURA Group, Evergem, Belgium
| | - Bizunesh M Borena
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Laboratory, College of Agriculture and Veterinary Science, Ambo University, Ethiopia
| | - Lore Van Hecke
- Department of Surgery and Anesthesia of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Maes
- Vet Med Lab, IDEXX Laboratories, Brussels, Belgium
| | - Deborah J Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anesthesia of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium; Pell Cell Medicals, ANACURA Group, Evergem, Belgium.
| |
Collapse
|
31
|
Aguiar C, Therrien J, Lemire P, Segura M, Smith LC, Theoret CL. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J 2015; 48:338-45. [PMID: 25781637 DOI: 10.1111/evj.12438] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
REASONS FOR PERFORMING STUDY Skin trauma in horses often leads to the development of chronic nonhealing wounds that lack a keratinocyte cover, vital for healing. Reports in mouse and man confirm the possibility of generating functional keratinocytes from induced pluripotent stem cells (iPSC), thus presenting myriad potential applications for wound management or treatment of skin disease. Similarly, differentiation of equine iPSC (eiPSC) into a keratinocyte lineage should provide opportunities for the advancement of veterinary regenerative medicine. OBJECTIVES The purpose of this study was to develop an efficient method for the differentiation of eiPSC into a keratinocyte lineage. It was hypothesised that eiPSC can form differentiated keratinocytes (eiPSC-KC) comparable with primary equine keratinocytes (PEK) in their morphological and functional characteristics. STUDY DESIGN Experimental in vitro study. METHODS Equine iPSC established using a nonviral system were treated for 30 days with retinoic acid and bone morphogenetic protein-4 to induce directed differentiation into iPSC-KC. Temporospatial gene and protein expression by eiPSC-KC was measured at weekly intervals of differentiation and in response to calcium switch. Proliferative and migratory capacities of eiPSC-KC were compared with those of PEK. RESULTS Equine iPSC, upon directed differentiation, showed loss of pluripotency genes and progressive increase in pancytokeratin expression indicating ectodermal specification into keratinocytes. High differentiation efficiency was achieved, with 82.5% of eiPSC expressing keratin 14, a marker of epidermal-specific basal stem cells, after 30 days of directed differentiation. Moreover, the proliferative capacity of eiPSC-KC was superior, while the migratory capacity (measured as the ability to epithelise in vitro wounds) was comparable with that of PEK. CONCLUSIONS This proof of concept study suggests that eiPSC can successfully be differentiated into equine keratinocytes (eiPSC-KC) with features that are promising to the development of a stem cell-based skin construct, with the potential to regenerate lost or damaged skin.
Collapse
Affiliation(s)
- C Aguiar
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - J Therrien
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - P Lemire
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - M Segura
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - L C Smith
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - C L Theoret
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
32
|
Kaiser NJ, Coulombe KLK. Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration. Biomed Mater 2015; 10:034003. [PMID: 25970645 PMCID: PMC4696555 DOI: 10.1088/1748-6041/10/3/034003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue engineering is well suited for the treatment of cardiac disease due to the limited regenerative capacity of native cardiac tissue and the loss of function associated with endemic cardiac pathologies, such as myocardial infarction and congenital heart defects. However, the physiological complexity of the myocardium imposes extensive requirements on tissue therapies intended for these applications. In recent years, the field of cardiac tissue engineering has been characterized by great innovation and diversity in the fabrication of engineered tissue scaffolds for cardiac repair and regeneration to address these problems. From early approaches that attempted only to deliver cardiac cells in a hydrogel vessel, significant progress has been made in understanding the role of each major component of cardiac living tissue constructs (namely cells, scaffolds, and signaling mechanisms) as they relate to mechanical, biological, and electrical in vivo performance. This improved insight, accompanied by modern material science techniques, allows for the informed development of complex scaffold materials that are optimally designed for cardiac applications. This review provides a background on cardiac physiology as it relates to critical cardiac scaffold characteristics, the degree to which common cardiac scaffold materials fulfill these criteria, and finally an overview of recent in vivo studies that have employed this type of approach.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
33
|
Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent. Cell Tissue Bank 2015; 16:411-23. [PMID: 25634343 DOI: 10.1007/s10561-014-9485-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
Abstract
Human amniotic membrane (HAM) has useful properties as a dermal matrix substitute. The objective of our work was to obtain, using different enzymatic or chemical treatments to eliminate cells, a scaffold of acellular HAM for later use as a support for the development of a skin equivalent. The HAM was separated from the chorion, incubated and cryopreserved. The membrane underwent different enzymatic and chemical treatments to eliminate the cells. Fibroblasts and keratinocytes were separately obtained from skin biopsies of patients following a sequential double digestion with first collagenase and then trypsin-EDTA (T/E). A skin equivalent was then constructed by seeding keratinocytes on the epithelial side and fibroblasts on the chorionic side of the decellularizated HAM. Histological, immunohistochemical, inmunofluorescent and molecular biology studies were performed. Treatment with 1% T/E at 37 °C for 30 min totally removed epithelial and mesenchymal cells. The HAM thus treated proved to be a good matrix to support adherence of cells and allowed the achievement of an integral and intact scaffold for development of a skin equivalent, which could be useful as a skin substitute for clinical use.
Collapse
|
34
|
Lopez MJ, Jarazo J. State of the art: stem cells in equine regenerative medicine. Equine Vet J 2014; 47:145-54. [PMID: 24957845 DOI: 10.1111/evj.12311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.
Collapse
Affiliation(s)
- M J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
35
|
Cerrato S, Ramió-Lluch L, Brazís P, Rabanal RM, Fondevila D, Puigdemont A. Development and characterization of an equine skin-equivalent model. Vet Dermatol 2014; 25:475-e77. [PMID: 25041278 DOI: 10.1111/vde.12134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND There is increasing interest in the biological and pathological study of equine skin owing to the high prevalence of cutaneous diseases in horses. However, knowledge of equine skin cell biology and cultures is limited by the low number of in vitro studies in the literature. HYPOTHESIS/OBJECTIVES The objective of the study was to develop and characterize an in vitro equine skin equivalent. METHODS Cultures of pure equine keratinocytes and dermal fibroblasts were obtained by enzymatic digestion of skin biopsies. Fibroblasts were embedded into type I collagen matrices to obtain dermal scaffolds, the surface of which was seeded with keratinocytes. The three-dimensional cultures were exposed to the air-liquid interface to enable epidermal stratification. RESULTS After 14 days in air-exposed conditions, histological analysis showed that keratinocytes underwent differentiation into a multilayered epidermis. Immunohistochemical studies revealed the expression of epidermal cytokeratin in keratinocytes, whereas vimentin was expressed in dermal fibroblasts, as expected in equine skin. Immunostaining of Ki67 showed proliferative keratinocytes in the stratum basale. A continuous basement membrane at the dermo-epidermal junction was also detected immunohistochemically through the expression of its major components (type IV collagen and laminin 5). Ultrastructural analysis by electron microscopy showed desmosomes located among keratinocytes in all layers and hemidesmosomes among the basal keratinocytes and lamina densa. CONCLUSIONS AND CLINICAL IMPORTANCE This study reports, for the first time, the development of an in vitro equine skin-equivalent model that resembles equine skin morphologically, immunohistochemically and ultrastructurally.
Collapse
Affiliation(s)
- Santiago Cerrato
- UNIVET, Edifici Astrolabio, Avinguda Cerdanyola 92, 08172, Sant Cugat del Vallès, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
36
|
De Schauwer C, Van de Walle GR, Van Soom A, Meyer E. Mesenchymal stem cell therapy in horses: useful beyond orthopedic injuries? Vet Q 2013; 33:234-41. [DOI: 10.1080/01652176.2013.800250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Sharma R, Barakzai SZ, Taylor SE, Donadeu FX. Epidermal-like architecture obtained from equine keratinocytes in three-dimensional cultures. J Tissue Eng Regen Med 2013; 10:627-36. [DOI: 10.1002/term.1788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Ruchi Sharma
- The Roslin Institute; University of Edinburgh; Easter Bush Midlothian UK
| | - Safia Z. Barakzai
- Royal (Dick) School of Veterinary Studies; University of Edinburgh; Easter Bush Midlothian UK
| | - Sarah E. Taylor
- Royal (Dick) School of Veterinary Studies; University of Edinburgh; Easter Bush Midlothian UK
| | - F. Xavier Donadeu
- The Roslin Institute; University of Edinburgh; Easter Bush Midlothian UK
- Royal (Dick) School of Veterinary Studies; University of Edinburgh; Easter Bush Midlothian UK
| |
Collapse
|
38
|
Dulaurent T, Azoulay T, Goulle F, Dulaurent A, Mentek M, Peiffer RL, Isard PF. Use of bovine pericardium (Tutopatch®) graft for surgical repair of deep melting corneal ulcers in dogs and corneal sequestra in cats. Vet Ophthalmol 2013; 17:91-9. [DOI: 10.1111/vop.12047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Dulaurent
- Centre Hospitalier Vétérinaire; 275 Route Impériale Saint-Martin Bellevue 74370 France
| | - Thierry Azoulay
- Clinique Vétérinaire; 28 rue du Faubourg de Saverne Strasbourg 67000 France
| | - Frédéric Goulle
- Clinique Vétérinaire; Parc d'activité Mermoz 19 Avenue de la forêt, Eysines 33320 France
| | - Alice Dulaurent
- Centre Hospitalier Vétérinaire; 275 Route Impériale Saint-Martin Bellevue 74370 France
| | - Marielle Mentek
- Laboratoire HP2; INSERM, U1042; Université J. Fourier; Grenoble 38706 France
| | - Robert L. Peiffer
- Bucks County Animal Ophthalmology; 4895 Gloucester Dr Doylestown PA 18902 USA
| | - Pierre-François Isard
- Centre Hospitalier Vétérinaire; 275 Route Impériale Saint-Martin Bellevue 74370 France
| |
Collapse
|
39
|
Theoret CL, Wilmink JM. Aberrant wound healing in the horse: naturally occurring conditions reminiscent of those observed in man. Wound Repair Regen 2013; 21:365-71. [PMID: 23441750 DOI: 10.1111/wrr.12018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/14/2012] [Indexed: 01/30/2023]
Abstract
Impaired wound healing represents an enormous clinical and financial problem for companion animals and humans alike. Unfortunately, most models used to study healing rely on rodents, which have significant differences in the healing and scarring process and rarely develop complications. In order to better simulate impaired healing, the model should strive to reproduce the natural processes of healing and delayed healing. Wounds on the limbs of horses display similarities to wounds in humans in their epithelialization/contraction ratio, genetic influence as well as dysregulated cytokine profile and the spontaneous development of fibroproliferative disorders. Veterinarians have access to advanced wound therapies that are often identical to those provided to human patients. Wound research in large animals has resulted in new wound models as well as a better understanding of the physiology, immunology, and local environmental impact on both normal and aberrant wound healing. One such model reproduces the naturally occurring fibroproliferative disorder of horses known as exuberant granulation tissue. Comparisons between the normally healing and impaired wounds provide insight into the repair process and can facilitate product development. A better understanding of the wound healing physiopathology based on clinically accurate animal models should lead to the development of novel therapies thereby improving outcomes in both human and veterinary patients.
Collapse
|
40
|
Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P. Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. ScientificWorldJournal 2012; 2012:697201. [PMID: 22701367 PMCID: PMC3366240 DOI: 10.1100/2012/697201] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/01/2012] [Indexed: 11/23/2022] Open
Abstract
Chitosan/silk fibroin (CS/SF) blend films were prepared and evaluated for feasibility of using the films as biomaterial for skin tissue engineering application. Fourier transform infrared spectroscopy and differential scanning calorimetry analysis indicated chemical interaction between chitosan and fibroin. Chitosan enhanced β-sheet conformation of fibroin and resulted in shifting of thermal degradation of the films. Flexibility, swelling index, and enzyme degradation were also increased by the chitosan content of the blend films. Biocompatibility of the blend films was determined by cultivation with fibroblast cells. All films showed no cytotoxicity by XTT assay. Fibroblast cells spread on CS/SF films via dendritic extensions, and cell-cell interactions were noted. Cell proliferation on CS/SF films was also demonstrated, and their phenotype was examined by the expression of collagen type I gene. These results showed possibility of using the CS/SF films as a supporting material for further study on skin tissue engineering.
Collapse
Affiliation(s)
- Witoo Luangbudnark
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Chen L, Peng EJ, Zeng XY, Zhuang QY, Ye ZQ. Comparison of the proliferation, viability, and differentiation capacity of adipose-derived stem cells from different anatomic sites in rabbits. Cells Tissues Organs 2011; 196:13-22. [PMID: 21860226 DOI: 10.1159/000330796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering is clinically promising for missing and damaged tissues. Adipose-derived stem cells (ASCs), a type of mesenchymal stem cells, represent a reliable source of seed cells for tissue engineering with multiple merits such as minimal invasion, abundant yield, little immunity, low morbidity, easy isolation, and rapid expansion. However, because the properties of adipose tissue-derived cells differ depending on the fat depot from which they are derived, we compared the ASCs from three anatomic sites of New Zealand white rabbits: subcutaneous inguinal (SI), subcutaneous dorsocervical (SD), and retroperitoneal perinephric (RP) regions. We investigated cellular behaviors including proliferation, viability, and differentiation. The ASCs of the subcutaneous regions (SI and SD) had higher performances in all assessments compared to those of the RP region. Moreover, the SI and SD ASCs had significant differences, with SI ASCs having better properties than SD ASCs. We conclude that the different anatomic distributions of fat contribute to the different behaviors of ASCs. The SI region offers the most applicable cell source reservoir for ASC tissue engineering.
Collapse
Affiliation(s)
- L Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | |
Collapse
|