1
|
Sampaio E, Perry A, Freeman A. Mandibular Reconstruction With a Patient-Specific Implant Following Surgical Excision of an Acanthomatous Ameloblastoma in a Dog. J Vet Dent 2025:8987564241306935. [PMID: 39835434 DOI: 10.1177/08987564241306935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Canine acanthomatous ameloblastoma (CAA) is an invasive benign epithelial odontogenic tumour most commonly affecting the mandible of large breed dogs. To the author's knowledge, this report describes the first computer-aided design patient-specific implant (PSI) that has been placed for a critical sized bone defect in mandibular reconstruction of a dog in the UK. The aim was to restore mandibular stability using a regenerative approach combining a titanium locking plate and compression-resistant matrix infused with recombinant human bone morphogenetic protein-2 (rhBMP-2) to bridge the 85 mm mandibular defect created by a segmental mandibulectomy. A 7-year-old neutered crossbreed dog with a focal 60 × 45 × 30 mm3 mildly ulcerated mass on the left mandible was presented. Histopathology confirmed a CAA. A left segmental mandibulectomy was followed by a delayed (secondary) reconstructive surgery. The porous titanium scaffold was manufactured from the first computed tomography (CT) scan and was designed with a channel to be filled with a compression-resistant osteoconductive resorbable sponge material infused with an osteoinductive solution containing rhBMP-2. Follow-up CT scans were performed on the day of the second surgery, and 4 and 12 months after the second surgery. Filling the porous titanium scaffold with an osteoconductive strip mixed with rhBMP-2 promoted bone remodeling and stimulated partial osseous integration of the implant; however there was no evidence of complete osteosynthesis bridging the bone defect as initially expected. Twelve months after reconstruction, dorsal longitudinal implant exposure necessitated PSI explantation. This study reflects a recent surgical therapeutic approach that can be utilised to reconstruct mandibles. PSIs can help reduce the known postoperative complications inherent to large gap mandibulectomies. Therefore, their use has the potential to improve patient welfare by restoring mandibular and temporomandibular joint (TMJ) stability, preventing mandibular drift, improving prehension, and reducing the risk of secondary TMJ degenerative disease and pain. It is likely that some implant design refinement is required to achieve better success rates for these challenging cases.
Collapse
Affiliation(s)
- Erica Sampaio
- Department of Dentistry, Oral and Maxillo-facial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Group, Swindon, UK
| | - Andrew Perry
- Department of Dentistry, Oral and Maxillo-facial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Group, Swindon, UK
| | - Alix Freeman
- Department of Dentistry, Oral and Maxillo-facial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Group, Swindon, UK
| |
Collapse
|
2
|
Fraile-Fernandez A, Fuertes-Recuero M, Espinel-Rupérez J, Cárdenas-Osuna A, Barreda RR, Horcajada-Garcia J, Ortiz-Diez G. Reconstruction of a rostral maxillary defect by two custom-made titanium implants following a partial maxillectomy for treatment of squamous cell carcinoma in a dog. Vet Res Commun 2025; 49:80. [PMID: 39820619 DOI: 10.1007/s11259-025-10643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
This case report describes the reconstruction of a rostral maxillary defect by two custom-made titanium implants following a rostral partial maxillectomy for treatment of squamous cell carcinoma (SCC) in a seven-year-old dog. An incisional biopsy and CT scan were performed to establish the diagnosis, to plan possible surgery, and to assess the margins of the tumour. The patient had no radiographic signs of metastasis at the time of diagnosis. An oblique rostral partial maxillectomy with two custom-made titanium plates was chosen as an effective oncological treatment and to maintain the cosmetic appearance. A first custom implant was designed to support the cheek and lips, and a second implant was designed to replace part of the hard palate and serve as a base for the palatal mucosal flap. Surgical treatment combined with toceranib phosphate and cimicoxib therapy provided a survival time of at least 1700 days, as the patient is still alive at time of publication. Further research is warranted to determine the oncological and cosmetic efficacy of this surgical technique for treatment of SCC in a larger group of dogs.
Collapse
Affiliation(s)
| | - Manuel Fuertes-Recuero
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain.
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain.
| | - Jorge Espinel-Rupérez
- Section of Veterinary Clinical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | - Gustavo Ortiz-Diez
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| |
Collapse
|
3
|
Logothetou V, Almansa Ruiz JC, Steenkamp G. The use of a sling suture for ventral orbital stabilization after inferior orbitectomy in three dogs. Vet Surg 2024; 53:1326-1334. [PMID: 38440838 DOI: 10.1111/vsu.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE To describe a novel surgical technique for the ventral stabilization of the orbit after inferior orbitectomy by using a sling suture and report outcomes in three dogs. ANIMALS A 7-year-old male neutered Swiss shepherd, a 4-year-old female neutered golden retriever and a 9-year-old female neutered Rhodesian ridgeback. STUDY DESIGN Short case series. METHODS All dogs presented with caudal unilateral maxillary masses. Surgical resection necessitated a caudal maxillectomy and inferior orbitectomy with a combined dorsolateral and intraoral approach. A sling suture was used to support the globe. A nylon suture was placed rostrally through the osteotomized maxilla and caudally through the osteotomized zygomatic arch via predrilled holes. The suture was tightened until the position of the globe subjectively appeared normal and was secured with a surgeon's knot. The periorbita was secured over the nylon suture with poliglecaprone suture material in a simple interrupted or continuous pattern. The surgical approach was routinely closed. RESULTS Follow-up ranged from 7 to 63 days. The surgical wounds healed uneventfully, and no postoperative complications associated with the stabilization technique were noted. No orbital deviation was noted and the zygomatic regions appeared subjectively symmetrical. CONCLUSION The nylon sling suture provided a quick, easy, safe and effective technique to stabilize the ventral orbit during a combined maxillectomy and orbitectomy in dogs.
Collapse
Affiliation(s)
- Vasileia Logothetou
- Southfields Veterinary Specialists, part of Linnaeus Veterinary Ltd, Basildon, UK
| | - José C Almansa Ruiz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Bristol Vet Specialists, Bristol, UK
| | - Gerhard Steenkamp
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Purbantoro SD, Taephatthanasagon T, Purwaningrum M, Hirankanokchot T, Peralta S, Fiani N, Sawangmake C, Rattanapuchpong S. Trends of regenerative tissue engineering for oral and maxillofacial reconstruction in veterinary medicine. Front Vet Sci 2024; 11:1325559. [PMID: 38450027 PMCID: PMC10915013 DOI: 10.3389/fvets.2024.1325559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Oral and maxillofacial (OMF) defects are not limited to humans and are often encountered in other species. Reconstructing significant tissue defects requires an excellent strategy for efficient and cost-effective treatment. In this regard, tissue engineering comprising stem cells, scaffolds, and signaling molecules is emerging as an innovative approach to treating OMF defects in veterinary patients. This review presents a comprehensive overview of OMF defects and tissue engineering principles to establish proper treatment and achieve both hard and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside future opportunities and challenges of tissue engineering usage are also addressed in this literature review.
Collapse
Affiliation(s)
- Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Thanyathorn Hirankanokchot
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Wright AL, Peralta S, Fiani N. Case report: Spontaneous mandibular body regeneration following unilateral subtotal mandibulectomy in a 3-month-old French bulldog. Front Vet Sci 2023; 10:1281232. [PMID: 37901099 PMCID: PMC10600472 DOI: 10.3389/fvets.2023.1281232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To document a case of spontaneous regeneration of the mandibular body following subtotal mandibulectomy in a juvenile dog. Case summary A 3-month-old male intact French bulldog was presented with papillary oral squamous cell carcinoma located at the dorsal aspect of the molar region of the left mandible. Initial biopsy of the mass was performed by the primary care veterinarian. Complete clinical staging revealed no signs of metastasis. Computed tomographic images of the head showed minimal contrast enhancement of the mass with no signs of periosteal or bone involvement. Subtotal mandibulectomy was performed. Histopathology indicated complete excision of the tumor. The patient returned 8-weeks later for follow up and cleft palate surgical repair, at which time bone was noted in the mandibulectomy area on palpation. Repeat computed tomography of the head revealed complete regeneration of the left mandibular body from the level of the ramus to the mandibular symphysis. No treatment for malocclusion was necessary due to the reformation of a functional mandible. Clinical relevance The present case demonstrates that spontaneous regeneration of the mandibular body is possible following subtotal mandibulectomy in immature dogs. Subtotal mandibulectomy is a radical procedure that can lead to long term complications including mandibular drift, malocclusion, and oral pain. This case report provides evidence that these sequelae may be mitigated or eliminated in young patients undergoing this procedure.
Collapse
Affiliation(s)
- Alexandra L Wright
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Castilla A, Filliquist B, Spriet M, Garcia TC, Arzi B, Chou PY, Kapatkin AS. Long-Term Assessment of Bone Regeneration in Nonunion Fractures Treated with Compression-Resistant Matrix and Recombinant Human Bone Morphogenetic Protein-2 in Dogs. Vet Comp Orthop Traumatol 2023; 36:29-38. [PMID: 35760364 DOI: 10.1055/s-0042-1749451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to assess bone density, bone architecture and clinical function of canine nonunion distal appendicular long bone fractures with a defect treated with fixation, compression-resistant matrix and recombinant human bone morphogenetic protein-2 (rhBMP-2). STUDY DESIGN Prospective cohort study with dogs at least 1-year post treatment. Computed tomography was performed and quantitative measurements from previous fracture sites were compared with measurements from contralateral limbs. Subjective evaluation included gait assessment and palpation. RESULTS Six patients met the inclusion criteria. The rhBMP-2 treated bone exhibited higher density at the periphery and lower density in the centre, similar to the contralateral limb. All patients were weight bearing on the treated limb and all fractures were healed. CONCLUSION The rhBMP-2-treated bone underwent restoration of normal architecture and density. Acceptable limb function was present in all patients. The results of this study can serve as a basis for long-term response in treating nonunion fractures in veterinary patients.
Collapse
Affiliation(s)
- Andrea Castilla
- Veterinary Medical Teaching Hospital, Davis, University of California, California, United States
| | - Barbro Filliquist
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Mathieu Spriet
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Tanya C Garcia
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States.,Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Po-Yen Chou
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Amy S Kapatkin
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| |
Collapse
|
7
|
Paré A, Charbonnier B, Veziers J, Vignes C, Dutilleul M, De Pinieux G, Laure B, Bossard A, Saucet-Zerbib A, Touzot-Jourde G, Weiss P, Corre P, Gauthier O, Marchat D. Standardized and axially vascularized calcium phosphate-based implants for segmental mandibular defects: A promising proof of concept. Acta Biomater 2022; 154:626-640. [PMID: 36210043 DOI: 10.1016/j.actbio.2022.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The reconstruction of massive segmental mandibular bone defects (SMDs) remains challenging even today; the current gold standard in human clinics being vascularized bone transplantation (VBT). As alternative to this onerous approach, bone tissue engineering strategies have been widely investigated. However, they displayed limited clinical success, particularly in failing to address the essential problem of quick vascularization of the implant. Although routinely used in clinics, the insertion of intrinsic vascularization in bioengineered constructs for the rapid formation of a feeding angiosome remains uncommon. In a clinically relevant model (sheep), a custom calcium phosphate-based bioceramic soaked with autologous bone marrow and perfused by an arteriovenous loop was tested to regenerate a massive SMD and was compared to VBT (clinical standard). Animals did not support well the VBT treatment, and the study was aborted 2 weeks after surgery due to ethical and animal welfare considerations. SMD regeneration was successful with the custom vascularized bone construct. Implants were well osseointegrated and vascularized after only 3 months of implantation and totally entrapped in lamellar bone after 12 months; a healthy yellow bone marrow filled the remaining space. STATEMENT OF SIGNIFICANCE: Regenerative medicine struggles with the generation of large functional bone volume. Among them segmental mandibular defects are particularly challenging to restore. The standard of care, based on bone free flaps, still displays ethical and technical drawbacks (e.g., donor site morbidity). Modern engineering technologies (e.g., 3D printing, digital chain) were combined to relevant surgical techniques to provide a pre-clinical proof of concept, investigating for the benefits of such a strategy in bone-related regenerative field. Results proved that a synthetic-biologics-free approach is able to regenerate a critical size segmental mandibular defect of 15 cm3 in a relevant preclinical model, mimicking real life scenarii of segmental mandibular defect, with a full physiological regeneration of the defect after 12 months.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Baptiste Charbonnier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Maeva Dutilleul
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Gonzague De Pinieux
- Department of Pathology, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Boris Laure
- Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Annaëlle Saucet-Zerbib
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Gwenola Touzot-Jourde
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Pierre Corre
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Clinique de Stomatologie et Chirurgie Maxillo-Faciale, Nantes University Hospital, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - David Marchat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| |
Collapse
|
8
|
Yang M, Kang J, Kim N, Heo S. Case report: Reconstruction of a complex maxillofacial gunshot defect using a titanium patient-specific implant in a dog. Front Vet Sci 2022; 9:1050568. [DOI: 10.3389/fvets.2022.1050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
This report describes the surgical reconstruction of large maxillofacial defect caused by a short-range gunshot injury in a dog using titanium patient-specific implant (PSI). A 3-year-old male Wolf Shepherd was admitted for a large right facial defect with right nasal cavity exposure caused by a gunshot injury. Radiographic examination revealed severe loss of the right maxillary, nasal, and incisive bones, multiple fractures of both left and right palatine bones, and a comminuted fracture of the right mandible. Initial surgical procedure included computed tomography (CT) imaging for three-dimensional (3D) implant design. Open wound management was maintained for 18 days until the fresh granulation tissue fully covered the wound bed. The implant was designed in a “hand grasping shape” to cover the defect, align multiple fractured palatine bones, and make a snap fit function. Multiple holes, including cortical screw holes, were added to the final design. The implant was printed on a titanium alloy. Surgical application of titanium PSI was performed 19 days after the primary surgery. A free sublingual mucosal graft was used to reconstruct the mucosal layer of the right nasal cavity. The mucosa was then covered with collagen membrane to strengthen the structure of the nasal cavity. Blunt dissection of the hard palate mucoperiosteum above the palatine process and palatine bones, soft tissue above the maxilla was performed, and the 3D printed titanium implant was fastened in a preplanned position. The facial soft tissue defect was reconstructed, and the titanium PSI was covered using an angularis oris cutaneous flap. Partial flap necrosis occurred in the rostral aspect, and the wound was managed to heal by a second intension. Flap dehiscence at the junction of the flap and hard palate mucoperiosteum occurred with exposure of the implant 2 days postoperatively. Multiple attempts to close the defect failed, and the owner wanted to stop treatment. Healthy granulated tissue was observed proximal to the implant. The defect no longer increased in size and did not show any noticeable complications related to the defect at 60 days after titanium PSI application, and the dog was discharged. Six months post-operatively, the dog remained active with great appetite, gained weight, and showed acceptable facial symmetry without enlargement of the implant exposure or any implant-related problems.
Collapse
|
9
|
Evenhuis JV, Verstraete FJM, Arzi B. Management of failed stainless steel implants in the oromaxillofacial region of dogs. Front Vet Sci 2022; 9:992730. [PMID: 36213415 PMCID: PMC9539114 DOI: 10.3389/fvets.2022.992730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Management of complications of fracture fixation in the oromaxillofacial (OMF) region may present a diagnostic and therapeutic challenge. While titanium and stainless steel implants have been utilized in successful fracture fixation in the OMF region, the use of titanium implants is preferred due to the superior intrinsic properties of titanium. Nonetheless, stainless steel materials are still used due to their availability and familiarity. In the present methods report, we describe our approach to the management of failed stainless steel plates and screws used to treat traumatic injuries in the OMF region. Furthermore, we exemplify our approach with five dogs that exhibited complications of stainless steel implants in the OMF region and their subsequent management. In those cases, all failed implants were removed. Reconstruction with a combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) and titanium implants was utilized in two cases while a mandibulectomy was performed in one case. Three cases required removal of the stainless-steel implant with no additional surgical therapy. We conclude that the success of treatment of failed stainless steel implants depends on the use of advanced imaging findings, appropriate antimicrobial therapy, as well as potentially regenerative reconstructive surgery.
Collapse
Affiliation(s)
- Janny V. Evenhuis
- Dentistry and Oral Surgery Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Frank J. M. Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Boaz Arzi
| |
Collapse
|
10
|
Tsugawa AJ, Arzi B, Vapniarsky N, Verstraete FJM. A Retrospective Study on Mandibular Reconstruction Following Excision of Canine Acanthomatous Ameloblastoma. Front Vet Sci 2022; 9:900031. [PMID: 35647098 PMCID: PMC9132539 DOI: 10.3389/fvets.2022.900031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
The successful excision of a locally invasive tumor such as canine acanthomatous ameloblastoma (CAA) typically results in a mandibular contour-derforming, critical-size defect that alters the jaw kinematics, and may affect the patient's quality of life. In this case series, we describe our experience using the regenerative approach of a titanium locking plate and compression resistant matrix infused with rhBMP-2 for the immediate or delayed reconstruction following mandibulectomy for the excision of mandibular CAA in 11 dogs. Surgical planning included computed tomography (CT), with and without contrast, in all cases, and 3D-printed models in four cases. Tumor-free surgical margins were achieved in all dogs. Clinical and diagnostic imaging follow-up (mean, 23.1 months) were performed in-person (11 cases) and with CT/cone-beam computed tomography in most cases, with standard radiography (3 cases) and telemedicine being utilized in 5 cases. At 2 weeks postoperatively, hard tissue was palpable at the defect. Follow-up imaging at 1 month postoperatively revealed evidence of bridging new bone with a heterogeneous appearance, that remodeled over 3–6 months to bone of a similar size, shape and trabecular pattern as native bone. Histological evaluation of regenerated bone was available in two cases, and was supportive of our clinical and imaging findings of normal remodeled bone. Clinically, all dogs returned to a normal lifestyle, rapidly resumed eating and drinking, and exhibited normal occlusion. Complications included wound dehiscence in one dog and self-limiting exuberant bone formation in two dogs. Tumor regrowth, failure of the implant or fracture of the regenerated bone were not observed. We conclude that the mandibular reconstruction using a regenerative approach is safe, feasible, and results in restoration of mandibular contour in dogs following segmental and bilateral rostral mandibulectomy for benign but invasive oral tumors such as CAA.
Collapse
Affiliation(s)
- Anson J. Tsugawa
- School of Veterinary Medicine, William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, United States
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California, Davis, Davis, CA, United States
- *Correspondence: Boaz Arzi
| | - Natalia Vapniarsky
- School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California, Davis, Davis, CA, United States
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Frank J. M. Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Steenkamp G, Tordiffe ASW, Nemec A. Editorial: Veterinary Dentistry and Oromaxillofacial Surgery in Wild and Exotic Animals. Front Vet Sci 2022; 9:871939. [PMID: 35359675 PMCID: PMC8961799 DOI: 10.3389/fvets.2022.871939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gerhard Steenkamp
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- *Correspondence: Gerhard Steenkamp
| | - Adrian S. W. Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ana Nemec
- Dentistry and Oral Surgery Department, Small Animal Clinic, Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Arzi B, Nolta JA, Vapniarsky N. The oromaxillofacial region as a model for a one-health approach in regenerative medicine. Am J Vet Res 2022; 83:291-297. [PMID: 35175935 DOI: 10.2460/ajvr.21.12.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The concept of a one-health approach in regenerative medicine has gained tremendous momentum in the scientific and public communities in recent years. Knowledge derived from this approach informs innovative biomedical research, clinical trials, and practice. The ultimate goal is to translate regenerative strategies for curing diseases and improving the quality of life in animals and people. Building and fostering strong and enthusiastic interdisciplinary and transdisciplinary collaboration between teams with a wide range of expertise and backgrounds is the cornerstone to the success of the one-health approach and translational sciences. The veterinarian's role in conducting clinical trials in client-owned animals with naturally occurring diseases is critical and unique as it may potentially inform human clinical trials. The veterinary regenerative medicine and surgery field is on a steep trajectory of discoveries and innovations. This manuscript focuses on oromaxillofacial-region regeneration to exemplify how the concept of interdisciplinary and transdisciplinary collaboration and the one-health approach influenced the authors' work experience at the University of California-Davis.
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Jan A Nolta
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California-Davis, Davis, CA.,Institute for Regenerative Cures, School of Medicine, University of California-Davis, Davis, CA
| | - Natalia Vapniarsky
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
13
|
Arzi B, Webb TL, Koch TG, Volk SW, Betts DH, Watts A, Goodrich L, Kallos MS, Kol A. Cell Therapy in Veterinary Medicine as a Proof-of-Concept for Human Therapies: Perspectives From the North American Veterinary Regenerative Medicine Association. Front Vet Sci 2021; 8:779109. [PMID: 34917671 PMCID: PMC8669438 DOI: 10.3389/fvets.2021.779109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/27/2023] Open
Abstract
In the past decade, the potential to translate scientific discoveries in the area of regenerative therapeutics in veterinary species to novel, effective human therapies has gained interest from the scientific and public domains. Translational research using a One Health approach provides a fundamental link between basic biomedical research and medical clinical practice, with the goal of developing strategies for curing or preventing disease and ameliorating pain and suffering in companion animals and humans alike. Veterinary clinical trials in client-owned companion animals affected with naturally occurring, spontaneous disease can inform human clinical trials and significantly improve their outcomes. Innovative cell therapies are an area of rapid development that can benefit from non-traditional and clinically relevant animal models of disease. This manuscript outlines cell types and therapeutic applications that are currently being investigated in companion animals that are affected by naturally occurring diseases. We further discuss how such investigations impact translational efforts into the human medical field, including a critical evaluation of their benefits and shortcomings. Here, leaders in the field of veterinary regenerative medicine argue that experience gained through the use of cell therapies in companion animals with naturally occurring diseases represent a unique and under-utilized resource that could serve as a critical bridge between laboratory/preclinical models and successful human clinical trials through a One-Health approach.
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tracy L Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Ashlee Watts
- Department of Large Animal Clinical Sciences, Veterinary Medicine and Biological Sciences, Texas A&M University, Killeen, TX, United States
| | - Laurie Goodrich
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Michael S Kallos
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, and Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Amir Kol
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Snyder CJ, Lothamer C. Patient Triage, First Aid Care, and Management of Oral and Maxillofacial Trauma. Vet Clin North Am Small Anim Pract 2021; 52:271-288. [PMID: 34838254 DOI: 10.1016/j.cvsm.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Maxillofacial trauma is a common presentation in veterinary medical practice. Accurate assessment, diagnostics, pain management, and finally repair are tenants to treatment. In addition to typical tenants for fracture repair, the restoration of occlusion and return to function (eating, drinking, grooming) are unique to trauma management in these patients. Options for repair include conservative management (tape muzzles), noninvasive repair techniques (interdental wiring and composite splinting), and invasive repair techniques (interfragmentary wiring and plate and screw fixation).
Collapse
Affiliation(s)
- Christopher J Snyder
- University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Charles Lothamer
- University of Tennesee, College of Veterinary Medicine, 2407 River Drive, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Feigin K, Bell CM, Solano M, Boudrieau RJ. Diagnostic Imaging in Veterinary Dental Practice. J Am Vet Med Assoc 2021; 259:361-366. [PMID: 34337968 DOI: 10.2460/javma.259.4.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Girard N, Cauvin ERJ, Gauthier O, Gault S. Biphasic Calcium Phosphate Microparticles Mixed With Autologous Blood: Application for the Reconstruction of a Large Mandibular Bone Defect in a Dog. J Vet Dent 2021; 37:201-209. [PMID: 33601942 DOI: 10.1177/0898756421990909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Large mandibular bone defects can be difficult to treat in dogs, with a high risk of mal or nonunion due to instability and risk of infection. This case report describes the use of autologous clotted blood mixed with biphasic calcium phosphate microparticles to fill a defect in a nonunion fracture and promote bone regeneration in a dog using a 2-stage surgical approach. This new method was designed and tried in a dog with a chronic, unstable mandibular fracture associated with a large sequestrum. Initial treatment involved debridement of the lesion, then the oral wound and oral vestibule were reconstructed in 2 layers. Four weeks later a second stage surgery allowed placement of a pre-contoured maxillofacial plate to bridge the defect, which was filled with a blood/biphasic calcium phosphate compound implant. Cone-beam computed tomography was used prior to the initial surgery for preoperative planning and 3-D printing of a mandibular template for plate contouring. CT was subsequently used to document the healing process, using a bone density measurement tool to assess bone regeneration. Radiographic evidence suggestive of osseointegration was observed within 6 months with effective filling of the defect and restoration of alveolar ridge continuity. A return to normal and atraumatic occlusion was considered excellent. Cone-beam computed tomography was found useful to document radiographic evidence of osseointegration, bone regrowth and remodeling. This case report is to serve as a proof-of-concept study and should be followed by a prospective evaluation.
Collapse
Affiliation(s)
- Nicolas Girard
- 560854Azurvet Veterinary Referal Center, Saint Laurent du Var, France
| | | | - Olivier Gauthier
- Department of Small Animal Surgery and Dentistry, 173572Oniris College of Veterinary Medicine, Nantes, France
| | - Simon Gault
- 560854Azurvet Veterinary Referal Center, Saint Laurent du Var, France
| |
Collapse
|
17
|
Paré A, Bossard A, Laure B, Weiss P, Gauthier O, Corre P. Reconstruction of segmental mandibular defects: Current procedures and perspectives. Laryngoscope Investig Otolaryngol 2019; 4:587-596. [PMID: 31890875 PMCID: PMC6929581 DOI: 10.1002/lio2.325] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022] Open
Abstract
Background The reconstruction of segmental mandibular defects remains a challenge for the reconstructive surgeon, from both a functional and an esthetic point of view. Methods This clinical review examines the different techniques currently in use for mandibular reconstruction as related to a range of etiologies, including the different bone donor sites, the alternatives to free flaps (FFs), as well as the contribution of computer‐assisted surgery. Recent progress and the perspectives in bone tissue engineering (BTE) are also discussed. Results Osseous FF allows reliable and satisfying outcomes. However, locoregional flap, distraction osteogenesis, or even induced membrane techniques are other potential options in less favorable cases. Obtaining an engineered bone with satisfactory mechanical properties and sufficient vascular supply requires further investigations. Conclusions Osseous FF procedure remains the gold standard for segmental mandible reconstruction. BTE strategies offer promising alternatives.
Collapse
Affiliation(s)
- Arnaud Paré
- Service de Chirurgie Maxillo Faciale Plastique et Brulés, Hôpital Trousseau, CHU de Tours Tours France.,Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,UFR Médecine Université de Tours Tours France.,UFR Odontologie Université́ de Nantes Nantes France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine Centre de Rechecherche et D'investigation Préclinique (CRIP) Nantes France
| | - Boris Laure
- Service de Chirurgie Maxillo Faciale Plastique et Brulés, Hôpital Trousseau, CHU de Tours Tours France
| | - Pierre Weiss
- Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,UFR Odontologie Université́ de Nantes Nantes France
| | - Olivier Gauthier
- Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine Centre de Rechecherche et D'investigation Préclinique (CRIP) Nantes France
| | - Pierre Corre
- Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,UFR Odontologie Université́ de Nantes Nantes France.,Service de Chirurgie Maxillo-Faciale et Stomatologie CHU de Nantes Nantes France
| |
Collapse
|
18
|
Arzi B, Verstraete FJM, Garcia TC, Lee M, Kim SE, Stover SM. Kinematic analysis of mandibular motion before and after mandibulectomy and mandibular reconstruction in dogs. Am J Vet Res 2019; 80:637-645. [PMID: 31246128 DOI: 10.2460/ajvr.80.7.637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate and quantify the kinematic behavior of canine mandibles before and after bilateral rostral or unilateral segmental mandibulectomy as well as after mandibular reconstruction with a locking reconstruction plate in ex vivo conditions. SAMPLE Head specimens from cadavers of 16 dogs (range in body weight, 30 to 35 kg). PROCEDURE Specimens were assigned to undergo unilateral segmental (n = 8) or bilateral rostral (8) mandibulectomy and then mandibular reconstruction by internal fixation with locking plates. Kinematic markers were attached to each specimen in a custom-built load frame. Markers were tracked in 3-D space during standardized loading conditions, and mandibular motions were quantified. Differences in mandibular range of motion among 3 experimental conditions (before mandibulectomy [ie, with mandibles intact], after mandibulectomy, and after reconstruction) were assessed by means of repeated-measures ANOVA. RESULTS Both unilateral segmental and bilateral rostral mandibulectomy resulted in significantly greater mandibular motion and instability, compared with results for intact mandibles. No significant differences in motion were detected between mandibles reconstructed after unilateral segmental mandibulectomy and intact mandibles. Similarly, the motion of mandibles reconstructed after rostral mandibulectomy was no different from that of intact mandibles, except in the lateral direction. CONCLUSIONS AND CLINICAL RELEVANCE Mandibular kinematics in head specimens from canine cadavers were significantly altered after unilateral segmental and bilateral rostral mandibulectomy. These alterations were corrected after mandibular reconstruction with locking reconstruction plates. Findings reinforced the clinical observations of the beneficial effect of reconstruction on mandibular function and the need for reconstructive surgery after mandibulectomy in dogs.
Collapse
|
19
|
Snyder CJ, Bleedorn JA, Soukup JW. Successful Treatment of Mandibular Nonunion With Cortical Allograft, Cancellous Autograft, and Locking Titanium Miniplates in a Dog. J Vet Dent 2018; 33:160-169. [PMID: 28327074 DOI: 10.1177/0898756416671060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Discontinuities of the mandible can occur for a variety of reasons including primary pathology of bone, pathologic fracture secondary to periodontal disease, and segmental resection for the treatment of neoplasia. Surgical intervention is necessary in many cases to establish normal occlusion and normal mandibular function. Rigid stabilization and treatment of these defects can be challenging due to the limited availability of bone for fixation as well as limited soft tissue coverage. This case report describes successful treatment of a nonunion fracture using cortical allograft and locking titanium miniplates. Complete osseointegration and bone healing were achieved, allowing for complete return to normal occlusion and function.
Collapse
Affiliation(s)
- Christopher J Snyder
- 1 Veterinary Dentistry and Oral Surgery, Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason A Bleedorn
- 2 Department of Surgery, Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason W Soukup
- 1 Veterinary Dentistry and Oral Surgery, Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Antibody-Mediated Osseous Regeneration for Bone Tissue Engineering in Canine Segmental Defects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9508721. [PMID: 29682573 PMCID: PMC5851338 DOI: 10.1155/2018/9508721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
Among many applications of therapeutic monoclonal antibodies (mAbs), a unique approach for regenerative medicine has entailed antibody-mediated osseous regeneration (AMOR). In an effort to identify a clinically relevant model of craniofacial defect, the present study investigated the efficacy of mAb specific for bone morphogenetic protein- (BMP-) 2 to repair canine segmental mandibular continuity defect model. Accordingly, a 15 mm unilateral segmental defect was created in mandible and fixated with a titanium plate. Anorganic bovine bone mineral with 10% collagen (ABBM-C) was functionalized with 25 μg/mL of either chimeric anti-BMP-2 mAb or isotype-matched mAb (negative control). Recombinant human (rh) BMP-2 served as positive control. Morphometric analyses were performed on computed tomography (CT) and histologic images. Bone densities within healed defect sites at 12 weeks after surgery were 1360.81 ± 10.52 Hounsfield Unit (HU), 1044.27 ± 141.16 HU, and 839.45 ± 179.41 HU, in sites with implanted anti-BMP-2 mAb, rhBMP-2, and isotype mAb groups, respectively. Osteoid bone formation in anti-BMP-2 mAb (42.99% ± 8.67) and rhBMP-2 (48.97% ± 2.96) groups was not significantly different but was higher (p < 0.05) than in sites with isotype control mAb (26.8% ± 5.35). In view of the long-term objective of translational application of AMOR in humans, the results of the present study demonstrated the feasibility of AMOR in a large clinically relevant animal model.
Collapse
|
21
|
Arzi B, Moshaverinia A, Verstraete FJM, Fiani N, Nishimura I. Craniomaxillofacial Disorders and Solutions in Humans and Animals. J Dent Res 2018; 97:364-370. [PMID: 29481293 DOI: 10.1177/0022034518758017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cross-disciplinary collaborations have initiated translational studies in an effort to harness naturally occurring diseases in companion animals to accelerate the development of new treatment modalities, drugs, and device inventions. These synergistic collaborations can identify clinically relevant models that offer the opportunity to conduct rigorous translational investigations. However, the relationship between craniomaxillofacial diseases in companion animals and humans has been widely overlooked. We report here an innovative and visionary 2-d symposium that was organized to gather professionals working on craniomaxillofacial disorders and solutions in humans and/or animals from multiple disciplines, including veterinary physicians, basic scientists, biomedical engineers, physicians, and dentists. The symposium provided a platform for junior and senior investigators and basic science and clinical researchers to network, collaborate, and develop a new clinical and translational framework for accelerated therapy development.
Collapse
Affiliation(s)
- B Arzi
- 1 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - A Moshaverinia
- 2 Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - F J M Verstraete
- 1 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - N Fiani
- 3 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - I Nishimura
- 2 Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
22
|
Outcome of nonunion fractures in dogs treated with fixation, compression resistant matrix, and recombinant human bone morphogenetic protein-2. Vet Comp Orthop Traumatol 2017; 30:153-159. [DOI: 10.3415/vcot-16-05-0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: To report the use of compression resistant matrix (CRM) infused with recombinant human bone morphogenetic protein (rhBMP-2) prospectively in the healing of non union long-bone fractures in dogs.Methods: A longitudinal cohort of dogs that were presented with nonunion fractures were classified and treated with CRM soaked with rhBMP-2 and fracture fixation. They were followed with serial radiographs and evaluated for healing times and complications according to the time frame and definitions previously established for orthopaedic clinical cases.Results: Eleven nonunion fractures in nine dogs were included. Median healing time was 10 weeks (range: 7–20 weeks). Major perioperative complications due to bandage morbidity were encountered in two of 11 limbs and resolved. All other complications were minor. They occurred perioperatively in eight of 11 limbs. Minor follow-up complications included short-term in one of two limbs, mid-term in one of three, and long-term in four of five limbs. Nine limbs returned to full function and two limbs returned to acceptable function at the last follow-up.Clinical significance: Nonunion fractures given a poor prognosis via standard-of-care treatment were successfully repaired using CRM with rhBMP-2 accompanying fixation. These dogs, previously at high risk of failure, returned to full or acceptable function.
Collapse
|
23
|
Greiner CL, Verstraete FJM, Stover SM, Garcia TC, Leale D, Arzi B. Biomechanical evaluation of two plating configurations for fixation of a simple transverse caudal mandibular fracture model in cats. Am J Vet Res 2017; 78:702-711. [PMID: 28541156 DOI: 10.2460/ajvr.78.6.702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate biomechanical properties of intact feline mandibles, compared with those for mandibles with an experimentally created osteotomy that was stabilized with 1 of 2 internal fixation configurations. SAMPLE 20 mandibles from 10 adult feline cadavers. PROCEDURES An incomplete block study design was used to assign the mandibles of each cadaver to 2 of 3 groups (locking plate with locking screws [locking construct], locking plate with nonlocking screws [nonlocking construct], or intact). Within each cadaver, mandibles were randomly assigned to the assigned treatments. For mandibles assigned to the locking and nonlocking constructs, a simple transverse osteotomy was created caudal to the mandibular first molar tooth after plate application. All mandibles were loaded in cantilever bending in a single-load-to-failure test while simultaneously recording load and actuator displacement. Mode of failure (bone or plate failure) was recorded, and radiographic evidence of tooth root and mandibular canal damage was evaluated. Mechanical properties were compared among the 3 groups. RESULTS Stiffness, bending moments, and most post-yield energies for mandibles with the locking and nonlocking constructs were significantly lower than those for intact mandibles. Peak bending moment and stiffness for mandibles with the locking construct were significantly greater than those for mandibles with the nonlocking construct. Mode of failure and frequency of screw damage to tooth roots and the mandibular canal did not differ between the locking and nonlocking constructs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that both fixation constructs were mechanically inferior to intact mandibles. The locking construct was mechanically stronger than the nonlocking construct.
Collapse
|
24
|
Bray JP, Kersley A, Downing W, Crosse KR, Worth AJ, House AK, Yates G, Coomer AR, Brown IWM. Clinical outcomes of patient-specific porous titanium endoprostheses in dogs with tumors of the mandible, radius, or tibia: 12 cases (2013–2016). J Am Vet Med Assoc 2017; 251:566-579. [DOI: 10.2460/javma.251.5.566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Winer JN, Verstraete FJM, Cissell DD, Lucero S, Athanasiou KA, Arzi B. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Vet Surg 2017; 46:942-951. [PMID: 28688157 DOI: 10.1111/vsu.12683] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To describe the application of 3-dimensional (3D) printing in advanced oral and maxillofacial surgery (OMFS) and to discuss the benefits of this modality in surgical planning, student and resident training, and client education. STUDY DESIGN Retrospective case series. ANIMALS Client-owned dogs (n = 28) and cats (n = 4) with 3D printing models of the skulls. METHODS The medical records of 32 cases with 3D printing prior to major OMFS were reviewed. RESULTS Indications for 3D printing included preoperative planning for mandibular reconstruction after mandibulectomy (n = 12 dogs) or defect nonunion fracture (n = 6 dogs, 2 cats), mapping of ostectomy location for temporomandibular joint ankylosis or pseudoankylosis (n = 4 dogs), assessment of palatal defects (n = 2 dogs, 1 cat), improved understanding of complex anatomy in cases of neoplasia located in challenging locations (n = 2 dogs, 1 cat), and in cases of altered anatomy secondary to trauma (n = 2 dogs). CONCLUSION In the authors' experience, 3D printed models serve as excellent tools for OMFS planning and resident training. Furthermore, 3D printed models are a valuable resource to improve clients' understanding of the pet's disorder and the recommended treatment. CLINICAL RELEVANCE Three-dimensional printed models should be considered viable tools for surgical planning, resident training, and client education in candidates for complex OMFS.
Collapse
Affiliation(s)
- Jenna N Winer
- Dentistry and Oral Surgery Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Derek D Cissell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Steven Lucero
- Department of Biomedical Engineering, University of California, Davis, California
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, California.,Department of Orthopedic Surgery, University of California, Davis, California
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
26
|
Itoi T, Harada Y, Irie H, Sakamoto M, Tamura K, Yogo T, Soeta S, Amasaki H, Hara Y, Tagawa M. Escherichia coli-derived recombinant human bone morphogenetic protein-2 combined with bone marrow-derived mesenchymal stromal cells improves bone regeneration in canine segmental ulnar defects. BMC Vet Res 2016; 12:201. [PMID: 27619812 PMCID: PMC5020464 DOI: 10.1186/s12917-016-0829-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Large bone defects in canines usually require assistance to achieve healing. Implantation of osteoinductive factors can promote bone healing, while transplantation of osteoprogenitor cells can enhance bone regeneration. We hypothesized that implantation of an osteoinductive factor, recombinant human bone morphogenetic protein-2 (rhBMP-2), combined with osteoprogenitor cells, bone marrow-derived mesenchymal stromal cells (BMSCs), would synergistically promote bone healing. In this study, we examined the combined effects of Escherichia coli-derived rhBMP-2 and BMSCs on bone healing after implantation into canine ulnar defects. RESULTS Critical-sized osteoperiosteal segmental defects (2.5 cm) were created in the ulnae of healthy female beagle dogs, and implanted with combinations of E. coli-derived rhBMP-2 (560 or 140 μg) and autologous BMSCs (10(7), 10(5), or 0 cells). In the present study,18 forelimbs of nine healthy purpose-bred female beagles were used. All six treatment groups contained three forelimbs, and the animals were euthanized after 12 weeks. The control groups (560 and 140 μg/0 cells) were cited from our previous study to reduce the number of experimental animals. Radiographically, the regenerated bone width was significantly increased in the 560 or 140 μg with 10(7) and 10(5) cells groups compared with the 0 cells groups. By quantitative CT, the bone mineral density was higher in the 560 μg with 10(7) and 10(5) cells groups, while non-uniformity of the bone mineral density was improved in the 560 μg with 10(7) and 10(5) cells groups and 140 μg/10(7) cells group. Mechanically, the maximum loads at failure were significantly higher in the 560 μg with 10(7) and 10(5) cells groups. Histologically, the regenerated bone was well-developed and contained osteocyte-like cells marrow cavities, and vessels. However, the osteoclasts and osteoblasts were hardly observed. The osteocyte-like cell numbers were significantly higher in the 560 μg with 10(7) and 10(5) cells and 140 μg with 10(7) and 10(5) cells groups. CONCLUSIONS Implantation of E. coli-derived rhBMP-2 and BMSCs led to significantly enhanced bone formation, with improved bone mineral density and reduced non-uniformity of the regenerated bone. Combined implantation of rhBMP-2 and BMSCs may be useful for promotion of bone healing in critical-sized defects in canines.
Collapse
Affiliation(s)
- Takamasa Itoi
- Division of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan.
| | - Yasuji Harada
- Division of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan
| | - Hiroyuki Irie
- HOYA Technosurgical Corporation, 1-1-110 Tsutsujigaoka, Akishima, Tokyo, 196-0012, Japan
| | - Michiko Sakamoto
- HOYA Technosurgical Corporation, 1-1-110 Tsutsujigaoka, Akishima, Tokyo, 196-0012, Japan
| | - Katsutoshi Tamura
- Division of Animal and Clinical Regenerative Medicine, Kurashiki University of Science and Arts, 2640 Nishinoura, Tsurajima-machi, Kurashiki, Okayama, 712-8505, Japan
| | - Takuya Yogo
- Division of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan
| | - Satoshi Soeta
- Division of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan
| | - Hajime Amasaki
- Division of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan
| | - Yasushi Hara
- Division of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan
| | - Masahiro Tagawa
- Division of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-8602, Japan
| |
Collapse
|
27
|
Kol A, Arzi B, Athanasiou KA, Farmer DL, Nolta JA, Rebhun RB, Chen X, Griffiths LG, Verstraete FJM, Murphy CJ, Borjesson DL. Companion animals: Translational scientist's new best friends. Sci Transl Med 2016; 7:308ps21. [PMID: 26446953 DOI: 10.1126/scitranslmed.aaa9116] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Knowledge and resources derived from veterinary medicine represent an underused resource that could serve as a bridge between data obtained from diseases models in laboratory animals and human clinical trials. Naturally occurring disease in companion animals that display the defining attributes of similar, if not identical, diseases in humans hold promise for providing predictive proof of concept in the evaluation of new therapeutics and devices. Here we outline comparative aspects of naturally occurring diseases in companion animals and discuss their current uses in translational medicine, benefits, and shortcomings. Last, we envision how these natural models of disease might ultimately decrease the failure rate in human clinical trials and accelerate the delivery of effective treatments to the human clinical market.
Collapse
Affiliation(s)
- Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, U.S.A. Department of Orthopedic Surgery, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Diana L Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jan A Nolta
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA. Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Xinbin Chen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA. Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA. Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
28
|
de Freitas EP, Rahal SC, Shimano AC, da Silva JVL, Noritomi PY, El-Warrak AO, Melchert A. Bridging Plate Development for Treatment of Segmental Bone Defects of the Canine Mandible: Mechanical Tests and Finite Element Method. J Vet Dent 2016; 33:18-25. [PMID: 27487652 DOI: 10.1177/0898756416639191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With regard to the canine mandible, a mistaken concept of application is to assume that systemic plate-bone resistance is provided by the implant so that biomechanical position could be ignored. Because the alveolar border of the mandible is a tensile zone, the plate would ideally be positioned near this area while avoiding important structures. The aim of this study was to develop 2 bridging plates for the treatment of a segmental bone defect of the canine mandible using monocortical screws to avoid damage to the tooth roots and remaining neurovascular structures. Computed tomography images of the heads of 4 dogs (rottweiler, Doberman, boxer, and miniature poodle breeds) were used as models to develop the project. The images were reconstructed in 3-dimensional (3D) format. For each dog breed, 6 mandible prototypes were produced, each with a segmental bone defect in the right mandible. The mandibular reconstruction was performed with pure titanium bridging plate and locking screws. One plate model was developed for medium- and large-breed dogs and another for small-breed dogs. Mechanical testing showed the platemandible system resists the bite forces in all dog breeds. All safety factors were greater than I in the platemandible system for medium- and large-breed dogs and greater than 10 in the plate-mandible system for small-breed dogs. Thus, bridging plates designed with differentiated geometry and monocortical locking screws showed mechanical resistance to support simulated induced bone model defects and were able to support at least 5 times the value of bite force for each evaluated dog.
Collapse
|
29
|
Arzi B, Stover SM, Garcia TC, Leale DM, Verstraete FJM. Biomechanical evaluation of two plating configurations for critical-sized defects of the mandible in dogs. Am J Vet Res 2016; 77:445-51. [DOI: 10.2460/ajvr.77.5.445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Das A, Fishero BA, Christophel JJ, Li CJ, Kohli N, Lin Y, Dighe AS, Cui Q. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair. Cell Tissue Res 2015; 364:125-35. [PMID: 26475719 DOI: 10.1007/s00441-015-2301-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.
Collapse
Affiliation(s)
- Anusuya Das
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian A Fishero
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Jared Christophel
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikita Kohli
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yong Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
31
|
Subramanian S, Mitchell A, Yu W, Snyder S, Uhrich K, O'Connor JP. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2. Tissue Eng Part A 2015; 21:2013-24. [PMID: 25813520 PMCID: PMC4507132 DOI: 10.1089/ten.tea.2014.0455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/16/2015] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.
Collapse
Affiliation(s)
- Sangeeta Subramanian
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Ashley Mitchell
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Weiling Yu
- Department of Biomedical Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sabrina Snyder
- Department of Biomedical Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kathryn Uhrich
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - J. Patrick O'Connor
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
32
|
Nemec A, Arzi B, Hansen K, Murphy BG, Lommer MJ, Peralta S, Verstraete FJM. Osteonecrosis of the Jaws in Dogs in Previously Irradiated Fields: 13 Cases (1989-2014). Front Vet Sci 2015; 2:5. [PMID: 26664934 PMCID: PMC4672169 DOI: 10.3389/fvets.2015.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Abstract
The aim of this report was to characterize osteonecrosis of the jaws (ONJ) in previously irradiated fields in dogs that underwent radiotherapy (RT) for oral tumors. Osteoradionecrosis of the jaw (ORNJ) was further defined as osteonecrosis in a previously irradiated field in the absence of a tumor. Thirteen dogs clinically diagnosed with 15 ONJ lesions were included in this retrospective case series. Medical records were reviewed for: breed, sex, weight, and age of the patient, tumor type, location in the oral cavity and size, location of the ONJ, time from RT to ONJ onset, known duration of the ONJ, and tumor presence. Where available, histological assessment of tissues obtained from the primary tumor, and tissues obtained from the ONJ lesion, was performed, and computed tomographic (CT) images and dental radiographs were reviewed. RT and other treatment details were also reviewed. Twelve dogs developed ONJ in the area of the previously irradiated tumor or the jaw closest to the irradiated mucosal tumor. Recurrence of neoplasia was evident at the time of ONJ diagnosis in five dogs. Time from RT start to ONJ onset varied from 2 to 44 months. In three cases, ORNJ developed after dental extractions in the irradiated field. Dental radiographs mostly revealed a moth-eaten pattern of bone loss, CT mostly revealed osteolysis, and histopathology was consistent with osteonecrosis. To conclude, development of ONJ/ORNJ following RT is a rare, but potentially fatal complication. Patients undergoing RT may benefit from a comprehensive oral and dental examination and treatment prior to RT.
Collapse
Affiliation(s)
- Ana Nemec
- Clinic for Surgery and Small Animals, Veterinary Faculty, University of Ljubljana , Ljubljana , Slovenia ; Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis , Davis, CA , USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis , Davis, CA , USA
| | - Katherine Hansen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis , Davis, CA , USA
| | - Brian G Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California at Davis , Davis, CA , USA
| | - Milinda J Lommer
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis , Davis, CA , USA ; Aggie Animal Dental Center , Mill Valley, CA , USA
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, NY , USA
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis , Davis, CA , USA
| |
Collapse
|
33
|
Arzi B, Cissell DD, Pollard RE, Verstraete FJM. Regenerative Approach to Bilateral Rostral Mandibular Reconstruction in a Case Series of Dogs. Front Vet Sci 2015; 2:4. [PMID: 26664933 PMCID: PMC4672177 DOI: 10.3389/fvets.2015.00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/14/2015] [Indexed: 12/02/2022] Open
Abstract
Extensive rostral mandibulectomy in dogs typically results in instability of the mandibles that may lead to malocclusion, difficulty in prehension, mastication, and pain of the temporomandibular joint. Large rostral mandibular defects are challenging to reconstruct due to the complex geometry of this region. In order to restore mandibular continuity and stability following extensive rostral mandibulectomy, we developed a surgical technique using a combination of intraoral and extraoral approaches, a locking titanium plate, and a compression resistant matrix (CRM) infused with rhBMP-2. Furthermore, surgical planning that consisted of computed tomographic (CT) scanning and 3D model printing was utilized. We describe a regenerative surgical technique for immediate or delayed reconstruction of critical-size rostral mandibular defects in five dogs. Three dogs had healed with intact gingival covering over the mandibular defect and had immediate return to normal function and occlusion. Two dogs had the complication of focal plate exposure and dehiscence, which was corrected with mucosal flaps and suturing; these dogs have since healed with intact gingival covering over the mandibular defect. Mineralized tissue formation was palpated clinically within 2 weeks and solid bone formation within 3 months. CT findings at 6 months postoperatively demonstrated that the newly regenerated mandibular bone had increased in mineral volume with evidence of integration between the native bone, new bone, and CRM compared to the immediate postoperative CT. We conclude that rostral mandibular reconstruction using a regenerative approach provides an excellent solution for restoring mandibular continuity and preventing mandibular instability in dogs.
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| | - Derek D Cissell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis , Davis, CA , USA ; Department of Biomedical Engineering, University of California Davis , Davis, CA , USA
| | - Rachel E Pollard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| |
Collapse
|
34
|
Marble HD, Sutermaster BA, Kanthilal M, Fonseca VC, Darling EM. Gene expression-based enrichment of live cells from adipose tissue produces subpopulations with improved osteogenic potential. Stem Cell Res Ther 2014; 5:145. [PMID: 25287061 PMCID: PMC4619280 DOI: 10.1186/scrt502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction Mesenchymal stem cells have been increasingly used for cell-based therapies. Adipose-derived stem/stromal cells (ASCs) from the stromal vascular fraction (SVF) of fat tissue are a particularly attractive option for cell based therapy given their accessibility and relative abundance. However, their application in both clinical and basic science investigations is complicated by the isolation of differentiable cells within the SVF. Current enrichment strategies, such as monolayer passaging and surface marker-based sorting, can be time-consuming or overly stringent. Ideally, a population of cells with great regenerative capacity could be isolated with high yields so that extensive in vitro manipulation is not necessary. The objective of this study was to determine whether SVF cells sorted based on expression of alkaline phosphatase liver/bone/kidney (ALPL) resulted in populations with increased osteogenic differentiation potential. Methods SVF samples were obtained from four, human donors and processed to isolate initial, heterogeneous cell populations. These SVF cells underwent a four day osteogenic priming period, after which they were treated with a fluorescent, oligodeoxynucleotide molecular beacon probe specific for ALPL mRNA. Cells were separated into positive and negative groups using fluorescence-activated cell sorting (FACS) then differentiated down the osteogenic lineage. Differentiation was assessed by measuring calcified matrix production in each sample. Results Cells positive for ALPL expression (ALPL+) represented approximately 34% of the gated population, while cells negative for ALPL expression (ALPL-) represented approximately 18%. ALPL+ cells produced 3.7-fold and 2.1-fold more calcified matrix than ALPL- and unsorted SVF cells, respectively, indicating a significant improvement in osteogenic differentiation. Further, ALPL+ cells showed increases in metabolite production for both adipogenesis and chondrogenesis, suggesting that the enrichment process yields an enhanced multipotent phenotype. Osteogenic differentiation response and cell yields for ALPL+ cells were markedly improved over surface marker-sorted samples. Conclusion This study demonstrates a novel method to enrich heterogeneous SVF cells for increased osteogenic potential. The procedure requires less time and results in higher yields of therapeutically useful cells than other existing approaches. Gene expression-based sorting of MSCs is a potentially paradigm-shifting approach that could benefit applications spanning from basic science to clinical therapy. Electronic supplementary material The online version of this article (doi:10.1186/scrt502) contains supplementary material, which is available to authorized users.
Collapse
|