1
|
Tokatly Latzer I, Pearl PL. Update on inherited disorders of GABA metabolism. Eur J Paediatr Neurol 2025; 56:10-16. [PMID: 40239387 DOI: 10.1016/j.ejpn.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
γ-aminobutyric acid (GABA) serves as the main inhibitory cortical neurotransmitter and is involved in crucial functions of neural circuitry affecting cognition, communication, movement, behavior, and the seizure threshold. GABAergic neurons and interneurons contribute to essential aspects of cortical dynamic organization and regulatory processes and mediate aspects of synaptic development. Inherited metabolic disorders affecting the metabolic pathways of GABA, its transport, and its receptors lead to a wide array of neurodevelopmental manifestations. Presentation typically ensues at early ages but could occur later in life and range in severity. This group of disorders warrants increased suspicion, as their early identification and management may lead to clinical improvement and shorten the diagnostic odyssey often associated with affected individuals. We provide an overview of the scientific basis, clinical presentation, and ongoing therapeutic advances of the main disorders of GABA metabolism stemming from deficiencies of succinic semialdehyde dehydrogenase (SSADH), GABA-transaminase, GABA transporter, and GABA receptor subunits.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Latzer IT, Yang E, Afacan O, Arning E, Rotenberg A, Lee HHC, Roullet JB, Pearl PL. Glymphatic dysfunction coincides with lower GABA levels and sleep disturbances in succinic semialdehyde dehydrogenase deficiency. J Sleep Res 2024; 33:e14105. [PMID: 38148273 PMCID: PMC11199373 DOI: 10.1111/jsr.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder of γ-aminobutyrate (GABA) catabolism. Cerebral waste clearance along glymphatic perivascular spaces depends on aquaporin 4 (AQP4) water channels, the function of which was shown to be influenced by GABA. Sleep disturbances are associated independently with SSADHD and glymphatic dysfunction. This study aimed to determine whether indices of the hyperGABAergic state characteristic of SSADHD coincide with glymphatic dysfunction and sleep disturbances and to explicate the modulatory effect that GABA may have on the glymphatic system. The study included 42 individuals (21 with SSADHD; 21 healthy controls) who underwent brain MRIs and magnetic resonance spectroscopy (MRS) for assessment of glymphatic dysfunction and cortical GABA, plasma GABA measurements, and circadian clock gene expression. The SSADHD subjects responded to an additional Children's Sleep Habits Questionnaire (CSHQ). Compared with the control group, SSADHD subjects did not differ in sex and age but had a higher severity of enlarged perivascular spaces in the centrum semiovale (p < 0.001), basal ganglia (p = 0.01), and midbrain (p = 0.001), as well as a higher MRS-derived GABA/NAA peak (p < 0.001). Within the SSADHD group, the severity of glymphatic dysfunction was specific for a lower MRS-derived GABA/NAA (p = 0.04) and lower plasma GABA (p = 0.004). Additionally, the degree of their glymphatic dysfunction correlated with the CSHQ-estimated sleep disturbances scores (R = 5.18, p = 0.03). In the control group, EPVS burden did not correlate with age or cerebral and plasma GABA values. The modulatory effect that GABA may exert on the glymphatic system has therapeutic implications for sleep-related disorders and neurodegenerative conditions associated with glymphatic dysfunction.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, MA 02115, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Phillip L. Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Latzer IT, Bertoldi M, DiBacco ML, Arning E, Tsuboyama M, MacMullin P, Sachee D, Rotenberg A, Lee HHC, Aygun D, Opladen T, Jeltsch K, García-Cazorla À, Roullet JB, Gibson KM, Pearl PL. The presence and severity of epilepsy coincide with reduced γ-aminobutyrate and cortical excitatory markers in succinic semialdehyde dehydrogenase deficiency. Epilepsia 2023; 64:1516-1526. [PMID: 36961285 PMCID: PMC10471137 DOI: 10.1111/epi.17592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inherited metabolic disorder caused by a defect of γ-aminobutyrate (GABA) catabolism. Despite the resultant hyper-GABAergic environment facilitated by the metabolic defect, individuals with this disorder have a paradoxically high prevalence of epilepsy. We aimed to study the characteristics of epilepsy in SSADHD and its concordance with GABA-related metabolites and neurophysiologic markers of cortical excitation. METHODS Subjects in an international natural history study of SSADHD underwent clinical assessments, electroencephalography, transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy for GABA/N-acetyl aspartate quantification, and plasma GABA-related metabolite measurements. RESULTS A total of 61 subjects with SSADHD and 42 healthy controls were included in the study. Epilepsy was present in 49% of the SSADHD cohort. Over time, there was an increase in severity in 33% of the subjects with seizures. The presence of seizures was associated with increasing age (p = .001) and lower levels of GABA (p = .002), γ-hydroxybutyrate (GHB; p = .004), and γ-guanidinobutyrate (GBA; p = .003). Seizure severity was associated with increasing age and lower levels of GABA-related metabolites as well as lower TMS-derived resting motor thresholds (p = .04). The cutoff values with the highest discriminative ability to predict seizures were age > 9.2 years (p = .001), GABA < 2.57 μmol·L-1 (p = .002), GHB < 143.6 μmol·L-1 (p = .004), and GBA < .075 μmol·L-1 (p = .007). A prediction model for seizures in SSADHD was comprised of the additive effect of older age and lower plasma GABA, GHB, and GBA (area under the receiver operating characteristic curve of .798, p = .008). SIGNIFICANCE Epilepsy is highly prevalent in SSADHD, and its onset and severity correlate with an age-related decline in GABA and GABA-related metabolite levels as well as TMS markers of reduced cortical inhibition. The reduction of GABAergic activity in this otherwise hyper-GABAergic disorder demonstrates a concordance between epileptogenesis and compensatory responses. These findings may furthermore inform the timing of molecular interventions for SSADHD.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Melissa L. DiBacco
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul MacMullin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniyal Sachee
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, MA 02115, USA
| | - Deniz Aygun
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Opladen
- Division of Neuropediatrics & Metabolic Medicine, University Children’s Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics & Metabolic Medicine, University Children’s Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K. Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Phillip L. Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Hernandez CC, Shen Y, Hu N, Shen W, Narayanan V, Ramsey K, He W, Zou L, Macdonald RL. GABRG2 Variants Associated with Febrile Seizures. Biomolecules 2023; 13:414. [PMID: 36979350 PMCID: PMC10046037 DOI: 10.3390/biom13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanwen Shen
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Wen He
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Liping Zou
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Nwosu G, Mermer F, Flamm C, Poliquin S, Shen W, Rigsby K, Kang JQ. 4-Phenylbutyrate restored γ-aminobutyric acid uptake and reduced seizures in SLC6A1 patient variant-bearing cell and mouse models. Brain Commun 2022; 4:fcac144. [PMID: 35911425 PMCID: PMC9336585 DOI: 10.1093/braincomms/fcac144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
We have studied the molecular mechanisms of variants in solute carrier Family 6 Member 1 associated with neurodevelopmental disorders, including various epilepsy syndromes, autism and intellectual disability. Based on functional assays of solute carrier Family 6 Member 1 variants, we conclude that partial or complete loss of γ-amino butyric acid uptake due to reduced membrane γ-amino butyric acid transporter 1 trafficking is the primary aetiology. Importantly, we identified common patterns of the mutant γ-amino butyric acid transporter 1 protein trafficking from biogenesis, oligomerization, glycosylation and translocation to the cell membrane across variants in different cell types such as astrocytes and neurons. We hypothesize that therapeutic approaches to facilitate membrane trafficking would increase γ-amino butyric acid transporter 1 protein membrane expression and function. 4-Phenylbutyrate is a Food and Drug Administration-approved drug for paediatric use and is orally bioavailable. 4-Phenylbutyrate shows promise in the treatment of cystic fibrosis. The common cellular mechanisms shared by the mutant γ-amino butyric acid transporter 1 and cystic fibrosis transmembrane conductance regulator led us to hypothesize that 4-phenylbutyrate could be a potential treatment option for solute carrier Family 6 Member 1 mutations. We examined the impact of 4-phenylbutyrate across a library of variants in cell and knockin mouse models. Because γ-amino butyric acid transporter 1 is expressed in both neurons and astrocytes, and γ-amino butyric acid transporter 1 deficiency in astrocytes has been hypothesized to underlie seizure generation, we tested the effect of 4-phenylbutyrate in both neurons and astrocytes with a focus on astrocytes. We demonstrated existence of the mutant γ-amino butyric acid transporter 1 retaining wildtype γ-amino butyric acid transporter 1, suggesting the mutant protein causes aberrant protein oligomerization and trafficking. 4-Phenylbutyrate increased γ-amino butyric acid uptake in both mouse and human astrocytes and neurons bearing the variants. Importantly, 4-phenylbutyrate alone increased γ-amino butyric acid transporter 1 expression and suppressed spike wave discharges in heterozygous knockin mice. Although the mechanisms of action for 4-phenylbutyrate are still unclear, with multiple possibly being involved, it is likely that 4-phenylbutyrate can facilitate the forward trafficking of the wildtype γ-amino butyric acid transporter 1 regardless of rescuing the mutant γ-amino butyric acid transporter 1, thus increasing γ-amino butyric acid uptake. All patients with solute carrier Family 6 Member 1 variants are heterozygous and carry one wildtype allele, suggesting a great opportunity for treatment development leveraging wildtype protein trafficking. The study opens a novel avenue of treatment development for genetic epilepsy via drug repurposing.
Collapse
Affiliation(s)
| | | | - Carson Flamm
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sarah Poliquin
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA
| | - Kathryn Rigsby
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Jing Qiong Kang
- Correspondence to: Jing-Qiong Kang Department of Neurology and Pharmacology Vanderbilt University Medical Center 465 21st Ave south, Nashville, TN 37232, USA E-mails: ;
| |
Collapse
|
6
|
Lu J, Xia H, Li W, Shen X, Guo H, Zhang J, Fan X. Genetic Polymorphism of GABRG2 rs211037 is Associated with Drug Response and Adverse Drug Reactions to Valproic Acid in Chinese Southern Children with Epilepsy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1141-1150. [PMID: 34552348 PMCID: PMC8450188 DOI: 10.2147/pgpm.s329594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
Background Valproic acid (VPA) is recommended as a first-line treatment for children with epilepsy. GABRG2 polymorphism is found to be associated with epilepsy susceptibility and therapeutic response of anti-seizure medications (ASM); however, the role of GABRG2 in VPA treatment still remains unknown. Objective The purpose of this study was to explore the association of GABRG2 gene polymorphism with the drug response and adverse drug reactions (ADRs) related to VPA. Methods A retrospective study including 96 Chinese children with epilepsy treated by VPA was carried out. The ADRs were collected during VPA therapy and GABRG2 rs211037 in enrolled patients was genotyped using Sequenom MassArray system. A network pharmacological analysis involved protein–protein interaction and enrichment analysis was constructed to investigate the potential targets and pathways of GABRG2 on VPA-related ADRs. Results Among 96 patients, 41 individuals were defined as seizure together with 49 patients with seizure-free and 6 patients unclassified. Carriers of homozygote GABRG2 rs211037 CC genotype exhibited seizure-free to VPA (P = 0.042), whereas those with CT genotype showed seizure. Furthermore, CC genotype had predisposition to digestive ADRs (P = 0.037) but was a protective factor for VPA-associated weight gain (P = 0.013). Ten key genes related to digestive ADRs and weight gain induced by VPA were identified by network pharmacological analysis and mainly involved in “GABAergic synaptic signaling”, “GABA receptor signaling”, and “taste transduction” pathways/processes through enrichment analysis. Conclusion This study revealed that GABRG2 variation exerted a predictable role in the efficacy and safety of VPA treatment for Chinese children with epilepsy.
Collapse
Affiliation(s)
- Jieluan Lu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hanbing Xia
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Wenzhou Li
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Xianhuan Shen
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huijuan Guo
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Jianping Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiaomei Fan
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| |
Collapse
|
7
|
Hernandez CC, Tian X, Hu N, Shen W, Catron MA, Yang Y, Chen J, Jiang Y, Zhang Y, Macdonald RL. Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABA A receptors. Brain Commun 2021; 3:fcab033. [PMID: 34095830 PMCID: PMC8176149 DOI: 10.1093/braincomms/fcab033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), β3 (GABRB3) and γ2 (GABRG2), but not β2 (GABRB2) or β1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1β2γ2 receptor. Mutations in GABRA1 (c.644T>C, p. L215P; c.640C>T, p. R214C; c.859G>A; V287I; c.641G>A, p. R214H) and GABRG2 (c.269C>G, p. T90R; c.1025C>T, p. P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p. F331S; c.542A>T, p. Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p. T90R) variant. It seems that variants in α1 and β2 subunits are less tolerated than in γ2 subunits, since variant α1 and β2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1β2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, β2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48198, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - XiaoJuan Tian
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Ying Yang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jiaoyang Chen
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
8
|
Payghan PV, Nath Roy S, Bhattacharyya D, Ghoshal N. Cross-talk between allosteric and orthosteric binding sites of γ-amino butyric acid type A receptors (GABAA-Rs): A computational study revealing the structural basis of selectivity. J Biomol Struct Dyn 2019; 37:3065-3080. [DOI: 10.1080/07391102.2018.1508367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pavan V. Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Huang X, Zhou C, Tian M, Kang JQ, Shen W, Verdier K, Pimenta A, MacDonald RL. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2 +/Q390X Dravet syndrome mice. Epilepsia 2017; 58:1451-1461. [PMID: 28586508 DOI: 10.1111/epi.13810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The mutant γ-aminobutyric acid type A (GABAA ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABAA receptors, and affects trafficking of partnering α and β subunits. Heterozygous Gabrg2+/Q390X knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy. METHODS We introduced the GABRG2 allele by crossing Gabrg2+/Q390X KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2HA subunits, and compared GABAA receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording. RESULTS Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and β2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold. SIGNIFICANCE Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Mengnan Tian
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Kelienne Verdier
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Aurea Pimenta
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Robert L MacDonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| |
Collapse
|
10
|
Shen D, Hernandez CC, Shen W, Hu N, Poduri A, Shiedley B, Rotenberg A, Datta AN, Leiz S, Patzer S, Boor R, Ramsey K, Goldberg E, Helbig I, Ortiz-Gonzalez XR, Lemke JR, Marsh ED, Macdonald RL. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain 2017; 140:49-67. [PMID: 27864268 PMCID: PMC5226060 DOI: 10.1093/brain/aww272] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022] Open
Abstract
Epileptic encephalopathies are a devastating group of severe childhood onset epilepsies with medication-resistant seizures and poor developmental outcomes. Many epileptic encephalopathies have a genetic aetiology and are often associated with de novo mutations in genes mediating synaptic transmission, including GABAA receptor subunit genes. Recently, we performed next generation sequencing on patients with a spectrum of epileptic encephalopathy phenotypes, and we identified five novel (A106T, I107T, P282S, R323W and F343L) and one known (R323Q) de novo GABRG2 pathogenic variants (mutations) in eight patients. To gain insight into the molecular basis for how these mutations contribute to epileptic encephalopathies, we compared the effects of the mutations on the properties of recombinant α1β2γ2L GABAA receptors transiently expressed in HEK293T cells. Using a combination of patch clamp recording, immunoblotting, confocal imaging and structural modelling, we characterized the effects of these GABRG2 mutations on GABAA receptor biogenesis and channel function. Compared with wild-type α1β2γ2L receptors, GABAA receptors containing a mutant γ2 subunit had reduced cell surface expression with altered subunit stoichiometry or decreased GABA-evoked whole-cell current amplitudes, but with different levels of reduction. While a causal role of these mutations cannot be established directly from these results, the functional analysis together with the genetic information suggests that these GABRG2 variants may be major contributors to the epileptic encephalopathy phenotypes. Our study further expands the GABRG2 phenotypic spectrum and supports growing evidence that defects in GABAergic neurotransmission participate in the pathogenesis of genetic epilepsies including epileptic encephalopathies.
Collapse
Affiliation(s)
- Dingding Shen
- 1 The Graduate Program of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Ciria C Hernandez
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| | - Wangzhen Shen
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ningning Hu
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| | - Annapurna Poduri
- 3 Epilepsy Genetics Program and the Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
- 4 Harvard Medical School, Boston, MA 02115, USA
| | - Beth Shiedley
- 3 Epilepsy Genetics Program and the Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alex Rotenberg
- 3 Epilepsy Genetics Program and the Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre N Datta
- 5 Division of Pediatric Neurology and Developmental Medicine, University of Basel Children's Hospital, Basel 4056, Switzerland
| | - Steffen Leiz
- 6 Clinic for Children and Adolescents Dritter Orden, Divison of Neuropediatrics, München, 80638 Germany
| | - Steffi Patzer
- 7 Clinic for Children and Adolescents, Halle/Saale, 06097 Germany
| | - Rainer Boor
- 8 Department of Pediatric Neurology, Kiel University, Kiel 24118 Germany; Northern German Epilepsy Centre for Children and Adolescents, Schwentinental - Raisdorf, 24223 Germany
| | - Kerri Ramsey
- 9 Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, 85004 AZ, USA
| | - Ethan Goldberg
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xilma R Ortiz-Gonzalez
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Johannes R Lemke
- 12 Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, 04103 Germany
| | - Eric D Marsh
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert L Macdonald
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
11
|
Gürsoy S, Erçal D. Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy. J Child Neurol 2016; 31:523-532. [PMID: 26271793 DOI: 10.1177/0883073815599262] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Epileptic encephalopathies are characterized by recurrent clinical seizures and prominent interictal epileptiform discharges seen during the early infantile period. Although epileptic encephalopathies are mostly associated with structural brain defects and inherited metabolic disorders, pathogenic gene mutations may also be involved in the development of epileptic encephalopathies even when no clear genetic inheritance patterns or consanguinity exist. The most common epileptic encephalopathies are Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, West syndrome and Dravet syndrome, which are usually unresponsive to traditional antiepileptic medication. Many of the diagnoses describe the phenotype of these electroclinical syndromes, but not the underlying causes. To date, approximately 265 genes have been defined in epilepsy and several genes including STXBP1, ARX, SLC25A22, KCNQ2, CDKL5, SCN1A, and PCDH19 have been found to be associated with early-onset epileptic encephalopathies. In this review, we aimed to present a diagnostic approach to primary genetic causes of early-onset epileptic encephalopathies.
Collapse
Affiliation(s)
- Semra Gürsoy
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylül University, İzmir, Turkey
| | - Derya Erçal
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
12
|
Tong X, Peng Z, Zhang N, Cetina Y, Huang CS, Wallner M, Otis TS, Houser CR. Ectopic Expression of α6 and δ GABAA Receptor Subunits in Hilar Somatostatin Neurons Increases Tonic Inhibition and Alters Network Activity in the Dentate Gyrus. J Neurosci 2015; 35:16142-58. [PMID: 26658866 PMCID: PMC4682781 DOI: 10.1523/jneurosci.2853-15.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/23/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022] Open
Abstract
The role of GABAA receptor (GABAAR)-mediated tonic inhibition in interneurons remains unclear and may vary among subgroups. Somatostatin (SOM) interneurons in the hilus of the dentate gyrus show negligible expression of nonsynaptic GABAAR subunits and very low tonic inhibition. To determine the effects of ectopic expression of tonic GABAAR subtypes in these neurons, Cre-dependent viral vectors were used to express GFP-tagged GABAAR subunits (α6 and δ) selectively in hilar SOM neurons in SOM-Cre mice. In single-transfected animals, immunohistochemistry demonstrated strong expression of either the α6 or δ subunit; in cotransfected animals, both subunits were consistently expressed in the same neurons. Electrophysiology revealed a robust increase of tonic current, with progressively larger increases following transfection of δ, α6, and α6/δ subunits, respectively, indicating formation of functional receptors in all conditions and likely coassembly of the subunits in the same receptor following cotransfection. An in vitro model of repetitive bursting was used to determine the effects of increased tonic inhibition in hilar SOM interneurons on circuit activity in the dentate gyrus. Upon cotransfection, the frequency of GABAAR-mediated bursting in granule cells was reduced, consistent with a reduction in synchronous firing among hilar SOM interneurons. Moreover, in vivo studies of Fos expression demonstrated reduced activation of α6/δ-cotransfected neurons following acute seizure induction by pentylenetetrazole. The findings demonstrate that increasing tonic inhibition in hilar SOM interneurons can alter dentate gyrus circuit activity during strong stimulation and suggest that tonic inhibition of interneurons could play a role in regulating excessive synchrony within the network. SIGNIFICANCE STATEMENT In contrast to many hippocampal interneurons, somatostatin (SOM) neurons in the hilus of the dentate gyrus have very low levels of nonsynaptic GABAARs and exhibit very little tonic inhibition. In an effort to increase tonic inhibition selectively in these interneurons, we used Cre-dependent viral vectors in SOM-Cre mice to achieve interneuron-specific expression of the nonsynaptic GABAAR subunits (α6 and δ) in vivo. We show, for the first time, that such recombinant GFP-tagged GABAAR subunits are expressed robustly, assemble to form functional receptors, substantially increase tonic inhibition in SOM interneurons, and alter circuit activity within the dentate gyrus.
Collapse
Affiliation(s)
- Xiaoping Tong
- Departments of Neurobiology and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, and
| | | | | | | | | | - Martin Wallner
- Molecular and Medical Pharmacology and Brain Research Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Thomas S Otis
- Departments of Neurobiology and Brain Research Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095, Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area, Roche Innovation Center Basel, CH-4070, Basel, Switzerland
| | - Carolyn R Houser
- Departments of Neurobiology and Brain Research Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
13
|
Lachance-Touchette P, Choudhury M, Stoica A, Di Cristo G, Cossette P. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner. Front Cell Neurosci 2014; 8:317. [PMID: 25352779 PMCID: PMC4196543 DOI: 10.3389/fncel.2014.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/21/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1−/− GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic generalized epilepsy syndromes.
Collapse
Affiliation(s)
- Pamela Lachance-Touchette
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - Mayukh Choudhury
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal Montréal, QC, Canada
| | - Ana Stoica
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - Graziella Di Cristo
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal Montréal, QC, Canada
| | - Patrick Cossette
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
14
|
Huang X, Hernandez CC, Hu N, Macdonald RL. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 2014; 68:167-79. [PMID: 24798517 PMCID: PMC4169075 DOI: 10.1016/j.nbd.2014.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the effects of three missense mutations in the GABAA receptor γ2 subunit on GABAA receptor assembly, trafficking and function in HEK293T cells cotransfected with α1, β2, and wildtype or mutant γ2 subunits. The mutations R82Q and P83S were identified in families with genetic epilepsy with febrile seizures plus (GEFS+), and N79S was found in a single patient with generalized tonic-clonic seizures (GTCS). Although all three mutations were located in an N-terminal loop that contributes to the γ+/β- subunit-subunit interface, we found that each mutation impaired GABAA receptor assembly to a different extent. The γ2(R82Q) and γ2(P83S) subunits had reduced α1β2γ2 receptor surface expression due to impaired assembly into pentamers, endoplasmic reticulum (ER) retention and degradation. In contrast, γ2(N79S) subunits were efficiently assembled into GABAA receptors with only minimally altered receptor trafficking, suggesting that N79S was a rare or susceptibility variant rather than an epilepsy mutation. Increased structural variability at assembly motifs was predicted by R82Q and P83S, but not N79S, substitution, suggesting that R82Q and P83S substitutions were less tolerated. Membrane proteins with missense mutations that impair folding and assembly often can be "rescued" by decreased temperatures. We coexpressed wildtype or mutant γ2 subunits with α1 and β2 subunits and found increased surface and total levels of both wildtype and mutant γ2 subunits after decreasing the incubation temperature to 30°C for 24h, suggesting that lower temperatures increased GABAA receptor stability. Thus epilepsy-associated mutations N79S, R82Q and P83S disrupted GABAA receptor assembly to different extents, an effect that could be potentially rescued by facilitating protein folding and assembly.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ciria C Hernandez
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert L Macdonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
15
|
Hancili S, Önal ZE, Ata P, Karatoprak EY, Gürbüz T, Bostancı M, Paçal Y, Nuhoğlu Ç, Ceran Ö. The GABAA receptor γ2 subunit (R43Q) mutation in febrile seizures. Pediatr Neurol 2014; 50:353-6. [PMID: 24630281 DOI: 10.1016/j.pediatrneurol.2014.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/28/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Febrile seizure is the most common form of childhood seizure. Although its exact cause is unclear, many researchers emphasize the importance of its genetic predisposition. Recent genetic studies revealed the importance of the mutations of the gamma-aminobutyric acid A receptor as the etiology of the febrile seizures. R43Q mutation affecting the γ2-subunit N-terminal domain has been related to childhood absence epilepsy and febrile seizure. METHODS We investigated R43Q mutations of the GABRG2 gene, located on the long arm of chromosome 5 encoding the γ2-subunit of the gamma-aminobutyric acid A receptor. We studied 44 patients with febrile seizure and 49 children without any febrile seizure who were admitted to our clinic. RESULTS We found that 36% of our patient group, the children who experienced febrile convulsions, had heterozygous R43Q mutation. Statistical studies revealed that heterozygous R43Q mutation of gamma-aminobutyric acid A receptor γ2 subunit was higher in the study group than in the control group (P < 0.01). CONCLUSIONS Heterozygous gamma-aminobutyric acid A receptor γ2 subunit (R43Q) mutation may have an effect in the development of febrile seizures.
Collapse
Affiliation(s)
- Suna Hancili
- Pediatric Endocrinology Clinic, Göztepe Education and Research Hospital, Medeniyet University, Istanbul, Turkey.
| | - Zehra Esra Önal
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Pınar Ata
- Departments of Genetics and Medical Genetics, Faculty of Medicine, Pendik Training and Research Hospital, Marmara University, Istanbul, Turkey
| | - Elif Yüksel Karatoprak
- Pediatric Neurology Clinic, Göztepe Education and Research Hospital, Medeniyet University, Istanbul, Turkey
| | - Tamay Gürbüz
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Muharrem Bostancı
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Yakup Paçal
- Department of Pediatrics, Medipol University, Istanbul, Turkey
| | - Çağatay Nuhoğlu
- Department of Pediatrics, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, Medipol University, Istanbul, Turkey
| |
Collapse
|
16
|
A novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended phenotypes. Neurobiol Dis 2014; 64:131-141. [PMID: 24407264 DOI: 10.1016/j.nbd.2013.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 01/06/2023] Open
Abstract
Genetic mutations in voltage-gated and ligand-gated ion channel genes have been identified in a small number of Mendelian families with genetic generalised epilepsies (GGEs). They are commonly associated with febrile seizures (FS), childhood absence epilepsy (CAE) and particularly with generalised or genetic epilepsy with febrile seizures plus (GEFS+). In clinical practice, despite efforts to categorise epilepsy and epilepsy families into syndromic diagnoses, many generalised epilepsies remain unclassified with a presumed genetic basis. During the systematic collection of epilepsy families, we assembled a cohort of families with evidence of GEFS+ and screened for variations in the γ2 subunit of the γ-aminobutyric acid (GABA) type A receptor gene (GABRG2). We detected a novel GABRG2(p.R136*) premature translation termination codon in one index-case from a two-generation nuclear family, presenting with an unclassified GGE, a borderline GEFS+ phenotype with learning difficulties and extended behavioural presentation. The GABRG2(p.R136*) mutation segregates with the febrile seizure component of this family's GGE and is absent in 190 healthy control samples. In vitro expression assays demonstrated that γ2(p.R136*) subunits were produced, but had reduced cell-surface and total expression. When γ2(p.R136*) subunits were co-expressed with α1 and β2 subunits in HEK 293T cells, GABA-evoked currents were reduced. Furthermore, γ2(p.R136*) subunits were highly-expressed in intracellular aggregations surrounding the nucleus and endoplasmic reticulum (ER), suggesting compromised receptor trafficking. A novel GABRG2(p.R136*) mutation extends the spectrum of GABRG2 mutations identified in GEFS+ and GGE phenotypes, causes GABAA receptor dysfunction, and represents a putative epilepsy mechanism.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Genetic epilepsies in childhood are a complex group of disorders, with heterogeneous etiologies and clinicopathologic features. This review focuses on primary genetic epilepsies, which may have variable neuropsychiatric comorbidities, but usually have no underlying gross neuropathology or evident metabolic disturbance. Epilepsy due to inherited metabolic diseases, chromosomal abnormalities, phakomatoses, or malformations of cortical development is reviewed elsewhere. RECENT FINDINGS The use of high-throughput approaches to sequence DNA and to detect copy number variants is revealing a landscape of mutations in genetic epilepsies, affecting a variety of genes involved in neuronal excitability, synaptic transmission, neuronal metabolism, or network development. SUMMARY A number of distinct clinical syndromes of pediatric genetic epilepsy have been described and linked to specific gene defects. Phenotypes may include, in addition to epilepsy, variable degrees of intellectual disability, elements of autism spectrum disorders, other psychiatric disorders, and motor impairment. In some cases, these comorbidities derive from uncontrolled seizure activity (epileptic encephalopathies), but in other cases they are direct, multifaceted consequences of global brain dysfunction. Mutations may be de novo, or, when inherited, show reduced penetrance and variable expressivity. Understanding the genetics of these conditions will improve diagnosis, reveal pathogenic mechanisms, and eventually lead to better treatment.
Collapse
|
18
|
Huang X, Tian M, Hernandez CC, Hu N, Macdonald RL. The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis 2012; 48:115-23. [PMID: 22750526 DOI: 10.1016/j.nbd.2012.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/04/2012] [Accepted: 06/22/2012] [Indexed: 01/21/2023] Open
Abstract
The GABRG2 nonsense mutation, Q40X, is associated with the severe epilepsy syndrome, Dravet syndrome, and is predicted to generate a premature translation-termination codon (PTC) in the GABA(A) receptor γ2 subunit mRNA in a position that codes for the first amino acid of the mutant subunit. We determined the effects of the mutation on γ2 subunit mRNA and protein synthesis and degradation, as well as on α1β2γ2 GABA(A) receptor assembly, trafficking and surface expression in HEK cells. Using bacterial artificial chromosome (BAC) constructs, we found that γ2(Q40X) subunit mRNA was degraded by nonsense mediated mRNA decay (NMD). Undegraded mutant mRNA was translated to a truncated peptide, likely the signal peptide, which was cleaved further. We also found that mutant γ2(Q40X) subunits did not assemble into functional receptors, thus decreasing GABA-evoked current amplitudes. The GABRG2(Q40X) mutation is one of several epilepsy-associated nonsense mutations that have the potential to be rescued by reading through the PTC, thus restoring full-length protein translation. As a first approach, we investigated the use of the aminoglycoside, gentamicin, to rescue translation of intact mutant subunits by inducing mRNA read-through. In the presence of gentamicin, synthesis of full length γ2 subunits was partially restored, and surface biotinylation and whole cell recording experiments suggested that rescued γ2 subunits could corporate into functional, surface GABA(A) receptors, indicating a possible direction for future therapy.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | | | | | |
Collapse
|
19
|
Mantegazza M, Rusconi R, Scalmani P, Avanzini G, Franceschetti S. Epileptogenic ion channel mutations: from bedside to bench and, hopefully, back again. Epilepsy Res 2010; 92:1-29. [PMID: 20828990 DOI: 10.1016/j.eplepsyres.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 07/30/2010] [Accepted: 08/08/2010] [Indexed: 01/21/2023]
Abstract
Mutations of genes coding for ion channels cause several genetically determined human epileptic syndromes. The identification of a gene variant linked to a particular disease gives important information, but it is usually necessary to perform functional studies in order to completely disclose the pathogenic mechanisms. The functional consequences of epileptogenic mutations have been studied both in vitro and in vivo with several experimental systems, studies that have provided significant knowledge on the pathogenic mechanisms that leads to inherited human epilepsies, and possibly also on the pathogenic mechanisms of non-genetic human epilepsies due to "acquired channelopathies". However, several open issues remain and difficulties in the interpretation of the experimental data have arisen that limit translational applications. We will highlight the value and the limits of different approaches to the study of epileptogenic channelopathies, focussing on the importance of the experimental systems in the assessment of the functional effects of the mutations and on the possible applications of the obtained results to the clinical practice.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097 and University of Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | |
Collapse
|
20
|
Zawadzki L, Stafstrom CE. Status epilepticus treatment and outcome in children: what might the future hold? Semin Pediatr Neurol 2010; 17:201-5. [PMID: 20727491 DOI: 10.1016/j.spen.2010.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Status epilepticus is a life-threatening emergency that requires urgent treatment. Over the past decade, numerous advances have been made in the management of status epilepticus. Clinical studies have now established the benefit of early, aggressive treatment of status epilepticus with benzodiazepines in both prehospital and hospital settings. Neuroscientific advances are revealing mechanisms of status epilepticus that could translate into targets for treating acute status epilepticus and even reducing epileptogenesis. This article discusses future trends in the diagnosis, neurobiology, and treatment of status epilepticus.
Collapse
Affiliation(s)
- Lucyna Zawadzki
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin, Madison, WI 53705, USA
| | | |
Collapse
|
21
|
Lewis RW, Mabry J, Polisar JG, Eagen KP, Ganem B, Hess GP. Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry 2010; 49:4841-51. [PMID: 20450160 DOI: 10.1021/bi100119t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid type A receptors (GABA(A) receptors) are ligand-gated chloride channels that play a central role in signal transmission within the mammalian central nervous system. Compounds that modulate specific GABA(A) receptor subtypes containing the delta-subunit are scarce but would be valuable research tools and starting points for potential therapeutic agents. Here we report a class of dihydropyrimidinone (DHPM) heterocycles that preferentially potentiate peak currents of recombinant GABA(A) receptor subtypes containing the delta-subunit expressed in HEK293T cells. Using the three-component Biginelli reaction, 13 DHPMs with structural features similar to those of the barbiturate phenobarbital were synthesized; one DHPM used (monastrol) is commercially available. An up to approximately 3-fold increase in the current from recombinant alpha1beta2delta receptors was observed with the DHPM compound JM-II-43A or monastrol when co-applied with saturating GABA concentrations, similar to the current potentiation observed with the nonselective potentiating compounds phenobarbital and tracazolate. No agonist activity was observed for the DHPMs at the concentrations tested. A kinetic model was used in conjunction with dose-dependent measurements to calculate apparent dissociation constant values for JM-II-43A (400 muM) and monastrol (200 microM) at saturating GABA concentrations. We examined recombinant receptors composed of combinations of subunits alpha1, alpha4, alpha5, alpha6, beta2, beta3, gamma2L, and delta with JM-II-43A to demonstrate the preference for potentiation of delta-subunit-containing receptors. Lastly, reduced currents from receptors containing the mutated delta(E177A) subunit, described by Dibbens et al. [(2004) Hum. Mol. Genet. 13, 1315-1319] as a heritable susceptibility allele for generalized epilepsy with febrile seizures plus, are also potentiated by these DHPMs.
Collapse
Affiliation(s)
- Ryan W Lewis
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | | | |
Collapse
|
22
|
Disruption of ClC-2 expression is associated with progressive neurodegeneration in aging mice. Neuroscience 2010; 167:154-62. [DOI: 10.1016/j.neuroscience.2010.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/21/2010] [Indexed: 11/17/2022]
|
23
|
DeSalvo MN, Schridde U, Mishra AM, Motelow JE, Purcaro MJ, Danielson N, Bai X, Hyder F, Blumenfeld H. Focal BOLD fMRI changes in bicuculline-induced tonic-clonic seizures in the rat. Neuroimage 2010; 50:902-9. [PMID: 20079442 DOI: 10.1016/j.neuroimage.2010.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/15/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022] Open
Abstract
Generalized tonic-clonic seizures cause widespread physiological changes throughout the cerebral cortex and subcortical structures in the brain. Using combined blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 9.4 T and electroencephalography (EEG), these changes can be characterized with high spatiotemporal resolution. We studied BOLD changes in anesthetized Wistar rats during bicuculline-induced tonic-clonic seizures. Bicuculline, a GABA(A) receptor antagonist, was injected systemically and seizure activity was observed on EEG as high-amplitude, high-frequency polyspike discharges followed by clonic paroxysmal activity of lower frequency, with mean electrographic seizure duration of 349 s. Our aim was to characterize the spatial localization, direction, and timing of BOLD signal changes during the pre-ictal, ictal and post-ictal periods. Group analysis was performed across seizures using paired t-maps of BOLD signal superimposed on high-resolution anatomical images. Regional analysis was then performed using volumes of interest to quantify BOLD timecourses. In the pre-ictal period we found focal BOLD increases in specific areas of somatosensory cortex (S1, S2) and thalamus several seconds before seizure onset. During seizures we observed BOLD increases in cortex, brainstem and thalamus and BOLD decreases in the hippocampus. The largest ictal BOLD increases remained in the focal regions of somatosensory cortex showing pre-ictal increases. During the post-ictal period we observed widespread BOLD decreases. These findings support a model in which "generalized" tonic-clonic seizures begin with focal changes before electrographic seizure onset, which progress to non-uniform changes during seizures, possibly shedding light on the etiology and pathophysiology of similar seizures in humans.
Collapse
Affiliation(s)
- Matthew N DeSalvo
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gangisetty O, Reddy DS. The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity. J Neurosci Methods 2009; 181:58-66. [PMID: 19406150 DOI: 10.1016/j.jneumeth.2009.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 11/25/2022]
Abstract
The GABA-A receptor plays a critical role in inhibitory neurotransmission in the brain. Quantitation of GABA-A receptor subunits in various brain regions is essential to understand their role in plasticity and brain disorders. However, conventional RNA assays are tedious and less sensitive for use in studies of subunit plasticity. Here we describe optimization of a sensitive assay of GABA-A receptor subunit gene expression by TaqMan real-time PCR. For each subunit gene, a set of primers and TaqMan fluorogenic probe were designed to specifically amplify the target template. The TaqMan methodology was optimized for quantification of mouse GABA-A receptor subunits (alpha(1-6), beta(1-3), gamma(2), and delta) and GAPDH. The TaqMan reaction detected very low levels of gene expression ( approximately 100 template copies of cDNA). A standard curve for GAPDH and one of the target genes, constructed using the cDNA, revealed slopes around -3.4 (r(2)=0.990), reflecting similar optimum PCR efficiencies. The methodology was utilized for quantification of the GABA-A receptor alpha(4)-subunit, which is known to upregulate following withdrawal from chronic progesterone or neurosteroids. Our results show that the alpha(4)-subunit expression increased threefold in the hippocampus following neurosteroid withdrawal in mice. The TaqMan PCR assay allows sensitive, high-throughput transcriptional profiling of complete GABA-A receptor subunit family, and thus provides specific tool for studies of GABA-A receptor subunit plasticity in neurological and psychiatric animal models.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|