1
|
Qiu W, Chen R, Pan L, Li Y, Xu Y, Li Y, Guo A, Huang W, Tan T, Li P, Xie C, Xu H, Lin L, Wang X. Edaravone dexborneol exerts anti-epileptic effects on rodent temporal lobe epilepsy by promoting NMDAR deactivation and inhibiting oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156558. [PMID: 40054180 DOI: 10.1016/j.phymed.2025.156558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Disease-modifying treatments with anti-epileptic effects are currently unavailable and urgently required for temporal lobe epilepsy (TLE). Combined therapy targeting multiple mechanisms may offer a promising anti-epileptic strategy, given the complex processes underlying epileptogenesis. PURPOSE This study evaluates the effects of Edaravone Dexbroneol, a combination of Edaravone and Dexborneol in 4:1, on rat and mouse TLE models and an in vitro epileptiform activity model. METHODS The Pilocarpine-induced rat TLE model and the Kainic acid-induced mouse TLE model were used to assess the in vivo effect of Edaravone and/or Dexbornel. Primary neurons were utilized to evaluate the in vitro effect of drugs using calcium imaging, electrophysiological and biochemical analyses, as well as RNA sequencing. RESULTS Treatment of Edaravone Dexbornel during the latent period significantly alleviated epileptic seizures in rodents, mitigated cognitive impairment, and inhibited neuronal loss and astrocytic activation. In vitro, Edaravone Dexborneol inhibited the action potentials and protected primary hippocampal neurons from Mg2+-free-induced neurite injury. All these effects were significantly more pronounced in the group treated with the Edaravone Dexborneol mixture compared to either drug used individually. Furthermore, Edaravone can significantly inhibit Mg2+-free-induced calcium oscillations in primary neurons, probably by promoting the deactivation of NMDA receptors. RNA sequencing and RT-PCR analysis revealed that synergetic regulation of lipid metabolism, oxidative stress, apoptosis, and calcium signaling probably underlay the neuroprotective effect of Edaravone Dexbornel on epileptic neurons. CONCLUSION Edaravone Dexborneol exhibits antiepileptic effects and may fill the gap in disease-modifying treatments for TLE.
Collapse
Affiliation(s)
- Wanhua Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Roumeng Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Lechen Pan
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Yiqian Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Yuchen Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Yuqian Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Ang Guo
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Wenting Huang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Peijun Li
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, PR China
| | - Chenglong Xie
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Xinshi Wang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Geriatric Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Khalid MU, Raslau FD, Zachariou V, Powell D, Winder Z, Cloyd R, Thomas SH, Kuipers J, Ward Mitchell R, Khouli RE, Ainger T, Mathias S, Mirza FA. Converting "nonlesional" imaging occult epilepsy into a focal lesional entity using advanced imaging techniques: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2025; 9:CASE24667. [PMID: 40294520 PMCID: PMC12036357 DOI: 10.3171/case24667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/11/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND To achieve the best possible outcome in surgical refractory epilepsy, the seizure onset zone must be accurately identified prior to treatment. OBSERVATIONS A 38-year-old man presented with tonic-clonic and focal seizures 2-3 times per month, refractory to antiseizure medications. Scalp EEG, MRI, PET, ictal SPECT, magnetoencephalography, and stereo-EEG (SEEG) did not provide conclusive seizure onset zone localization. Subsequently, the patient was included in the authors' ongoing postictal arterial spin labeling (ASL) study and additional postprocessing was performed with a morphometric analysis program (MAP) and texture analysis. Using these results, the authors reexamined the original structural MR images, with attention paid to the patient's semiology. A subtle focal cortical dysplasia at the junction of the anterior bank of the right precentral gyrus and the precentral sulcus was identified, confirmed with repeat SEEG, and safely resected without functional deficits. The patient is now seizure free at 2 years. LESSONS Advanced imaging techniques, including ASL, MAP, and texture analysis, can manifest seemingly occult epileptogenic foci. Thorough MRI re-review with updated information and new postprocessing tools may be a necessary step in challenging cases. https://thejns.org/doi/10.3171/CASE24667.
Collapse
Affiliation(s)
- Muhammad Usman Khalid
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| | - Flavius D. Raslau
- Department of Radiology, University of Kentucky, Lexington, Kentucky
- Department of Neurology, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| | | | - David Powell
- Magnetic Resonance Imaging & Spectroscopy Center, University of Kentucky, Lexington, Kentucky
| | - Zachary Winder
- Department of Neurology, Washington University in St. Louis, Missouri
| | - Ryan Cloyd
- Department of Neurosurgery, Indiana University, Indianapolis, Indiana
| | - Sarah H. Thomas
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| | - John Kuipers
- Department of Radiology, University of Kentucky, Lexington, Kentucky
| | - Rachel Ward Mitchell
- Department of Neurology, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| | - Riham El Khouli
- Department of Radiology, University of Kentucky, Lexington, Kentucky
| | - Timothy Ainger
- Department of Neurology, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| | - Sally Mathias
- Department of Neurology, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| | - Farhan A. Mirza
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
- Department of Neurology, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Schubert KM, Zieglgänsberger D, Bicciato G, Abraira L, Santamarina E, Álvarez-Sabín J, Ferreira-Atuesta C, Katan M, Sinka L, Terziev R, Deligas N, Erdélyi-Canavese B, Felbecker A, Siebel P, Winklehner M, von Oertzen TJ, Wagner JN, Gigli GL, Nilo A, Janes F, Merlino G, Valente M, Zafra-Sierra MP, Mayor-Romero LC, Conrad J, Evers S, Alet M, Fukuma K, Ihara M, Landau B, Lochner P, Roell F, Brigo F, Bentes C, Peralta AR, Pinho E Melo T, Keezer MR, Duncan JS, Sander JW, Tettenborn B, Koepp MJ, Galovic M. Association of the Timing and Type of Acute Symptomatic Seizures With Poststroke Epilepsy and Mortality. Stroke 2025. [PMID: 40270248 DOI: 10.1161/strokeaha.124.050045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Acute symptomatic seizures (ASyS) increase the risk of epilepsy and mortality after a stroke. The impact of the timing and type of ASyS remains unclear. METHODS This multicenter cohort study included data from 9 centers between 2002 and 2018, with a final analysis in February 2024. The study included 4552 adults (2005 female; median age, 73 years) with ischemic stroke and no seizure history. Seizures were classified using International League Against Epilepsy definitions. We examined ASyS occurring within seven days after stroke. The main outcomes were all-cause mortality and epilepsy. Validation of the updated SeLECT score (SeLECT-ASyS) was performed in 3 independent cohorts (Switzerland, Argentina, and Japan) collected between 2012 and 2024, including 74 adults with ASyS. RESULTS The 10-year risk of poststroke epilepsy ranged from 41% to 94%, and mortality from 36% to 100%, depending on ASyS type and timing. ASyS on stroke onset day had a higher epilepsy risk (adjusted hazard ratio [aHR], 2.3 [95% CI, 1.3-4.0]; P=0.003) compared with later ASyS. Status epilepticus had the highest epilepsy risk (aHR, 9.6 [95% CI, 3.5-26.7]; P<0.001), followed by focal to bilateral tonic-clonic seizures (aHR, 3.4 [95% CI, 1.9-6.3]; P<0.001). Mortality was higher in those with ASyS presenting as focal to bilateral tonic-clonic seizures on day 0 (aHR, 2.8 [95% CI, 1.4-5.6]; P=0.004) and status epilepticus (aHR, 14.2 [95% CI, 3.5-58.8]; P<0.001). The updated SeLECT-ASyS model, available as an application, outperformed a previous model in the derivation cohort (concordance statistics, 0.68 versus 0.58; P=0.02) and in the validation cohort (0.70 versus 0.50; P=0.18). CONCLUSIONS ASyS timing and type significantly affect epilepsy and mortality risk after stroke, improving epilepsy prediction and guiding patient counseling.
Collapse
Affiliation(s)
- Kai Michael Schubert
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Switzerland (K.M.S., G.B., M.K., L.S., R.T., M.G.)
| | - Dominik Zieglgänsberger
- Department of Neurology, Kantonsspital St. Gallen, Switzerland (D.Z., N.D., B.E.-C., A.F., P.S., B.T.)
| | - Giulio Bicciato
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Switzerland (K.M.S., G.B., M.K., L.S., R.T., M.G.)
| | - Laura Abraira
- Epilepsy Unit, Department of Neurology, Vall d'Hebron Hospital Universitari, Barcelona; Universitat Autonoma de Barcelona, Bellaterra, Spain (L.A., E.S., J.A.-S.)
| | - Estevo Santamarina
- Epilepsy Unit, Department of Neurology, Vall d'Hebron Hospital Universitari, Barcelona; Universitat Autonoma de Barcelona, Bellaterra, Spain (L.A., E.S., J.A.-S.)
| | - José Álvarez-Sabín
- Epilepsy Unit, Department of Neurology, Vall d'Hebron Hospital Universitari, Barcelona; Universitat Autonoma de Barcelona, Bellaterra, Spain (L.A., E.S., J.A.-S.)
| | - Carolina Ferreira-Atuesta
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom (C.F.-A., J.S.D., J.W.S., M.J.K., M.G.)
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY (C.F.-A.)
| | - Mira Katan
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Switzerland (K.M.S., G.B., M.K., L.S., R.T., M.G.)
- Department of Neurology, University Hospital and University of Basel, Switzerland (M.K.)
| | - Lucia Sinka
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Switzerland (K.M.S., G.B., M.K., L.S., R.T., M.G.)
- Department of Neurology, Schulthess Klinik, Zurich, Switzerland (L.S.)
| | - Robert Terziev
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Switzerland (K.M.S., G.B., M.K., L.S., R.T., M.G.)
| | - Nico Deligas
- Department of Neurology, Kantonsspital St. Gallen, Switzerland (D.Z., N.D., B.E.-C., A.F., P.S., B.T.)
- Specialist Clinic for Neurorehabilitation, Kliniken Beelitz, Beelitz-Heilstätten, Germany (N.D.)
| | - Barbara Erdélyi-Canavese
- Department of Neurology, Kantonsspital St. Gallen, Switzerland (D.Z., N.D., B.E.-C., A.F., P.S., B.T.)
| | - Ansgar Felbecker
- Department of Neurology, Kantonsspital St. Gallen, Switzerland (D.Z., N.D., B.E.-C., A.F., P.S., B.T.)
| | - Philip Siebel
- Department of Neurology, Kantonsspital St. Gallen, Switzerland (D.Z., N.D., B.E.-C., A.F., P.S., B.T.)
| | - Michael Winklehner
- Johannes Kepler University Linz, Kepler University Hospital, Department of Neurology, Austria (T.J.O., J.N.W., M.W.)
| | - Tim J von Oertzen
- Johannes Kepler University Linz, Kepler University Hospital, Department of Neurology, Austria (T.J.O., J.N.W., M.W.)
| | - Judith N Wagner
- Johannes Kepler University Linz, Kepler University Hospital, Department of Neurology, Austria (T.J.O., J.N.W., M.W.)
- Department of Neurology, Evangelisches Klinikum Gelsenkirchen, Academic Hospital University Essen-Duisburg, Germany (J.N.W.)
| | - Gian Luigi Gigli
- Department of Medicine, University of Udine and Clinical Neurology, Udine University Hospital, Italy (G.L.G., A.N., F.J., G.M., M.V.)
| | - Annacarmen Nilo
- Department of Medicine, University of Udine and Clinical Neurology, Udine University Hospital, Italy (G.L.G., A.N., F.J., G.M., M.V.)
| | - Francesco Janes
- Department of Medicine, University of Udine and Clinical Neurology, Udine University Hospital, Italy (G.L.G., A.N., F.J., G.M., M.V.)
| | - Giovanni Merlino
- Department of Medicine, University of Udine and Clinical Neurology, Udine University Hospital, Italy (G.L.G., A.N., F.J., G.M., M.V.)
| | - Mariarosaria Valente
- Department of Medicine, University of Udine and Clinical Neurology, Udine University Hospital, Italy (G.L.G., A.N., F.J., G.M., M.V.)
| | - María Paula Zafra-Sierra
- Department of Neurology, Fundación Santa Fe de Bogotá, Universidad de Los Andes, Universidad del Bosque, Colombia (M.P.Z.-S., L.C.M.-R.)
| | - Luis Carlos Mayor-Romero
- Department of Neurology, Fundación Santa Fe de Bogotá, Universidad de Los Andes, Universidad del Bosque, Colombia (M.P.Z.-S., L.C.M.-R.)
| | - Julian Conrad
- Department of Neurology, University of Muenster, Germany (J.C., S.E.)
- Division for Neurodegenerative Diseases, Department of Neurology, Universitaetsmedizin Mannheim, University of Heidelberg (J.C.)
| | - Stefan Evers
- Department of Neurology, University of Muenster, Germany (J.C., S.E.)
- Department of Neurology, Krankenhaus Lindenbrunn, Coppenbrügge, Germany (S.E.)
| | - Matias Alet
- Centro Integral de Neurología Vascular, Fleni, Ciudad Autónoma de Buenos Aires, Argentina (M.A.)
| | - Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan (K.F., M.I.)
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan (K.F., M.I.)
| | - Benjamin Landau
- Department of Neurology, Saarland University Medical Center, Homburg, Germany (B.L., P.L., F.R.)
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany (B.L., P.L., F.R.)
| | - Frauke Roell
- Department of Neurology, Saarland University Medical Center, Homburg, Germany (B.L., P.L., F.R.)
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Italy (F.B.)
| | - Carla Bentes
- Department of Neurosciences and Mental Health (Neurology), Hospital de Santa Maria-CHULN; Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Portugal (C.B., A.R.P., T.P.M.)
| | - Ana Rita Peralta
- Department of Neurosciences and Mental Health (Neurology), Hospital de Santa Maria-CHULN; Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Portugal (C.B., A.R.P., T.P.M.)
| | - Teresa Pinho E Melo
- Department of Neurosciences and Mental Health (Neurology), Hospital de Santa Maria-CHULN; Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Portugal (C.B., A.R.P., T.P.M.)
| | - Mark R Keezer
- Stichting Epilepsie Instellingen Nederland-(SEIN), Heemstede, the Netherlands (M.R.K., J.W.S.)
- Centre Hospitalier de l'Université de Montréal, Canada (M.R.K.)
| | - John S Duncan
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom (C.F.-A., J.S.D., J.W.S., M.J.K., M.G.)
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom (C.F.-A., J.S.D., J.W.S., M.J.K., M.G.)
- Stichting Epilepsie Instellingen Nederland-(SEIN), Heemstede, the Netherlands (M.R.K., J.W.S.)
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China (J.W.S.)
| | - Barbara Tettenborn
- Department of Neurology, Kantonsspital St. Gallen, Switzerland (D.Z., N.D., B.E.-C., A.F., P.S., B.T.)
| | - Matthias J Koepp
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom (C.F.-A., J.S.D., J.W.S., M.J.K., M.G.)
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Switzerland (K.M.S., G.B., M.K., L.S., R.T., M.G.)
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom (C.F.-A., J.S.D., J.W.S., M.J.K., M.G.)
| |
Collapse
|
4
|
Köksal-Ersöz E, Benquet P, Wendling F. Expansion of epileptogenic networks via neuroplasticity in neural mass models. PLoS Comput Biol 2024; 20:e1012666. [PMID: 39625956 PMCID: PMC11642990 DOI: 10.1371/journal.pcbi.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/13/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Neuroplasticity refers to functional and structural changes in brain regions in response to healthy and pathological activity. Activity dependent plasticity induced by epileptic activity can involve healthy brain regions into the epileptogenic network by perturbing their excitation/inhibition balance. In this article, we present a new neural mass model, which accounts for neuroplasticity, for investigating the possible mechanisms underlying the epileptogenic network expansion. Our multiple-timescale model is inspired by physiological calcium-mediated synaptic plasticity and pathological extrasynaptic N-methyl-D-aspartate (NMDA) dependent plasticity dynamics. The model highlights that synaptic plasticity at excitatory connections and structural changes in the inhibitory system can transform a healthy region into a secondary epileptic focus under recurrent seizures and interictal activity occurring in the primary focus. Our results suggest that the latent period of this transformation can provide a window of opportunity to prevent the expansion of epileptogenic networks, formation of an epileptic focus, or other comorbidities associated with epileptic activity.
Collapse
|
5
|
Hinojosa J, Becerra V, Candela-Cantó S, Alamar M, Culebras D, Valencia C, Valera C, Rumiá J, Muchart J, Aparicio J. Extra-temporal pediatric low-grade gliomas and epilepsy. Childs Nerv Syst 2024; 40:3309-3327. [PMID: 39191974 DOI: 10.1007/s00381-024-06573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Low-grade gliomas, especially glioneuronal tumors, are a common cause of epilepsy in children. Seizures associated with low-grade pediatric tumors are medically refractory and present a significant burden to patients. Often, morbidity and patients´ quality of life are determined rather by the control of seizures than the oncological process itself and the resolution of epilepsy represents an important part in the treatment of LGGs. The pathogenesis of tumor-related seizures in focal LGG tumors is multifactorial, and mechanisms differ probably among patients and tumor types. Pediatric low-grade tumors associated with epilepsy include a series of neoplasms that have a pure astrocytic or glioneuronal lineage. They are usually benign tumors with a neocortical localization typically in the temporal lobes, but also in other supratentorial locations. Gangliogliomas and dysembryoplastic neuroepithelial tumors (DNET) are the most common entities together with astrocytic gliomas (pilocytic astrocytomas and pleomorphic xanthoastrocytoma) and angiocentric gliomas, and dual pathology is found in up to 40% of glioneuronal tumors. The treatment of low-grade gliomas and associated epilepsy is based mainly on resection and the extent of surgery is the main predictor of postoperative seizure control in patients with a LGG. Long-term epilepsy-associated tumors (LEATs) tend to be well-circumscribed, and therefore, the chances for a complete resection and epilepsy control with a safe approach are very high. New treatments have emerged as alternatives to open microsurgical approaches, including laser thermal ablation or the use of BRAF inhibitors. Future advances in identifying seizure-related biomarkers and molecular tumor pathways will facilitate targeted treatment strategies that will have a deep impact both in oncologic and epilepsy outcomes.
Collapse
Affiliation(s)
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
| | - Victoria Becerra
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Santiago Candela-Cantó
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Mariana Alamar
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Diego Culebras
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valencia
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valera
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Rumiá
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic Barcelona, C. de Villarroel, 170 08036, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Muchart
- Department of Neuroradiology, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Javier Aparicio
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| |
Collapse
|
6
|
Lee W, Kim EY, Kim D, Kim JM. Relationship between continuous EEG monitoring findings and prognostic factors in patients with status epilepticus. Epilepsy Behav 2024; 158:109921. [PMID: 38991422 DOI: 10.1016/j.yebeh.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND PURPOSE Little information is available regarding the use of continuous electroencephalography (cEEG) monitoring findings to predict the prognosis of patients with status epilepticus, which could aid in prognostication. This study investigated the relationship between cEEG monitoring findings and various prognostic indicators in patients with status epilepticus. METHODS We reviewed the clinical profiles and cEEG monitoring data of 28 patients with status epilepticus over a ten-year period. Patient demographics, etiology, EEG features, duration of hospital stay, number of antiseizure medications, and outcome measures were analyzed. Functional outcomes were assessed using the modified Rankin Scale (mRS), which evaluates the degree of daily living impairment and dependence on others resulting from neurological injury. RESULTS Patients exhibiting electrographic status epilepticus (ESE) demonstrated significantly longer duration of status epilepticus (77.75 ± 58.25 vs. 39.86 ± 29.81 h, p = 0.024) and total length of hospital stay (13.00 ± 6.14 vs. 8.14 ± 5.66 days, p = 0.038) when compared to those with ictal-interictal continuum (IIC). Individuals who displayed any increase in modified Rankin Scale (mRS) score between their premorbid state and discharge also had significantly longer duration of status epilepticus (74.09 ± 34.94 vs. 51.56 ± 54.25 h, p = 0.041) and total length of hospital stay (15.89 ± 6.05 vs. 8.05 ± 4.80 days, p = 0.004) when compared to those who showed no difference. The most prevalent etiology of status epilepticus in our study was chronic structural brain lesions. CONCLUSIONS This suggests that ESE may serve as a predictor of prolonged duration of status epilepticus and increased hospitalization among patients with status epilepticus.
Collapse
Affiliation(s)
- Wankiun Lee
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea.
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, 20 Bodeum7-ro, Sejong 30099, Korea
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea.
| |
Collapse
|
7
|
Shen Y, Gong Y, Da X, Gao S, Zhang S, Sun M, Yang Y, Qiu X, Li M, Zheng Y, Fei F, Wang Y, Chen Z, Xu C. Low-frequency Stimulation at the Subiculum Prevents Extensive Secondary Epileptogenesis in Temporal Lobe Epilepsy. Neurosci Bull 2024; 40:564-576. [PMID: 38244139 PMCID: PMC11127896 DOI: 10.1007/s12264-023-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/05/2023] [Indexed: 01/22/2024] Open
Abstract
Secondary epileptogenesis is characterized by increased epileptic susceptibility and a tendency to generate epileptiform activities outside the primary focus. It is one of the major resultants of pharmacoresistance and failure of surgical outcomes in epilepsy, but still lacks effective treatments. Here, we aimed to test the effects of low-frequency stimulation (LFS) at the subiculum for secondary epileptogenesis in a mouse model. Here, secondary epileptogenesis was simulated at regions both contralateral and ipsilateral to the primary focus by applying successive kindling stimuli. Mice kindled at the right CA3 showed higher seizure susceptibilities at both the contralateral CA3 and the ipsilateral entorhinal cortex and had accelerated kindling processes compared with naive mice. LFS at the ipsilateral subiculum during the primary kindling progress at the right CA3 effectively prevented secondary epileptogenesis at both the contralateral CA3 and the ipsilateral entorhinal cortex, characterized by decreased seizure susceptibilities and a retarded kindling process at those secondary foci. Only application along with the primary epileptogenesis was effective. Notably, the effects of LFS on secondary epileptogenesis were associated with its inhibitory effect at the secondary focus through interfering with the enhancement of synaptic connections between the primary and secondary foci. These results imply that LFS at the subiculum is an effective preventive strategy for extensive secondary epileptogenesis in temporal lobe epilepsy and present the subiculum as a target with potential translational importance.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shajing Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuo Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Thompson SA. Kindling in humans: Does secondary epileptogenesis occur? Epilepsy Res 2023; 198:107155. [PMID: 37301727 DOI: 10.1016/j.eplepsyres.2023.107155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
The relevance of secondary epileptogenesis for human epilepsy remains a controversial subject decades after it was first described in animal models. Whether or not a previously normal brain region can become independently epileptogenic through a kindling-like process has not, and cannot, be definitely proven in humans. Rather than reliance on direct experimental evidence, attempts to answering this question must depend on observational data. In this review, observations based largely upon contemporary surgical series will advance the case for secondary epileptogenesis in humans. As will be argued, hypothalamic hamartoma-related epilepsy provides the strongest case for this process; all the stages of secondary epileptogenesis can be observed. Hippocampal sclerosis (HS) is another pathology where the question of secondary epileptogenesis frequently arises, and observations from bitemporal and dual pathology series are explored. The verdict here is far more difficult to reach, in large part because of the scarcity of longitudinal cohorts; moreover, recent experimental data have challenged the claim that HS is acquired consequent to recurrent seizures. Synaptic plasticity more than seizure-induced neuronal injury is the likely mechanism of secondary epileptogenesis. Postoperative running-down phenomenon provides the best evidence that a kindling-like process occurs in some patients, evidenced by its reversal. Finally, a network perspective of secondary epileptogenesis is considered, as well as the possible role for subcortical surgical interventions.
Collapse
Affiliation(s)
- Stephen A Thompson
- Department of Medicine (Neurology), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Tescarollo FC, Valdivia D, Chen S, Sun H. Unilateral optogenetic kindling of hippocampus leads to more severe impairments of the inhibitory signaling in the contralateral hippocampus. Front Mol Neurosci 2023; 16:1268311. [PMID: 37942301 PMCID: PMC10627882 DOI: 10.3389/fnmol.2023.1268311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
The kindling model has been used extensively by researchers to study the neurobiology of temporal lobe epilepsy (TLE) due to its capacity to induce intensification of seizures by the progressive recruitment of additional neuronal clusters into epileptogenic networks. We applied repetitive focal optogenetic activation of putative excitatory neurons in the dorsal CA1 area of the hippocampus of mice to investigate the role of inhibitory signaling during this process. This experimental protocol resulted in a kindling phenotype that was maintained for 2 weeks after the animals were fully kindled. As a result of the different phases of optogenetic kindling (OpK), key inhibitory signaling elements, such as KCC2 and NKCC1, exhibited distinct temporal and spatial dynamics of regulation. These alterations in protein expression were related to the distinct pattern of ictal activity propagation through the different hippocampal sublayers. Our results suggest the KCC2 disruption in the contralateral hippocampus of fully kindled animals progressively facilitated the creation of pathological pathways for seizure propagation through the hippocampal network. Upon completion of kindling, we observed animals that were restimulated after a rest period of 14-day showed, besides a persistent KCC2 downregulation, an NKCC1 upregulation in the bilateral dentate gyrus and hippocampus-wide loss of parvalbumin-positive interneurons. These alterations observed in the chronic phase of OpK suggest that the hippocampus of rekindled animals continued to undergo self-modifications during the rest period. The changes resulting from this period suggest the possibility of the development of a mirror focus on the hippocampus contralateral to the site of optical stimulations. Our results offer perspectives for preventing the recruitment and conversion of healthy neuronal networks into epileptogenic ones among patients with epilepsy.
Collapse
Affiliation(s)
| | | | | | - Hai Sun
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
10
|
Mehrotra A, Singh S, Kanjilal S, Pal L, Paliwal VK, Sardhara J, Behari S. Seizure-outcome after surgery of low-grade epilepsy associated neuro-epithelial tumors. J Neurosurg Sci 2023; 67:591-597. [PMID: 33320468 DOI: 10.23736/s0390-5616.20.05144-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Most patients with glioneuronal tumors present with seizures. Although several studies have shown that greater extent of resection improves overall patient survival, few studies have focused on postoperative seizure outcome after resection of these tumors. The aim of this study was to characterize seizure control rates in patients undergoing glioneuronal tumor resection and evaluate the association between poor seizure outcome and tumor recurrence or progression. METHODS The study population included patients who had undergone resection of glioneuronal tumors between 2014 and 2019 at our institution. Seizure outcome was assessed using Engel grading. Preoperative seizure characteristics, tumor characteristics, surgical factors, and postoperative seizure outcomes were reviewed. RESULTS Twenty-six patients (N.=16, temporal lobe; N.=6, frontal lobe; N.=4, parietal lobe) with mean seizures duration of 56.9-months, were assessed. Histopathologically, N.=15 dysembryoplastic neurepithelial tumor, N.=7 ganglioglioma and N.=4 Diffuse lepto-meningeal neuroepithelial tumor. There were 2 cases of complex DNET and one case of DLMNT had associated cortical dysplasia. At mean follow-up of 49.7 months, N.=20 Engel 1, N.=4 Engel 2 and N.=2 had Engel 3 outcome. N.=20 underwent gross total excision (N.=18 Engel 1 and N.=2 Engel 2) and N.=6 sub-total excision. Among the 4 patients who needed re-surgery, two were in Engel 2 and another two were in Engel 3. CONCLUSIONS Good seizure-outcome is likely associated with extent of resection. Younger age of patient, less than one-year of seizure duration and absence of generalization of seizure are good prognostic indicators. The best seizure-control can be achieved by early surgical intervention.
Collapse
Affiliation(s)
- Anant Mehrotra
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India -
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences, Raebarely, India
| | - Soumen Kanjilal
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Lily Pal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vimal K Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jayesh Sardhara
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sanjay Behari
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
11
|
Merenzon MA, Bhatia S, Levy A, Eatz T, Morell AA, Daggubati LC, Luther E, Shah AH, Komotar RJ, Ivan ME. Frontal lobe low-grade tumors seizure outcome: a pooled analysis of clinical predictors. Clin Neurol Neurosurg 2023; 226:107600. [PMID: 36709666 DOI: 10.1016/j.clineuro.2023.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Seizures present in 50-90 % of cases with low-grade brain tumors. Frontal lobe epilepsy is associated with dismal seizure outcomes compared to temporal lobe epilepsy. Our objective is to conduct a systematic review, report our case series, and perform a pooled analysis of clinical predictors of seizure outcomes in frontal lobe low-grade brain tumors. METHODS Searches of five electronic databases from January 1990 to June 2022 were reviewed following PRISMA guidelines. Individual patient data was extracted from 22 articles that fit the inclusion criteria. A single-surgeon case series from our institution was also retrospectively reviewed and analyzed through a pooled cohort of 127 surgically treated patients with frontal lobe low-grade brain tumors. RESULTS The mean age at surgery was 30.8 years, with 50.4 % of patients diagnosed as oligodendrogliomas. The majority of patients (81.1 %) were seizure-free after surgery (Engel I). On the multivariate analysis, gross total resection (GTR) (OR = 8.77, 95 % CI: 1.99-47.91, p = 0.006) and awake resection (OR = 9.94, 95 % CI: 1.93-87.81, p = 0.015) were associated with seizure-free outcome. A Kaplan-Meier curve showed that the probability of seizure freedom fell to 92.6 % at 3 months, and to 85.5 % at 27.3 months after surgery. CONCLUSION Epilepsy from tumor origin demands a balance between oncological management and epilepsy cure. Our pooled analysis suggests that GTR and awake resections are positive predictive factors for an Engel I at more than 6 months follow-up. To validate these findings, a longer-term follow-up and larger cohorts are needed.
Collapse
Affiliation(s)
- Martín A Merenzon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Shovan Bhatia
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adam Levy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tiffany Eatz
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lekhaj C Daggubati
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Yang N, Chen YB, Zhang YF. The rearrangement of actin cytoskeleton in mossy fiber synapses in a model of experimental febrile seizures. Front Neurol 2023; 14:1107538. [PMID: 37181554 PMCID: PMC10170767 DOI: 10.3389/fneur.2023.1107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background Experimental complex febrile seizures induce a persistent hippocampal hyperexcitability and an enhanced seizure susceptibility in adulthood. The rearrangement of filamentous actin (F-actin) enhances the excitability of hippocampus and contributes to epileptogenesis in epileptic models. However, the remodeling of F-actin after prolonged febrile seizures is to be determined. Methods Prolonged experimental febrile seizures were induced by hyperthermia on P10 and P14 rat pups. Changes of actin cytoskeleton in hippocampal subregions were examined at P60 and the neuronal cells and pre- /postsynaptic components were labeled. Results F-actin was increased significantly in the stratum lucidum of CA3 region in both HT + 10D and HT + 14D groups and further comparison between the two groups showed no significant difference. The abundance of ZNT3, the presynaptic marker of mossy fiber (MF)-CA3 synapses, increased significantly whereas the postsynaptic marker PSD95 did not change significantly. Overlapping area of F-actin and ZNT3 showed a significant increase in both HT+ groups. The results of cell counts showed no significant increase or decrease in the number of neurons in each area of hippocampus. Conclusion F-actin was significantly up-regulated in the stratum lucidum of CA3, corresponding to the increase of the presynaptic marker of MF-CA3 synapses after prolonged febrile seizures, which may enhance the excitatory output from the dentate gyrus to CA3 and contribute to the hippocampal hyperexcitability.
Collapse
Affiliation(s)
- Nuo Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
| | - Yin-Bo Chen
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
| | - Yan-Feng Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China
- *Correspondence: Yan-Feng Zhang,
| |
Collapse
|
13
|
Bruzzone MJ, Issa NP, Wu S, Rose S, Esengul YT, Towle VL, Nordli D, Warnke PC, Tao JX. Hippocampal spikes have heterogeneous scalp EEG correlates important for defining IEDs. Epilepsy Res 2022; 182:106914. [DOI: 10.1016/j.eplepsyres.2022.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/20/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
|
14
|
Wei J, Liu H, Liu Z, Jiang X, Wang W. The Temporal and Spatial Changes of Th17, Tregs, and Related Cytokines in Epilepsy Lesions. Appl Bionics Biomech 2022; 2022:7871302. [PMID: 35528532 PMCID: PMC9071937 DOI: 10.1155/2022/7871302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular and molecular mechanisms in pathogenesis and development of epilepsy are still unclear. Specific inflammatory mediators and immune cells may play an important role. The aim of the present study was to investigate the temporal and spatial changes of Th17, Tregs, and related cytokines in epilepsy lesions. LiCl-pilocarpine-induced temporal lobe epilepsy (TLE) rat models were established, sensorimotor function was examined using modified neurological severity score (mNSS), cognitive function was evaluated by Morris water maze (MWM) test, pathological damages were detected by H&E staining and Nissl staining, helper T cells 17 (Th17), regulatory CD4+ T cells (Tregs), and their related cytokines were detected by Western blotting and immune staining. Results showed that Th17 and its related cytokines in epilepsy lesions played a role mainly at acute phase of epilepsy, and they were positively correlated with the pathological changes in the hippocampus and neurological and cognitive dysfunction caused by epilepsy. Conversely, Tregs and their related cytokines mainly played a role at progressive phase and had the opposite effect. Th17 and Tregs restricted each other during the recovery phase to achieve functional balance. Our results suggested that Th17, Tregs, and related cytokines in epilepsy lesions played an important role in the pathogenesis and development of epilepsy and balancing Th17 and Tregs may be efficacious therapeutics for patients with epilepsy.
Collapse
Affiliation(s)
- Jingbo Wei
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Hui Liu
- North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Ziqi Liu
- North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaohua Jiang
- North China University of Science and Technology, Tangshan, Hebei 063210, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei 063210, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
15
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Marissal T. An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
Affiliation(s)
- T Marissal
- INMED, Inserm UMR1249, Aix-Marseille université, Marseille, France.
| |
Collapse
|
17
|
Pototskiy E, Dellinger JR, Bumgarner S, Patel J, Sherrerd-Smith W, Musto AE. Brain injuries can set up an epileptogenic neuronal network. Neurosci Biobehav Rev 2021; 129:351-366. [PMID: 34384843 DOI: 10.1016/j.neubiorev.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Development of epilepsy or epileptogenesis promotes recurrent seizures. As of today, there are no effective prophylactic therapies to prevent the onset of epilepsy. Contributing to this deficiency of preventive therapy is the lack of clarity in fundamental neurobiological mechanisms underlying epileptogenesis and lack of reliable biomarkers to identify patients at risk for developing epilepsy. This limits the development of prophylactic therapies in epilepsy. Here, neural network dysfunctions reflected by oscillopathies and microepileptiform activities, including neuronal hyperexcitability and hypersynchrony, drawn from both clinical and experimental epilepsy models, have been reviewed. This review suggests that epileptogenesis reflects a progressive and dynamic dysfunction of specific neuronal networks which recruit further interconnected groups of neurons, with this resultant pathological network mediating seizure occurrence, recurrence, and progression. In the future, combining spatial and temporal resolution of neuronal non-invasive recordings from patients at risk of developing epilepsy, together with analytics and computational tools, may contribute to determining whether the brain is undergoing epileptogenesis in asymptomatic patients following brain injury.
Collapse
Affiliation(s)
- Esther Pototskiy
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; College of Sciences, Old Dominion University, Norfolk, Virginia
| | - Joshua Ryan Dellinger
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Stuart Bumgarner
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Jay Patel
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - William Sherrerd-Smith
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Alberto E Musto
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; Department of Neurology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA.
| |
Collapse
|
18
|
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep 2020; 29:2875-2889.e6. [PMID: 31775052 PMCID: PMC6905501 DOI: 10.1016/j.celrep.2019.10.100] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
Collapse
Affiliation(s)
- Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Hannah L Bernstein
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
19
|
Straub J, Gawda A, Ravichandran P, McGrew B, Nylund E, Kang J, Burke C, Vitko I, Scott M, Williamson J, Joshi S, Kapur J, Perez-Reyes E. Characterization of kindled VGAT-Cre mice as a new animal model of temporal lobe epilepsy. Epilepsia 2020; 61:2277-2288. [PMID: 32954490 DOI: 10.1111/epi.16651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Development of novel therapies for temporal lobe epilepsy is hindered by a lack of models suitable for drug screening. While testing the hypothesis that "inhibiting inhibitory neurons" was sufficient to induce seizures, it was discovered that a mild electrical kindling protocol of VGAT-Cre mice led to spontaneous motor and electrographic seizures. This study characterizes these seizures and investigates the mechanism. METHODS Mice were implanted with electroencephalographic (EEG) headsets that included a stimulating electrode in the hippocampus before being electrically kindled. Seizures were evaluated by review of EEG recordings and behavior. γ-Aminobutyric acidergic (GABAergic) neurotransmission was evaluated by quantitative polymerase chain reaction, immunocytochemistry, Western blot, and electrophysiology. RESULTS Electrical kindling of VGAT-Cre mice induces spontaneous recurring seizures after a short latency (6 days). Seizures occur 1-2 times per day in both male and female mice, with only minimal neuronal death. These mice express Cre recombinase under the control of the vesicular GABA transporter (VGAT), a gene that is specifically expressed in GABAergic inhibitory neurons. The insertion of Cre disrupts the expression of VGAT mRNA and protein, and impairs GABAergic synaptic transmission in the hippocampus. SIGNIFICANCE Kindled VGAT-Cre mice can be used to study the mechanisms involved in epileptogenesis and may be useful for screening novel therapeutics.
Collapse
Affiliation(s)
- Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Pranav Ravichandran
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Bailey McGrew
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Elsa Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Julianna Kang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Cassidy Burke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Scott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Mehrotra A, Singh S, Kanjilal S, Kumar A, Pal L, Mathur V, Paliwal VK, Sardhara J, Bhaisora KS, Srivastava AK, Jaiswal AK, Behari S. Long-Term Epilepsy-Associated Tumors (LEATs): A Single-Center, Retrospective Series and Review of Literature on Factors Affecting the Seizure Outcome. World Neurosurg 2020; 144:e149-e155. [PMID: 32791221 DOI: 10.1016/j.wneu.2020.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumors presenting with drug-resistant seizures are termed as long-term epilepsy-associated tumors (LEATs). LEATs are more common in the temporal lobe, occur predominantly in pediatric age, and focal neurological deficits are rare. In this article, we aim to highlight our surgical experience in terms of seizure outcome among LEATs and discuss the factors affecting outcome. METHODOLOGY We have retrospectively analyzed all the operated cases of intra-axial brain tumors with seizures (2015-2019). The clinical and radiographic data were collected from the hospital record system. For comparison, 2 groups were made (group 1 with good seizure control, i.e., Engel 1; and group 2 poor seizure outcome, i.e., Engel 2 and 3). RESULTS A total of 51 cases were included; the temporal lobe was the most common location (n = 27); 23 patients had seizure frequency of "more than 1 seizure per week." Focal unaware seizures/complex partial seizures were the most common type of seizures encountered (n = 28). At a mean follow-up of 39.60 months, 38 patients had Engel 1 (78.5%) outcome (35 cases [71.05%] had the seizure duration of ≤2 years). The median duration of symptoms (group 1, 25 months vs. group 2, 65 months) was significantly different (P = 0.002). On comparing patients with seizure duration, we found a statistically significant difference (P < 0.00001). CONCLUSION A shorter duration of symptoms, younger age of the patient, partial/focal seizures, and gross total excision were predictors of a good seizure outcome. Histopathology of the tumor does not affect the outcome when one compares glioneuronal tumors with non-glioneuronal tumors.
Collapse
Affiliation(s)
- Anant Mehrotra
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| | - Suyash Singh
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Soumen Kanjilal
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Ashutosh Kumar
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Lily Pal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Vrinda Mathur
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Vimal K Paliwal
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Jayesh Sardhara
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kamlesh Singh Bhaisora
- Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Arun Kumar Srivastava
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Awadhesh K Jaiswal
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sanjay Behari
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
21
|
Mehrotra A, Singh S, Kanjilal S, Pal L, Paliwal VK, Sardhara J, Verma PK, Maurya VP, Bhaisora KS, Das KK, Srivastava AK, Jaiswal AK, Behari S. Factors affecting seizure outcome in Long-term epilepsy associated tumors (LEATs) in children and young adolescents. Clin Neurol Neurosurg 2020; 197:106104. [PMID: 32738652 DOI: 10.1016/j.clineuro.2020.106104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Tumors with seizures as primary mode of presentation are collectively called Long-term epilepsy associated tumors (LEATs or Epileptomas). The overall survival is good so 'seizure outcome' becomes the primary goal rather than neuro-oncological outcome. METHODS A retrospective analysis of our surgical database (2015-19) was done to find operated patients of intra-axial brain tumors with age less than 25-years and who had presented with seizures. RESULTS The mean age at presentation was 16.44 years (SD + 6.82 years). Complex partial seizures/focal unaware seizures were the most common type of seizures encountered (n = 22) with mean duration of seizures was 49.50 months (SD + 31.04 months). The most common pathology was glioneuronal tumors (GNTs) (n = 17). Gross total resection (GTR) group had a significantly better seizure outcome as compared with the Subtotal resection (STR) group (p = 0.006). Presence of focal or partial seizure was a significant factor pointing towards a better seizure control (p = 0.005). CONCLUSION The shorter duration of symptoms, partial/focal seizures and gross total excision were predictors of a good seizure-outcome. Age of the patient and the histopathology of the tumor does not affect seizure-outcome on comparing GNTs with non GNTs.
Collapse
Affiliation(s)
- Anant Mehrotra
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Suyash Singh
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Soumen Kanjilal
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Lili Pal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Vimal K Paliwal
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Jayesh Sardhara
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Pawan K Verma
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Ved P Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Kamlesh S Bhaisora
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Kuntal K Das
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Arun K Srivastava
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Awadhesh K Jaiswal
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sanjay Behari
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| |
Collapse
|
22
|
Li R, Wu B, He M, Zhang P, Zhang Q, Deng J, Yuan J, Chen Y. HAP1 Modulates Epileptic Seizures by Regulating GABA AR Function in Patients with Temporal Lobe Epilepsy and in the PTZ-Induced Epileptic Model. Neurochem Res 2020; 45:1997-2008. [PMID: 32419121 DOI: 10.1007/s11064-020-03052-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
Abstract
The number of γ-aminobutyric acid type A receptors (GABAARs) expressed on the surface membrane and at synaptic sites is implicated in the enhanced excitation of neuronal circuits and abnormal network oscillations in epilepsy. Huntingtin-associated protein 1 (HAP1), a key mediator of pathological alterations in protein trafficking, directly interacts with GABAARs and facilitates their recycling back to synapses after internalization from the surface; thus, HAP1 regulates the strength of inhibitory synaptic transmission. Here, we show that HAP1 modulates epileptic seizures by regulating GABAAR function in patients with temporal lobe epilepsy (TLE) and in the pentylenetetrazol (PTZ)-induced epileptic model. We demonstrate that GABAARβ2/3 and HAP1 expression are decreased and that the HAP1-GABAARβ2/3 complex is disrupted in the epileptic rat brain. We found that HAP1 upregulation exerts antiepileptic activity in the PTZ-induced seizure and that these changes are associated with increased surface GABAARβ2/3 expression and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). This study provides evidence that hippocampal HAP1 is linked to GABAARs in evoking seizures and suggests that this mechanism is involved in epileptic seizures in the brain, representing a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Rong Li
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bing Wu
- Department of Neurology, Chongqing Key Laboratory of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miaoqing He
- Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Zhang
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qinbin Zhang
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Deng
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinxian Yuan
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangmei Chen
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Ko A, Lee JS. Factors associated with seizure and cognitive outcomes after epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumors in children. Clin Exp Pediatr 2020; 63:171-177. [PMID: 32024326 PMCID: PMC7254172 DOI: 10.3345/kjp.2019.01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Low-grade epilepsy-associated neuroepithelial tumors (LEATs) are responsible for drug-resistant chronic focal epilepsy, and are the second-most common reason for epilepsy surgery in children. LEATs are extremely responsive to surgical treatment, and therefore epilepsy surgery should be considered as a treatment option for LEATs. However, the optimal time for surgery remains controversial, and surgeries are often delayed. In this review, we reviewed published article on the factors associated with seizure and cognitive outcomes after epilepsy surgery for LEATs in children to help clinicians in their decision whether to pursue epilepsy surgery for LEATs. The achievement of gross total resection may be the most important prognostic factor for seizure freedom. A shorter duration of epilepsy, a younger age at surgery, and extended resection of temporal lobe tumors have also been suggested as favorable prognostic factors in terms of seizure control. Poor cognitive function in children with LEATs is associated with a longer duration of epilepsy and a younger age at seizure onset.
Collapse
Affiliation(s)
- Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University College of Medicine, Yangsan, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
McCarren HS, Eisen MR, Nguyen DL, Dubée PB, Ardinger CE, Dunn EN, Haines KM, Santoro AN, Bodner PM, Ondeck CA, Honnold CL, McDonough JH, Beske PH, McNutt PM. Characterization and treatment of spontaneous recurrent seizures following nerve agent-induced status epilepticus in mice. Epilepsy Res 2020; 162:106320. [PMID: 32182542 PMCID: PMC7156324 DOI: 10.1016/j.eplepsyres.2020.106320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop and characterize a mouse model of spontaneous recurrent seizures following nerve agent-induced status epilepticus (SE) and test the efficacy of existing antiepileptic drugs. METHODS SE was induced in telemeterized male C57Bl6/J mice by soman exposure, and electroencephalographic activity was recorded for 4-6 weeks. Mice were treated with antiepileptic drugs (levetiracetam, valproic acid, phenobarbital) or corresponding vehicles for 14 d after exposure, followed by 14 d of drug washout. Survival, body weight, seizure characteristics, and histopathology were used to characterize the acute and chronic effects of nerve agent exposure and to evaluate the efficacy of treatments in mitigating or preventing neurological effects. RESULTS Spontaneous recurrent seizures manifested in all survivors, but the number and frequency of seizures varied considerably among mice. In untreated mice, seizures became longer over time. Moderate to severe histopathology was observed in the amygdala, piriform cortex, and CA1. Levetiracetam provided modest improvements in neurological parameters such as reduced spike rate and improved histopathology scores, whereas valproic acid and phenobarbital were largely ineffective. CONCLUSIONS This model of post-SE spontaneous recurrent seizures differs from other experimental models in the brief latency to seizure development, the occurrence of seizures in 100 % of exposed animals, and the lack of damage to CA4/dentate gyrus. It may serve as a useful tool for rapidly and efficiently screening novel therapies that would be effective against severe epilepsy cases.
Collapse
Affiliation(s)
- Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States.
| | - Margaret R Eisen
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Dominique L Nguyen
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Parker B Dubée
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Cherish E Ardinger
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Emily N Dunn
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Kari M Haines
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Antonia N Santoro
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Paige M Bodner
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Cary L Honnold
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Phillip H Beske
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Patrick M McNutt
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| |
Collapse
|
25
|
Sullivan BJ, Kadam SD. The involvement of neuronal chloride transporter deficiencies in epilepsy. NEURONAL CHLORIDE TRANSPORTERS IN HEALTH AND DISEASE 2020:329-366. [DOI: 10.1016/b978-0-12-815318-5.00014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Lamb GV, Green RJ, Olorunju S. Tracking epilepsy and autism. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0103-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
28
|
Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol 2019; 328:68-72. [DOI: 10.1016/j.jneuroim.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
|
29
|
Tchekalarova J, Atanasova D, Kortenska L, Lazarov N, Shishmanova-Doseva M, Galchev T, Marinov P. Agomelatine alleviates neuronal loss through BDNF signaling in the post-status epilepticus model induced by kainic acid in rat. Brain Res Bull 2019; 147:22-35. [PMID: 30738136 DOI: 10.1016/j.brainresbull.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, we have reported that while agomelatine (Ago) is unable to prevent development of epilepsy it exerts a strong neuroprotective and anti-inflammatory response in the KA post-status epilepticus (SE) rat model. In the present study, we aimed to explore whether the brain-derived neurotrophic factor (BDNF) in the hippocampus is involved in the neuroprotective effect of Ago against the KA-induced SE and epileptiform activity four months later in rats. Lacosamide (LCM) was used as a positive control. The EEG-recorded seizure activity was also evaluated in two treatment protocols. In Experiment#1, Ago given repeatedly at a dose of 40 mg/kg during the course of SE was unable neither to modify EEG-recorded epileptiform activity nor the video- and EEG-recorded spontaneous seizures four months later compared to LCM (50 mg/kg). However, both Ago and LCM inhibited the expression of BDNF in the mossy fibers and also prevented neuronal loss in the dorsal hippocampal and the piriform cortex after SE. In Experiment#2, acute injection of Ago and LCM on epileptic rats, characterized by high seizure rates, did not prevent EEG-recorded paroxysmal events while only LCM decreased either absolute or relative powers of gamma (28-60 Hz) and high (HI) (60-120 Hz) frequency bands to baseline in the frontal and parietal cortex, respectively. Our results suggest that the protection against neuronal loss in specific limbic regions and overexpressed BDNF in the mossy fibers resulting from the repeated treatment with Ago and LCM, respectively, during SE is not a prerequisite for alleviation of epileptogenesis and development of epilepsy. In addition, a reduction of gamma and HI bands in the frontal and parietal cortex is not associated with EEG-recorded paroxysmal events after acute injection of LCM.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| | | | | | - Pencho Marinov
- Institute of Information and Communication Technologies, BAS, Sofia, Bulgaria
| |
Collapse
|
30
|
Títoff V, Moury HN, Títoff IB, Kelly KM. Seizures, Antiepileptic Drugs, and CKD. Am J Kidney Dis 2019; 73:90-101. [DOI: 10.1053/j.ajkd.2018.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/06/2018] [Indexed: 01/19/2023]
|
31
|
Lam PM, González MI. Calpain activation and neuronal death during early epileptogenesis. Neurobiol Dis 2018; 124:141-151. [PMID: 30423475 DOI: 10.1016/j.nbd.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a brain disorder characterized by a predisposition to suffer epileptic seizures. Acquired epilepsy might be the result of brain insults like head trauma, stroke, brain infection, or status epilepticus (SE) when one of these triggering injuries starts a transformative process known as epileptogenesis. There is some data to suggest that, during epileptogenesis, seizures themselves damage the brain but there is no conclusive evidence to demonstrate that spontaneous recurrent seizures themselves injure the brain. Our recent evidence indicates that calpain overactivation might be relevant for epileptogenesis. Here, we investigated if spontaneous recurrent seizures that occur during an early period of epileptogenesis show any correlation with the levels of calpain activation and/or expression. In addition, we also investigated a possible association between the occurrence of spontaneous seizures and increased levels of cell death, gliosis and inflammation (typical markers associated with epileptogenesis). We found that the number of spontaneous seizures detected prior to sample collection was correlated with altered calpain activity and expression. Moreover, the levels of hippocampal neurodegeneration were also correlated with seizure occurrence. Our findings suggest that, at least during early epileptogenesis, there is a correlation between seizure occurrence, calpain activity and neurodegeneration. Thus, this study opens the possibility that aberrant calpain reactivation by spontaneous seizures might contribute to the manifestation of future spontaneous seizures.
Collapse
Affiliation(s)
- Philip M Lam
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco I González
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
Yan S, Zhang H, Xie W, Meng F, Zhang K, Jiang Y, Zhang X, Zhang J. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 2018; 8:4136-4146. [PMID: 27926529 PMCID: PMC5354818 DOI: 10.18632/oncotarget.13744] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common type of focal epilepsy. The present study aimed to explore the expression and functions of exosomal microRNAs in mTLE-HS. A total of 50 microRNAs were found to be differentially expressed in mTLE-HS compared with healthy controls. Among them, 2 were increased and 48 were decreased. The 6 significant differentially expressed candidate microRNAs (miR-3613-5p, miR-4668-5p, miR-8071, miR-197-5p, miR-4322, and miR-6781-5p ) in exosome were validated. The bioinformatics analysis showed that the potential target genes of these microRNAs were involved in biological processes, molecular functions, and cellular components. Similarly, these microRNAs also affected axon guidance, pathways in cancer, regulation of the actin cytoskeleton, focal adhesion, the calcium signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. Among 6 candidate microRNAs, miR-8071 had the best diagnostic value for mTLE-HS with 83.33% sensitivity and 96.67% specificity, and was associated with seizure severity. This study indicated that exosomal microRNAs, may be regulators for the seizure development in mTLE-HS, and can be used as potential therapeutic targets and biomarker for diagnosis in mTLE-HS.
Collapse
Affiliation(s)
- Shaofeng Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyan Xie
- Department of Clinical Laboratory, Qian Fo Shan Hospital of Shandong Province, Jinan, Shandong Province, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Surgical treatment of neuronal-glial tumors of mesial-basal part of temporal lobe: Long term outcome and control of epilepsy in pediatric patients. Neurol Neurochir Pol 2018; 52:2-8. [DOI: 10.1016/j.pjnns.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022]
|
34
|
Zhu X, Dong J, Xia Z, Zhang A, Chao J, Yao H. Repeated restraint stress increases seizure susceptibility by activation of hippocampal endoplasmic reticulum stress. Neurochem Int 2017; 110:25-37. [PMID: 28887093 DOI: 10.1016/j.neuint.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/02/2017] [Accepted: 09/01/2017] [Indexed: 01/09/2023]
Abstract
A growing body of evidence suggests that stress triggers a variety of pathophysiological responses. Recent studies show that stress produces enduring effects on structure and function of hippocampus, which is one of the most important structures involved in epilepsy. In the present study, we determined the effect of repeated restraint stress exposure on the susceptibility of pentylenetetrazole (PTZ)-induced seizures and the possible mechanisms involved using a rodent model. Our results show that mice subjected to repeated restraint stress exhibited shorter latency to PTZ-induced tonic-clonic seizures and higher seizure severity, suggesting chronic restraint stress increases seizure susceptibility. Following repeated restraint stress, we observed an increased level of endoplasmic reticulum (ER) stress as well as oxidative stress in the hippocampus. Moreover, our results show that chronic restraint stress exposure causes neuron loss in the hippocampus. Inhibition of ER stress with chemical chaperone, tauroursodeoxycholic acid (TUDCA), however, protects against chronic restraint stress-induced neuron loss, suggesting repeated restraint stress-induced neuronal degeneration is dependent on ER stress activation. On the other hand, inhibition of ER stress with TUDCA suppresses restraint stress-induced seizure susceptibility. Taken together, these results indicate that repeated restraint stress increases seizure susceptibility by activation of hippocampal ER stress and ER stress mediated oxidative stress and neurodegeneration. Thus, attenuating ER stress may serve as a potential therapeutic strategy targeted to block stress-induced seizure activities.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center of Nanjing Medical University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
35
|
Skoczen A, Setkowicz Z, Janeczko K, Sandt C, Borondics F, Chwiej J. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:13-22. [PMID: 28477512 DOI: 10.1016/j.saa.2017.04.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm-1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm-1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.
Collapse
Affiliation(s)
- A Skoczen
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | - Z Setkowicz
- Jagiellonian University, Institute of Zoology, Krakow, Poland
| | - K Janeczko
- Jagiellonian University, Institute of Zoology, Krakow, Poland
| | | | | | - J Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| |
Collapse
|
36
|
Kuang Y, Xu C, Zhang Y, Wang Y, Wu X, Wang Y, Liu Y, Zhong K, Cheng H, Guo Y, Wang S, Ding M, Chen Z. Low-frequency stimulation of the primary focus retards positive transfer of secondary focus. Sci Rep 2017; 7:345. [PMID: 28336934 PMCID: PMC5428430 DOI: 10.1038/s41598-017-00479-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/27/2017] [Indexed: 11/08/2022] Open
Abstract
Positive transfer of secondary focus (PTS) refers to new epileptogenesis outside the primary focus and is minimally controlled by existing treatments. Low-frequency stimulation (LFS) has benefits on the onset of epilepsy and epileptogenesis. However, it's unclear whether LFS can retard the PTS in epilepsy. Here we found that PTS at both contralateral amygdala and ipsilateral hippocampus were promoted after the primary focus was fully kindled in rat kindling model. The promotion of PTS at the mirror focus started when the primary kindling acquisition reached focal seizures. LFS retarded the promotion of PTS when it was applied at the primary focus during its kindling acquisition, while it only slightly retarded the promotion of PTS when applied after generalized seizures. Meanwhile, we found the expression of potassium chloride cotransporter 2 (KCC2) decreased during PTS, and LFS reversed this. Further, the decreased expression of KCC2 was verified in patients with PTS. These findings suggest that LFS may be a potential therapeutic approach for PTS in epilepsy.
Collapse
Affiliation(s)
- Yifang Kuang
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinxi Zhang
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohua Wu
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Liu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Zhong
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Cheng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Ding
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhong Chen
- Department of Neurology & Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS. Theiler's murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: Models for multiple sclerosis and epilepsy. J Neuroimmunol 2017; 308:30-42. [PMID: 28237622 DOI: 10.1016/j.jneuroim.2017.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Mouse models are great tools to study the mechanisms of disease development. Theiler's murine encephalomyelitis virus is used in two distinct viral infection mouse models to study the human diseases multiple sclerosis (MS) and epilepsy. Intracerebral (i.c.) infection of the SJL/J mouse strain results in persistent viral infection of the central nervous system and a MS-like disease, while i.c. infection of the C57BL/6J mouse strain results in acute seizures and epilepsy. Our understanding of how the immune system contributes to the development of two disparate diseases caused by the same virus is presented.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
38
|
Kalita J, Misra UK, Mani VE, Bhoi SK. Can we differentiate between herpes simplex encephalitis and Japanese encephalitis? J Neurol Sci 2016; 366:110-115. [PMID: 27288787 DOI: 10.1016/j.jns.2016.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Herpes simplex encephalitis (HSE) occurs without regional and seasonal predilections. HSE is important to differentiate from arboviral encephalitis in endemic areas because of therapeutic potential of HSE. This study evaluates clinical features, MRI and laboratory findings which may help in differentiating HSE from Japanese encephalitis (JE). METHODS Confirmed patients with JE and HSE in last 10years were included. The presenting clinical symptoms including demographic information, seizure, behavioral abnormality, focal weakness and movement disorders were noted. Cranial MRI was done and location and nature of signal alteration were noted. Electroencephalography (EEG), cerebrospinal fluid (CSF), blood counts and serum chemistry were done. Outcome was measured by modified Rankin Scale (mRS). Death, functional outcome and neurological sequelae were noted at 3, 6 and 12months follow up, and compared between HSE and JE. Outcome was categorized as poor (mRS;>2) and good (mRS≤2). RESULTS 97 patients with JE and 40 HSE were included. JE patients were younger than HSE and occurred in post monsoon period whereas HSE occurred throughout the year. Seizure (86% vs 40%) and behavioral abnormality (48% vs 10%) were commoner in HSE; whereas movement disorders (76% vs 0%) and focal reflex loss (42% vs 10%) were commoner in JE. CSF findings and laboratory parameters were similar in both the groups. Thalamic involvement in JE and temporal involvement in HSE were specific markers of respective encephalitis. Delta slowing on EEG was more frequent in JE than HSE. 20% JE and 30% HSE died in the hospital, and at 1year follow up JE patients showed better outcome compared to HSE (48% vs 24%). Memory loss (72% vs 22%) was the predominant sequelae in HSE. CONCLUSION Seizure and behavioral abnormality are common features in HSE whereas focal reflex loss is commoner in JE. In a patient with acute encephalitis, thalamic lesion suggests JE and temporal lobe involvement HSE. Long term outcome in JE is better compared to HSE.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow, India
| | - Usha Kant Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow, India.
| | - Vinita Elizabeth Mani
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow, India
| | - Sanjeev Kumar Bhoi
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow, India
| |
Collapse
|
39
|
Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clin Sci (Lond) 2015; 129:1207-23. [PMID: 26415648 DOI: 10.1042/cs20150202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Plic-1 regulates GABAAR expression at synaptic sites during epileptic seizure. Plic-1 prolongs the seizure latency and reduces the seizure severity in epileptic rats. Plic-1 affects the inhibitory function by changing the mIPSCs and evoked IPSCs of the phasic GABA-ergic synaptic current.
Collapse
|
40
|
LaSarge CL, Santos VR, Danzer SC. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure. Neurobiol Dis 2015; 75:142-50. [PMID: 25600212 PMCID: PMC4351143 DOI: 10.1016/j.nbd.2014.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 01/30/2023] Open
Abstract
Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Victor R Santos
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Physiology, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
41
|
Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation. J Neurosci 2015; 34:14874-89. [PMID: 25378155 DOI: 10.1523/jneurosci.0721-14.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation.
Collapse
|
42
|
Tóth K, Maglóczky Z. The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front Neuroanat 2014; 8:100. [PMID: 25324731 PMCID: PMC4179514 DOI: 10.3389/fnana.2014.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023] Open
Abstract
This review focuses on the vulnerability of a special interneuron type—the calretinin (CR)-containing interneurons—in temporal lobe epilepsy (TLE). CR is a calcium-binding protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of inhibitory cells, innervating other interneurons in rodents and to some extent principal cells in the human. Their dendrites are strongly connected by zona adherentiae and presumably by gap junctions both in rats and humans. CR-containing interneurons are suggested to play a key role in the hippocampal inhibitory network, since they can effectively synchronize dendritic inhibitory interneurons. The sensitivity of CR-expressing interneurons to epilepsy was discussed in several reports, both in animal models and in humans. In the sclerotic hippocampus the density of CR-immunopositive cells is decreased significantly. In the non-sclerotic hippocampus, the CR-containing interneurons are preserved, but their dendritic tree is varicose, segmented, and zona-adherentia-type contacts can be less frequently observed among dendrites. Therefore, the dendritic inhibition of pyramidal cells may be less effective in TLE. This can be partially explained by the impairment of the CR-containing interneuron ensemble in the epileptic hippocampus, which may result in an asynchronous and thus less effective dendritic inhibition of the principal cells. This phenomenon, together with the sprouting of excitatory pathway axons and enhanced innervation of principal cells, may be involved in seizure generation. Preventing the loss of CR-positive cells and preserving the integrity of CR-positive dendrite gap junctions may have antiepileptic effects, maintaining proper inhibitory function and helping to protect principal cells in epilepsy.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary ; Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Zsófia Maglóczky
- Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
43
|
Jehi LE, Palmini A, Aryal U, Coras R, Paglioli E. Cerebral cavernous malformations in the setting of focal epilepsies: pathological findings, clinical characteristics, and surgical treatment principles. Acta Neuropathol 2014; 128:55-65. [PMID: 24831066 DOI: 10.1007/s00401-014-1294-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/29/2022]
Abstract
Cavernous cerebral malformations (CCMs) are a well-defined epilepsy-associated pathology. They represent lesions/conglomerates of abnormally configured vessels leading to seizures either as a result of physiological changes affecting the cerebral cortex immediately surrounding the CCM (an epileptogenic mechanism that is relevant for both temporal and extratemporal lesions), or as a result of promoting epileptogenicity in remote but anatomo-functionally connected brain regions (a mechanism that is particularly relevant for temporal lobe lesions). This review details the pathological findings in CCMs and discusses the mechanisms of epileptogenicity in this context. The bulk of the review will focus on therapeutic strategies. Medical therapy using antiepileptic drugs is recommended as a first-line therapy, but surgical removal of the CCM with the surrounding cortex should be pursued if seizures prove to be drug resistant. Early timing of the resection and complete removal of any associated epileptic pathology are critical for best outcomes. In addition to reviewing the available data from prior series, we present original research from two specialized epilepsy centers targeted at answering particularly pressing clinical questions mainly related to the ideal timing and extent of surgery. Further research is needed to define the best surgical strategies in patients with temporal lobe CCMs and structurally normal hippocampi.
Collapse
Affiliation(s)
- Lara E Jehi
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA,
| | | | | | | | | |
Collapse
|
44
|
Zhang YF, Li SL, Xiong TQ, Yang LB, Li YN, Tan BH, Liu Q, Li YC. The rearrangement of filamentous actin in mossy fiber synapses in pentylenetetrazol-kindled C57BL/6 mice. Epilepsy Res 2013; 108:20-8. [PMID: 24275550 DOI: 10.1016/j.eplepsyres.2013.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/04/2013] [Accepted: 10/31/2013] [Indexed: 01/16/2023]
Abstract
Chemical kindling, as an experimental model of epileptogenesis, is induced by repetitive administration of subconvulsive amount of excitatory drugs. Kindled mice do not typically display spontaneous recurrent seizures, but are instead characterized by enhanced seizure susceptibility to convulsive stimulations. In order to provide insights into the aberrant synaptic plasticity during kindling, this study investigated the effect of pentylenetetrazol (PTZ) kindling on filamentous actin (F-actin) in mossy fiber synapses in C57BL/6 mice. Phalloidin labeling of F-actin showed that F-actin puncta were increased in number in the stratum lucidum of CA3 region in the hippocampus after kindling. The rearrangement of F-actin seemed to occur presynaptically, since synapsin I, a specific marker for mossy fiber terminals, was also up-regulated. Such subtle structural modifications occurring in the synapses are thought to contribute to the long-lasting increased sensitivity in the PTZ-kindled C57BL/6 mice.
Collapse
Affiliation(s)
- Yan-Feng Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province 130021, PR China; Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, Jilin Province 130021, PR China; Department of Pediatric Neurology, First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Li-Bin Yang
- Department of Pediatric Neurology, First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Yong-Nan Li
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Qun Liu
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, Jilin Province 130021, PR China.
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province 130021, PR China.
| |
Collapse
|
45
|
The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013; 63:405-12. [DOI: 10.1016/j.neuint.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
|
46
|
Biagini G, Rustichelli C, Curia G, Vinet J, Lucchi C, Pugnaghi M, Meletti S. Neurosteroids and epileptogenesis. J Neuroendocrinol 2013; 25:980-90. [PMID: 23763517 DOI: 10.1111/jne.12063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/21/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Epileptogenesis is defined as the latent period at the end of which spontaneous recurrent seizures occur. This concept has been recently re-evaluated to include exacerbation of clinically-manifested epilepsy. Thus, in patients affected by pharmacoresistant seizures, the progression toward a worse condition may be viewed as the result of a durable epileptogenic process. However, the mechanism potentially responsible for this progression remains unclear. Neuroinflammation has been consistently detected both in the latent period and in the chronic phase of epilepsy, especially when brain damage is present. This phenomenon is accompanied by glial cell reaction, leading to gliosis. We have previously described rats presenting an increased expression of the cytochrome P450 cholesterol side-chain cleavage (P450scc) enzyme, during the latent period, in glial cells of the hippocampus. The P450scc enzyme is critically involved in the synthesis of neurosteroids and its up-regulation is associated with a delayed appearance of spontaneous recurrent seizures in rats that experienced status epilepticus induced by pilocarpine. Moreover, by decreasing the synthesis of neurosteroids able to promote inhibition, such as allopregnanolone, through the administration of the 5α-reductase blocker finasteride, it is possible to terminate the latent period in pilocarpine-treated rats. Finasteride was also found to promote seizures in the chronic period of epileptic rats, suggesting that neurosteroids are continuously produced to counteract seizures. In humans, exacerbation of epilepsy has been also described in patients occasionally exposed to finasteride. Overall, these findings suggest a major role of neurosteroids in the progression of epilepsy and a possible antiepileptogenic role of allopregnanolone and cognate molecules.
Collapse
Affiliation(s)
- G Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Elshoff L, Muthuraman M, Anwar AR, Deuschl G, Stephani U, Raethjen J, Siniatchkin M. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures. PLoS One 2013; 8:e78422. [PMID: 24194931 PMCID: PMC3806832 DOI: 10.1371/journal.pone.0078422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/20/2013] [Indexed: 12/31/2022] Open
Abstract
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.
Collapse
Affiliation(s)
- Lydia Elshoff
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | | | - Abdul Rauf Anwar
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
- Digital Signal Processing and System Theory, Technical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Jan Raethjen
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Michael Siniatchkin
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University of Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
48
|
Huneau C, Benquet P, Dieuset G, Biraben A, Martin B, Wendling F. Shape features of epileptic spikes are a marker of epileptogenesis in mice. Epilepsia 2013; 54:2219-27. [PMID: 24134559 DOI: 10.1111/epi.12406] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify reliable biomarkers for quantitatively assessing the development of epilepsy in brain. METHODS In a kainate mouse model of temporal lobe epilepsy, we performed long-term video-electroencephalography (EEG) monitoring (several weeks) of freely moving animals, from kainic acid injection to chronic epileptic stage. Using signal processing techniques, we automatically detected single epileptic spikes (ESs), and we quantified the evolution of shape features during the epileptogenesis process. Using a computational model of hippocampal activity (neuronal population level), we investigated excitatory-related and inhibitory-related parameters involved in morphologic changes of ESs. KEY FINDINGS The frequency of ESs increases during epileptogenesis. Regarding shape features, we found that both the initial spike component and the wave component of opposite polarity of ESs gradually increase during epileptogenesis. These very specific alterations of the shape of ESs were reproduced in a computational physiologically relevant neuronal population model. Using this model, we disclosed some key parameters (related to glutamatergic and γ-aminobutyric acid [GABA]ergic synaptic transmission) that explain the shape features of simulated ESs. Of interest, the model predicted that the decrease of GABAergic inhibition is responsible for the increase of the wave component of ESs. This prediction (at first sight counterintuitive) was verified in both in vivo and in vitro experiments. Finally, from aforementioned electrophysiologic features, we devised a novel and easily computable index (wave area/spike amplitude ratio) indicative of the progression of the disease (early vs. late stage). SIGNIFICANCE Results suggest that dendritic inhibition in hippocampal circuits undertake dramatic changes over the latent period. These changes are responsible for observed modifications in the shape of ESs recorded in local field potential (LFP) signals. The proposed index may constitute a biomarker of epileptogenesis.
Collapse
Affiliation(s)
- Clément Huneau
- U1099, INSERM, Rennes, France; Université de Rennes 1, LTSI, Rennes, France
| | | | | | | | | | | |
Collapse
|
49
|
Rudà R, Bello L, Duffau H, Soffietti R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol 2013; 14 Suppl 4:iv55-64. [PMID: 23095831 DOI: 10.1093/neuonc/nos199] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seizures represent a common symptom in low-grade gliomas; when uncontrolled, they significantly contribute to patient morbidity and negatively impact quality of life. Tumor location and histology influence the risk for epilepsy. The pathogenesis of tumor-related epilepsy is multifactorial and may differ among tumor histologies (glioneuronal tumors vs diffuse grade II gliomas). Gross total resection is the strongest predictor of seizure freedom in addition to clinical factors, such as preoperative seizure duration, type, and control with antiepileptic drugs (AEDs). Epilepsy surgery may improve seizure control. Radiotherapy and chemotherapy with alkylating agents (procarbazine + CCNU+ vincristine, temozolomide) are effective in reducing the frequency of seizures in patients with pharmacoresistant epilepsy. Newer AEDs (levetiracetam, topiramate, lacosamide) seem to be better tolerated than the old AEDs (phenobarbital, phenytoin, carbamazepine), but there is lack of evidence regarding their superiority in terms of efficacy.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University of Turin and San Giovanni Battista Hospital, Turin, Italy.
| | | | | | | |
Collapse
|
50
|
Vlasov PN, Chervyakov AV, Gnezditskii VV. Déjà vu phenomenon-related EEG pattern. Case report. EPILEPSY & BEHAVIOR CASE REPORTS 2013; 1:136-41. [PMID: 25667847 PMCID: PMC4150674 DOI: 10.1016/j.ebcr.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/02/2022]
Abstract
Background Déjà vu (DV, from French déjà vu — “already seen”) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. Objective This study aimed to record the EEG pattern of déjà vu. Methods The subjects participated in a survey concerning déjà vu characteristics and underwent ambulatory EEG monitoring (12–16 h). Results In patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta–delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV. Conclusion Two types of déjà vu are suggested to exist: “pathological-epileptic” déjà vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and “nonpathological-nonepileptic” déjà vu, which is characteristic of healthy people and psychological phenomenon.
Collapse
Affiliation(s)
- P N Vlasov
- Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A V Chervyakov
- Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| | - V V Gnezditskii
- Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|