1
|
Nurujjaman M, Mashhoor T, Pronoy TUH, Auwal A, Hasan MR, Islam SS, Hasan I, Asaduzzaman AKM, Uddin MB, Kabir SR, Islam F. Antitumor Activity of a Lectin Purified from Punica granatum Pulps against Ehrlich Ascites Carcinoma (EAC) Cells. Anticancer Agents Med Chem 2024; 24:193-202. [PMID: 38037833 DOI: 10.2174/0118715206269394231124093423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported. OBJECTIVE The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential. METHODS Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays. RESULTS A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -β- D-glucopyranoside inhibited PgL's hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells. CONCLUSION The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.
Collapse
Affiliation(s)
- Md Nurujjaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tanjila Mashhoor
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Robiul Hasan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shaikh Shohidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A K M Asaduzzaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
2
|
He M, Xu H, Liu G, Yang M, Zhang W, Li Y, Zhang H, Wang C, Zhang Y, Liu X, Xu S, Ding Y, Li Y, Gao Y, Zhang Q. Levistilide A Promotes Expansion of Human Umbilical Cord Blood Hematopoietic Stem Cells by Enhancing Antioxidant Activity. Front Pharmacol 2022; 13:806837. [PMID: 35250558 PMCID: PMC8895481 DOI: 10.3389/fphar.2022.806837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Several approaches to expand human hematopoietic stem cells (hHSCs) clinically along with retainable capability of multipotential differentiation have been reported, but only a few have advanced to evaluation in clinical trials, which limits the application of HSC-based therapy. Here we show a phthalide derivative, Levistilide A (LA), can serve as a promising molecule to expand functional human umbilical cord blood (UCB) HSCs ex vivo. An in-house screen identified LA out of nine natural products as an outstanding candidate for hHSCs expansion. Additionally, our data indicated that LA treatment not only increased the numbers of phenotype-defined HSCs, but also enhanced their colony formation ability. Xenotransplantation assays showed that LA treatment could maintain unaffected engraftment of hHSCs with multilineage differentiation capacity. Further experiments revealed that LA enhanced the antioxidant activity of hHSCs by reducing intracellular and mitochondrial reactive oxygen species (ROS) levels. The identification of LA provides a new strategy in solving the clinical issue of limited numbers of UCB HSCs.
Collapse
Affiliation(s)
- Mei He
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guangju Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaolei Liu
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shiqi Xu
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Quan Zhang, ; Yingdai Gao, ; Yinghui Li, ; Yahui Ding,
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Quan Zhang, ; Yingdai Gao, ; Yinghui Li, ; Yahui Ding,
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Quan Zhang, ; Yingdai Gao, ; Yinghui Li, ; Yahui Ding,
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- *Correspondence: Quan Zhang, ; Yingdai Gao, ; Yinghui Li, ; Yahui Ding,
| |
Collapse
|
3
|
Schreurs M, Suttorp CM, Mutsaers HAM, Kuijpers-Jagtman AM, Von den Hoff JW, Ongkosuwito EM, Carvajal Monroy PL, Wagener FADTG. Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Med Res Rev 2019; 40:9-26. [PMID: 31104334 PMCID: PMC6972684 DOI: 10.1002/med.21594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.
Collapse
Affiliation(s)
- Michaël Schreurs
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Maarten Suttorp
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Johannes W Von den Hoff
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paola L Carvajal Monroy
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Mérida LAD, Mattos ÉBA, Corrêa ACNTF, Pereira PR, Paschoalin VMF, Pinho MFB, Vericimo MA. Tarin stimulates granulocyte growth in bone marrow cell cultures and minimizes immunosuppression by cyclo-phosphamide in mice. PLoS One 2018; 13:e0206240. [PMID: 30403726 PMCID: PMC6221300 DOI: 10.1371/journal.pone.0206240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022] Open
Abstract
Chemotherapeutic drugs, such as cyclophosphamide, cause severe immunosuppression and patients become susceptible to infections. Based on this, the immunomodulatory potential of tarin, a lectin from Colocasia esculenta, was evaluated in bone marrow cell cultures and in cyclophosphamide-immunosuppressed mice. Tarin promoted maintenance of hematopoietic progenitors and repopulation of Gr1 cells in vitro which was supported by in vivo results. In immunosuppressed mice, tarin increased bone marrow cell numbers and altered cell profile distribution by enhancing the frequency of Gr1+ progenitors, including Ly6-CintLy6-Glo, and anticipating their proliferation/differentiation in mature cells, especially Ly6-CloLy6-Ghi. Bone marrow cells harvested from tarin-treated immunosuppressed mice proliferated in response to GM-CSF or G-CSF in vitro and, the low numbers of bone marrow cells in the G0 phase, combined with a high number cells undergoing apoptosis confirmed that tarin promoted a faster and intense proliferation/differentiation, even in the presence of CY-induced toxicity. As a result, tarin minimized leukopenia in immunosuppressed mice promoting a faster recovery of peripheral leucocytes and protected erythroid bone marrow cells from CY-cytotoxicity in a dose-dependent manner. Data suggest that tarin could be considered a potential adjuvant to decrease leukopenia and possibly ameliorate anemia, if carefully evaluated in human cancer cell lineages and in clinical trials.
Collapse
Affiliation(s)
- Lyris A. D. Mérida
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Érika B. A. Mattos
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Anna C. N. T. F. Corrêa
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patricia R. Pereira
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vania M. F. Paschoalin
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria F. B. Pinho
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Mauricio A. Vericimo
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| |
Collapse
|