1
|
Tennessen JA, Duraisingh MT. Three Signatures of Adaptive Polymorphism Exemplified by Malaria-Associated Genes. Mol Biol Evol 2021; 38:1356-1371. [PMID: 33185667 PMCID: PMC8042748 DOI: 10.1093/molbev/msaa294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host-parasite coevolutionary dynamics.
Collapse
|
2
|
Oliveira LC, Kretzschmar GC, Dos Santos ACM, Camargo CM, Nisihara RM, Farias TDJ, Franke A, Wittig M, Schmidt E, Busch H, Petzl-Erler ML, Boldt ABW. Complement Receptor 1 (CR1, CD35) Polymorphisms and Soluble CR1: A Proposed Anti-inflammatory Role to Quench the Fire of "Fogo Selvagem" Pemphigus Foliaceus. Front Immunol 2019; 10:2585. [PMID: 31824479 PMCID: PMC6883348 DOI: 10.3389/fimmu.2019.02585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Pemphigus foliaceus is an autoimmune disease that is sporadic around the world but endemic in Brazil, where it is known as fogo selvagem (FS). Characterized by autoantibodies against the desmosomal cadherin desmoglein 1, FS causes painful erosions, and crusts that may be widespread. The recognition of antigens, including exposed sugar moieties, activates the complement system. Complement receptor 1 (CR1, CD35), which is responsible for the Knops blood group on erythrocytes (York and McCoy antigens), is also expressed by antigen-presenting cells. This regulates the complement system by removing opsonized antigens, blocking the final steps of the complement cascade. Membrane-bound CR1 also fosters antigen presentation to B cells, whereas soluble CR1 has anti-inflammatory properties. CR1 gene polymorphisms have been associated with susceptibility to complex diseases. In order to investigate the association of CR1 polymorphisms with FS susceptibility, we developed a multiplex sequence-specific assay to haplotype eleven polymorphisms in up to 367 FS patients and 242 controls from an endemic area and 289 from a non-endemic area. We also measured soluble CR1 (sCR1) in the serum of 53 FS patients and 27 controls and mRNA levels in the peripheral blood mononuclear cells of 63 genotyped controls. The haplotypes CR1*3B2B (with the York antigen–encoded by p.1408Met) and CR1*3A2A (with p.1208Arg) were associated with protection against FS (OR = 0.57, P = 0.027, and OR = 0.46, P = 0.014, respectively). In contrast, the CR1*1 haplotype (with the McCoy antigen – encoded by p.1590Glu) was associated with FS susceptibility (OR = 4.97, P < 0.001). Heterozygote rs12034383*A/G individuals presented higher mRNA expression than homozygotes with the G allele (P = 0.04). The lowest sCR1 levels occurred in patients with active disease before treatment (P = 0.036). Patients in remission had higher levels of sCR1 than did healthy controls (P = 0.013). Among those under treatment, patients with localized lesions also presented higher sCR1 levels than those with generalized lesions (P = 0.0073). In conclusion, the Knops blood group seems to modulate susceptibility to the disease. Furthermore, corticosteroid treatment might increase sCR1 serum levels, and higher levels may play an anti-inflammatory role in patients with FS, limiting the distribution of lesions. Based on these results, we suggest CR1 as a potential new therapeutic target for the treatment of FS.
Collapse
Affiliation(s)
- Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Carolina Maciel Camargo
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renato Mitsunori Nisihara
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Dupnik KM, Bean JM, Lee MH, Jean Juste MA, Skrabanek L, Rivera V, Vorkas CK, Pape JW, Fitzgerald DW, Glickman M. Blood transcriptomic markers of Mycobacterium tuberculosis load in sputum. Int J Tuberc Lung Dis 2018; 22:950-958. [PMID: 29991407 PMCID: PMC6343854 DOI: 10.5588/ijtld.17.0855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peripheral blood transcriptome signatures that distinguish active pulmonary tuberculosis (TB) from control groups have been reported, but correlations of these signatures with sputum mycobacterial load are incompletely defined. METHODS We assessed the performance of published TB transcriptomic signatures in Haiti, and identified transcriptomic biomarkers of TB bacterial load in sputum as measured by Xpert® MTB/RIF molecular testing. People in Port au Prince, Haiti, with untreated pulmonary TB (n = 51) formed the study cohort: 19 people with low and 32 with high sputum Mycobacterium tuberculosis load. Peripheral whole blood transcriptomes were generated using RNA sequencing. RESULTS Twenty of the differentially expressed transcripts in TB vs. no TB were differentially expressed in people with low vs. high sputum mycobacterial loads. The difference between low and high bacterial load groups was independent of radiographic severity. In a published data set of transcriptomic response to anti-tuberculosis treatment, this 20-gene subset was more treatment-responsive at 6 months than the full active TB signature. CONCLUSION We identified genes whose transcript levels in the blood distinguish active TB with high vs. low M. tuberculosis loads in the sputum. These transcripts may reveal mechanisms of mycobacterial control of M. tuberculosis during active infection, as well as identifying potential biomarkers for bacterial response to anti-tuberculosis treatment.
Collapse
Affiliation(s)
- Kathryn M. Dupnik
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - James M. Bean
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Myung Hee Lee
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Lucy Skrabanek
- Applied Bioinformatics Core and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
10021, USA
| | - Vanessa Rivera
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles K. Vorkas
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Jean W. Pape
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- GHESKIO center, Port au Prince, Haiti
| | | | - Michael Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
4
|
Opi DH, Swann O, Macharia A, Uyoga S, Band G, Ndila CM, Harrison EM, Thera MA, Kone AK, Diallo DA, Doumbo OK, Lyke KE, Plowe CV, Moulds JM, Shebbe M, Mturi N, Peshu N, Maitland K, Raza A, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α +thalassaemia. eLife 2018; 7:e31579. [PMID: 29690995 PMCID: PMC5953541 DOI: 10.7554/elife.31579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α+thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Olivia Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Alexander Macharia
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Gavin Band
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Ewen M Harrison
- Centre for Medical InfomaticsUsher Insitute of Population Health Sciences and Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Mahamadou A Thera
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Kirsten E Lyke
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | | | - Mohammed Shebbe
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Kirk A Rockett
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
5
|
Sandri TL, Lidani KCF, Andrade FA, Meyer CG, Kremsner PG, de Messias-Reason IJ, Velavan TP. Human complement receptor type 1 (CR1) protein levels and genetic variants in chronic Chagas Disease. Sci Rep 2018; 8:526. [PMID: 29323238 PMCID: PMC5765048 DOI: 10.1038/s41598-017-18937-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Complement is an essential element in both innate and acquired immunity contributing to the immunopathogenesis of many disorders, including Chagas Disease (CD). Human complement receptor 1 (CR1) plays a role in the clearance of complement opsonized molecules and may facilitate the entry of pathogens into host cells. Distinct CR1 exon 29 variants have been found associated with CR1 expression levels, increased susceptibility and pathophysiology of several diseases. In this study, CR1 plasma levels were assessed by ELISA and CR1 variants in exon 29 by sequencing in a Brazilian cohort of 232 chronic CD patients and 104 healthy controls. CR1 levels were significantly decreased in CD patients compared to controls (p < 0.0001). The CR1 rs1704660G, rs17047661G and rs6691117G variants were significantly associated with CD and in high linkage disequilibrium. The CR1*AGAGTG haplotype was associated with T. cruzi infection (p = 0.035, OR 3.99, CI 1.1-14.15) whereas CR1*AGGGTG was related to the risk of chagasic cardiomyopathy (p = 0.028, OR 12.15, CI 1.13-113). This is the first study that provides insights on the role of CR1 in development and clinical presentation of chronic CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam.
| |
Collapse
|
6
|
Geographical distribution of complement receptor type 1 variants and their associated disease risk. PLoS One 2017; 12:e0175973. [PMID: 28520715 PMCID: PMC5435133 DOI: 10.1371/journal.pone.0175973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/03/2017] [Indexed: 11/19/2022] Open
Abstract
Background Pathogens exert selective pressure which may lead to substantial changes in host immune responses. The human complement receptor type 1 (CR1) is an innate immune recognition glycoprotein that regulates the activation of the complement pathway and removes opsonized immune complexes. CR1 genetic variants in exon 29 have been associated with expression levels, C1q or C3b binding and increased susceptibility to several infectious diseases. Five distinct CR1 nucleotide substitutions determine the Knops blood group phenotypes, namely Kna/b, McCa/b, Sl1/Sl2, Sl4/Sl5 and KCAM+/-. Methods CR1 variants were genotyped by direct sequencing in a cohort of 441 healthy individuals from Brazil, Vietnam, India, Republic of Congo and Ghana. Results The distribution of the CR1 alleles, genotypes and haplotypes differed significantly among geographical settings (p≤0.001). CR1 variants rs17047660A/G (McCa/b) and rs17047661A/G (Sl1/Sl2) were exclusively observed to be polymorphic in African populations compared to the groups from Asia and South-America, strongly suggesting that these two SNPs may be subjected to selection. This is further substantiated by a high linkage disequilibrium between the two variants in the Congolese and Ghanaian populations. A total of nine CR1 haplotypes were observed. The CR1*AGAATA haplotype was found more frequently among the Brazilian and Vietnamese study groups; the CR1*AGAATG haplotype was frequent in the Indian and Vietnamese populations, while the CR1*AGAGTG haplotype was frequent among Congolese and Ghanaian individuals. Conclusion The African populations included in this study might have a selective advantage conferred to immune genes involved in pathogen recognition and signaling, possibly contributing to disease susceptibility or resistance.
Collapse
|
7
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
8
|
Red blood cell complement receptor one level varies with Knops blood group, α(+)thalassaemia and age among Kenyan children. Genes Immun 2016; 17:171-8. [PMID: 26844958 PMCID: PMC4842007 DOI: 10.1038/gene.2016.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Both the invasion of red blood cells (RBCs) by Plasmodium falciparum parasites and the sequestration of parasite-infected RBCs in the microvasculature are mediated in part by complement receptor one (CR1). RBC surface CR1 level can vary between individuals by more than 20-fold and may be associated with the risk of severe malaria. The factors that influence RBC CR1 level variation are poorly understood, particularly in African populations. We studied 3535 child residents of a malaria-endemic region of coastal Kenya and report, for the first time, that the CR1 Knops blood group alleles Sl2 and McC(b), and homozygous HbSS are positively associated with RBC CR1 level. Sickle cell trait and ABO blood group did not influence RBC CR1 level. We also confirm the previous observation that α(+)thalassaemia is associated with reduced RBC CR1 level, possibly due to small RBC volume, and that age-related changes in RBC CR1 expression occur throughout childhood. RBC CR1 level in malaria-endemic African populations is a complex phenotype influenced by multiple factors that should be taken into account in the design and interpretation of future studies on CR1 and malaria susceptibility.
Collapse
|
9
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Schmidt CQ, Kennedy AT, Tham WH. More than just immune evasion: Hijacking complement by Plasmodium falciparum. Mol Immunol 2015; 67:71-84. [PMID: 25816986 DOI: 10.1016/j.molimm.2015.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstraße 20, Ulm, Germany.
| | - Alexander T Kennedy
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia.
| |
Collapse
|
11
|
Duru KC, Noble JA, Guindo A, Yi L, Imumorin IG, Diallo DA, Thomas BN. Extensive genomic variability of knops blood group polymorphisms is associated with sickle cell disease in Africa. Evol Bioinform Online 2015; 11:25-33. [PMID: 25788827 PMCID: PMC4357628 DOI: 10.4137/ebo.s23132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/21/2023] Open
Abstract
Sickle cell disease (SCD) is a multisystem disorder characterized by chronic hemolytic anemia, vaso-occlusive crises, and marked variability in disease severity. Patients require transfusions to manage disease complications, with complements, directed by complement regulatory genes (CR1) and its polymorphisms, implicated in the development of alloantibodies. We hypothesize that CR1 polymorphisms affect complement regulation and function, leading to adverse outcome in SCD. To this end, we determined the genomic diversity of complement regulatory genes by examining single nucleotide polymorphisms associated with Knops blood group antigens. Genomic DNA samples from 130 SCD cases and 356 control Africans, 331 SCD cases and 497 control African Americans, and 254 Caucasians were obtained and analyzed, utilizing a PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) assay. Analyzing for ethnic diversity, we found significant differences in the genotypic and allelic frequencies of Sl1/Sl2 (rs17047661) and McCa/b (rs17047660) polymorphisms between Africans, African Americans, and Caucasians (P < 0.05). The homozygote mutant variants had significantly higher frequencies in Africans and African Americans but were insignificant in Caucasians (80.2% and 59.6% vs 5.9% for Sl1/2; and 36% and 24% vs 1.8% for McCa/b). With SCD, we did not detect any difference among cases and controls either in Africa or in the United States. However, we found significant difference in genotypic (P < 0.0001) and allelic frequencies (P < 0.0001) of Sl1/Sl2 (rs17047661) and McCa/b (rs17047660) polymorphisms between SCD groups from Africa and the United States. There was no difference in haplotype frequencies of these polymorphisms among or between groups. The higher frequency of CR1 homozygote mutant variants in Africa but not United States indicates a potential pathogenic role, possibly associated with complicated disease pathophysiology in the former and potentially protective in the latter. The difference between sickle cell groups suggests potential genetic drift or founder effect imposed on the disease in the United States, but not in Africa, and a possible confirmation of the ancestral susceptibility hypothesis. The lower haplotype frequencies among sickle cell and control populations in the United States may be due to the admixture and the dilution of African genetic ancestry in the African American population.
Collapse
Affiliation(s)
- Kimberley C Duru
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Jenelle A Noble
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Aldiouma Guindo
- Centre de Recherche et de Lutte contre la Drepanocytose (CRLD), Bamako, Mali
| | - Li Yi
- School of Statistics, Shanxi University of Finance and Economics, Shanxi, China
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Lab, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Dapa A Diallo
- Centre de Recherche et de Lutte contre la Drepanocytose (CRLD), Bamako, Mali
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
12
|
Noble JA, Duru KC, Guindo A, Yi L, Imumorin IG, Diallo DA, Thomas BN. Interethnic diversity of the CD209 (rs4804803) gene promoter polymorphism in African but not American sickle cell disease. PeerJ 2015; 3:e799. [PMID: 25755928 PMCID: PMC4349147 DOI: 10.7717/peerj.799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/27/2022] Open
Abstract
Elucidating the genomic diversity of CD209 gene promoter polymorphism could assist in clarifying disease pathophysiology as well as contribution to co-morbidities. CD209 gene promoter polymorphism has been shown to be associated with susceptibility to infection. We hypothesize that CD209 mutant variants occur at a higher frequency among Africans and in sickle cell disease. We analyzed the frequency of the CD209 gene (rs4804803) in healthy control and sickle cell disease (SCD) populations and determined association with disease. Genomic DNA was extracted from blood samples collected from 145 SCD and 231 control Africans (from Mali), 331 SCD and 379 control African Americans and 159 Caucasians. Comparative analysis among and between groups was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Per ethnic diversification, we found significant disparity in genotypic (23.4% versus 16.9% versus 3.2%) and allelic frequencies (48.7% versus 42.1% versus 19.8%) of the homozygote mutant variant of the CD209 (snp 309A/G) gene promoter between Africans, African Americans and Caucasians respectively. Comparative evaluation between disease and control groups reveal a significant difference in genotypic (10.4% versus 23.4%; p = 0.002) and allelic frequencies (39.7% versus 48.7%; p = 0.02) of the homozygote mutant variant in African SCD and healthy controls respectively, an observation that is completely absent among Americans. Comparing disease groups, we found no difference in the genotypic (p = 0.19) or allelic (p = 0.72) frequencies of CD209 homozygote mutant variant between Africans and Americans with sickle cell disease. The higher frequency of CD209 homozygote mutant variants in the African control group reveals a potential impairment of the capacity to mount an immune response to infectious diseases, and possibly delineate susceptibility to or severity of infectious co-morbidities within and between groups.
Collapse
Affiliation(s)
- Jenelle A Noble
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| | - Kimberley C Duru
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| | - Aldiouma Guindo
- Centre de Recherche et de Lutte contre la Drepanocytose , Bamako , Mali
| | - Li Yi
- School of Statistics, Shanxi University of Finance and Economics , Shanxi , China
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Lab, Office of International Programs, Cornell University , Ithaca, NY , USA
| | - Dapa A Diallo
- Centre de Recherche et de Lutte contre la Drepanocytose , Bamako , Mali
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| |
Collapse
|
13
|
Abstract
The complement component receptor 1 gene (CR1), which encodes a type-I transmembrane glycoprotein, has recently been identified as one of the most important risk genes for late-onset Alzheimer's disease (LOAD). In this article, we reviewed the recent evidence concerning the role of CR1 in LOAD. First, we introduced the structure, localization and physiological function of CR1 in humans. Afterward, we summarized the relation of CR1 polymorphisms with LOAD risk. Finally, we discussed the possible impact of CR1 on the pathogenesis of AD including amyloid-β pathology, tauopathy, immune dysfunction and glial-mediated neuroinflammation. We hope that a more comprehensive understanding of the role that CR1 played in AD may lead to the development of novel therapeutics for the prevention and treatment of AD.
Collapse
|
14
|
Hansson HH, Kurtzhals JA, Goka BQ, Rodriques OP, Nkrumah FN, Theander TG, Bygbjerg IC, Alifrangis M. Human genetic polymorphisms in the Knops blood group are not associated with a protective advantage against Plasmodium falciparum malaria in Southern Ghana. Malar J 2013; 12:400. [PMID: 24200236 PMCID: PMC4226212 DOI: 10.1186/1475-2875-12-400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The complex interactions between the human host and the Plasmodium falciparum parasite and the factors influencing severity of disease are still not fully understood. Human single nucleotide polymorphisms SNPs associated with Knops blood group system; carried by complement receptor 1 may be associated with the pathology of P. falciparum malaria, and susceptibility to disease. Methods The objective of this study was to determine the genotype and haplotype frequencies of the SNPs defining the Knops blood group antigens; Kna/b, McCoya/b, Swain-Langley1/2 and KCAM+/- in Ghanaian patients with malaria and determine possible associations between these polymorphisms and the severity of the disease. Study participants were patients (n = 267) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as uncomplicated malaria (n = 89), severe anaemia (n = 57) and cerebral malaria (n = 121) and controls who did not have a detectable Plasmodium infection or were symptomless carriers of the parasite (n = 275). The frequencies were determined using a post-PCR ligation detection reaction-fluorescent microsphere assay, developed to detect the SNPs defining the antigens. Chi-square/Fisher’s exact test and logistic regression models were used to analyse the data. Results As expected, high frequencies of the alleles Kna, McCb, Sl2 and KCAM- were found in the Ghanaian population. Apart from small significant differences between the groups at the Sl locus, no significant allelic or genotypic differences were found between the controls and the disease groups or between the disease groups. The polymorphisms define eight different haplotypes H1(2.4%), H2(9.4%), H3(59.8%), H4(0%), H5(25.2%), H6(0.33%), H7(2.8%) and H8(0%). Investigating these haplotypes, no significant differences between any of the groups were found. Conclusion The results confirm earlier findings of high frequencies of certain CR1 alleles in Africa; and shed more light on earlier conflicting findings; the alleles McCb, Sl2, Knb and KCAM- or combined haplotypes do not seem to confer any protective advantage against malaria infection or resulting disease severity. Based on these findings, in a very well-characterized population, malaria does not seem to be the selective force on these alleles.
Collapse
Affiliation(s)
- Helle H Hansson
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Silvy M, Beley S, Granier T, Ba A, Chiaroni J, Bailly P. Heterogeneity of alleles encoding high- and low-prevalence red blood cell antigens across Africa: useful data to facilitate transfusion in African patients. Br J Haematol 2013; 163:528-36. [PMID: 24032660 DOI: 10.1111/bjh.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/20/2013] [Indexed: 11/27/2022]
Abstract
Ethnic variations in red blood cell (RBC) antigens can be a source of alloimmunization, especially in migrant populations. To improve transfusion safety in continental Africa and countries with African migrants, we performed RBC genotyping to determine allele frequencies coding for high- and low-prevalence antigens. A total of 481 blood samples were collected in ethnic groups from West, Central and East Africa. Molecular typing was performed using a polymerase chain reaction - reverse sequence specific oligonucleotide method. Results demonstrated no DI*1, DI*3, YT*2, SC*2, LW*7, KN*2 alleles in any sample and the CO*2 allele was rare. The frequency of LU*1 was comparable to that of European-Caucasians (2%) except in Biaka pygmies (8%). The frequency of CROM*-1 was high in Mbuti pygmies (13%). High frequency of KN*7 and KN*6 may reflect selection pressure in the countries investigated. Analysis of Dombrock allele patterns confirmed uneven distribution of the DO*1 and DO*2 alleles with high frequencies of DO*-4 and DO*-5 in all groups. Altogether, findings demonstrated extensive allele-frequency heterogeneity across Africa and suggested that knowledge of patient ethnicity gives information about the high-prevalence antigens that may be lacking. These data are medically useful to support transfusion care of African migrants living in countries where the majority of the population is from a different ethnical background.
Collapse
Affiliation(s)
- Monique Silvy
- Etablissement Français du Sang Alpes Méditerranée, Marseille, France; Aix Marseille Université, EFS, ADES UMR, 7268, Marseille, France
| | | | | | | | | | | |
Collapse
|
16
|
Yoon JH, Oh S, Shin S, Park JS, Roh EY, Song EY, Park MH, Han KS, Chang JY. The polymorphism of Knops blood group system in Korean population and their relationship with HLA system. Hum Immunol 2012; 74:196-8. [PMID: 23127551 DOI: 10.1016/j.humimm.2012.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/08/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022]
Abstract
The main purpose of this report is to provide baseline gene frequencies of Knops blood group in the complement receptor 1 gene (CR1) in Korean population. In addition, possible relationship between the CR1 polymorphism and HLA specificities were studied, because the two systems had principal importance in immunity. CR1, which contains Knops antigens, was investigated by PCR-direct sequencing from 238 cord blood from Koreans. HLA data was archived from the enrolled cord blood units. Among the 7 SNPs, only 4843 (for KCAM antigen) and 4223 (for Yk(a)) nucleotide positions showed polymorphism. The genotype frequencies of KCAM were A/A (62.2%), A/G (33.2%), and G/G (4.6%); Yk(a) were C/C (29.4%), C/T (50%), and T/T (20.6%). KCAM (A/A) associated with HLA-DRB1(∗)13 (p=0.003, P(c)=0.0513); KCAM (G/G) with HLA-A(∗)30 (p<0.001, P(c)=0.0012). The Knops blood group system in Korean population has no diversity, except SNPs for KCAM and Yk(a), and the genotype of KCAM related with specific HLA alleles.
Collapse
Affiliation(s)
- Jong Hyun Yoon
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tetteh-Quarcoo PB, Schmidt CQ, Tham WH, Hauhart R, Mertens HDT, Rowe A, Atkinson JP, Cowman AF, Rowe JA, Barlow PN. Lack of evidence from studies of soluble protein fragments that Knops blood group polymorphisms in complement receptor-type 1 are driven by malaria. PLoS One 2012; 7:e34820. [PMID: 22506052 PMCID: PMC3323580 DOI: 10.1371/journal.pone.0034820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
Complement receptor-type 1 (CR1, CD35) is the immune-adherence receptor, a complement regulator, and an erythroid receptor for Plasmodium falciparum during merozoite invasion and subsequent rosette formation involving parasitized and non-infected erythrocytes. The non-uniform geographical distribution of Knops blood group CR1 alleles Sl1/2 and McCa/b may result from selective pressures exerted by differential exposure to infectious hazards. Here, four variant short recombinant versions of CR1 were produced and analyzed, focusing on complement control protein modules (CCPs) 15–25 of its ectodomain. These eleven modules encompass a region (CCPs 15–17) key to rosetting, opsonin recognition and complement regulation, as well as the Knops blood group polymorphisms in CCPs 24–25. All four CR1 15–25 variants were monomeric and had similar axial ratios. Modules 21 and 22, despite their double-length inter-modular linker, did not lie side-by-side so as to stabilize a bent-back architecture that would facilitate cooperation between key functional modules and Knops blood group antigens. Indeed, the four CR1 15–25 variants had virtually indistinguishable affinities for immobilized complement fragments C3b (KD = 0.8–1.1 µM) and C4b (KD = 5.0–5.3 µM). They were all equally good co-factors for factor I-catalysed cleavage of C3b and C4b, and they bound equally within a narrow affinity range, to immobilized C1q. No differences between the variants were observed in assays for inhibition of erythrocyte invasion by P. falciparum or for rosette disruption. Neither differences in complement-regulatory functionality, nor interactions with P. falciparum proteins tested here, appear to have driven the non-uniform geographic distribution of these alleles.
Collapse
Affiliation(s)
| | - Christoph Q. Schmidt
- The Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard Hauhart
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Arthur Rowe
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicester, United Kingdom
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alan F. Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul N. Barlow
- The Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J. Complement receptor 1 (CR1) and Alzheimer's disease. Immunobiology 2011; 217:244-50. [PMID: 21840620 DOI: 10.1016/j.imbio.2011.07.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/22/2011] [Accepted: 07/17/2011] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and it poses an ever-increasing burden to an aging population. Several loci responsible for the rare, autosomal dominant form of AD have been identified (APP, PS1 and PS2), and these have facilitated the development of the amyloid cascade hypothesis of AD aetiology. The late onset form of the disease (LOAD) is poorly defined genetically, and up until recently the only known risk factor was the ε4 allele of APOE. Recent genome-wide association studies (GWAS) have identified common genetic variants that increase risk of LOAD. Two of the genes highlighted in these studies, CLU and CR1, suggest a role for the complement system in the aetiology of AD. In this review we analyse the evidence for an involvement of complement in AD. In particular we focus on one gene, CR1, and its role in the complement cascade. CR1 is a receptor for the complement fragments C3b and C4b and is expressed on many different cell types, particularly in the circulatory system. We look at the evidence for genetic polymorphisms in the gene and the possible physiological effects of these well-documented changes. Finally, we discuss the possible impact of CR1 genetic polymorphisms in relation to the amyloid cascade hypothesis of AD and the way in which CR1 may lead to AD pathogenesis.
Collapse
Affiliation(s)
- Helen Crehan
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | |
Collapse
|