1
|
Josefsson EC. Platelets and megakaryocytes in cancer. J Thromb Haemost 2025; 23:804-816. [PMID: 39742972 DOI: 10.1016/j.jtha.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Platelets have important roles in hemostasis but also actively participate in cancer metastasis and inflammatory processes. They are produced by large precursor cells, the megakaryocytes, residing mainly in the bone marrow. Clinically, elevated platelet counts and/or increased platelet-to-lymphocyte ratio are being explored as biomarkers of metastatic disease and to predict survival or response to therapy in certain cancers. Multiple mechanisms have been put forward on how platelets promote hematogenous metastasis stemming mainly from murine experimental models. Research is now beginning to explore the potential roles of megakaryocytes in solid cancer, myeloma, and lymphoma. Here, we review mechanisms on how platelets and megakaryocytes contribute to cancer progression and metastasis but also discuss potential cancer-suppressing functions mainly related to the regulation of vascular intratumor integrity. Recent developments in cancer immune checkpoint therapy are reviewed with a focus on the potential roles of platelets. Moreover, we review studies exploring platelets for targeted drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Emma C Josefsson
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, The University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Yuan Z, Lin B, Wang C, Yan Z, Yang F, Su H. Collagen remodeling-mediated signaling pathways and their impact on tumor therapy. J Biol Chem 2025; 301:108330. [PMID: 39984051 PMCID: PMC11957794 DOI: 10.1016/j.jbc.2025.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
In addition to their traditional roles in maintaining tissue morphology and organ development, emerging evidence suggests that collagen (COL) remodeling-referring to dynamic changes in the quantity, stiffness, arrangements, cleavage states, and homo-/hetero-trimerization of COLs-serves as a key signaling mechanism that governs tumor growth and metastasis. COL receptors act as switches, linking various forms of COL remodeling to different cell types during cancer progression, including cancer cells, immune cells, and cancer-associated fibroblasts. In this review, we summarize recent findings on the signaling pathways mediated by COL arrangement, cleavage, and trimerization states (both homo- and hetero-), as well as the roles of the primary COL receptors-integrin, DDR1/2, LAIR-1/2, MRC2, and GPVI-in cancer progression. We also discuss the latest therapeutic strategies targeting COL fragments, cancer-associated fibroblasts, and COL receptors, including integrins, DDR1/2, and LAIR1/2. Understanding the pathways modulated by COL remodeling and COL receptors in various pathological contexts will pave the way for developing new precision therapies.
Collapse
Affiliation(s)
- Zihang Yuan
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, MOE Innovation Center for Basic Research in Tumor Immunotherapy, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bo Lin
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunlan Wang
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhaoyue Yan
- The Department of Stomatology, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
| | - Fei Yang
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, MOE Innovation Center for Basic Research in Tumor Immunotherapy, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hua Su
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tavukcuoglu Z, Butt U, de Faria AVS, Oesterreicher J, Holnthoner W, Laitinen S, Palviainen M, Siljander PRM. Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes. Cell Commun Signal 2024; 22:601. [PMID: 39695652 DOI: 10.1186/s12964-024-01973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types. This allowed us to investigate the differential capacity of PEVs to alter cancer hallmark functions such as proliferation, invasion, and pro-angiogenic potential using melanoma as a model. Additionally, we analyzed changes in the cell transcriptomes and cancer EV profiles. METHODS Two human melanoma cell lines (MV3 and A2058) with differential metastatic potential were studied in the 3D spheroid cultures. Human platelets were activated with collagen related peptide (CRP), fucoidan from Fucus vesiculosus (FFV), thrombin & collagen co-stimulus and Ca2+ ionophore, and PEVs were isolated by size-exclusion chromatography followed by ultrafiltration. Spheroids or cells were treated with PEVs and used in functional assays of proliferation, invasion, and endothelial tube formation as well as for the analysis of cancer EV production and their tetraspanin profiles. Differentially expressed genes and enriched signaling pathways in the PEV-treated spheroids were analyzed at 6 h and 24 h by RNA sequencing. RESULTS Among the studied PEVs, those generated by CRP and FFV exhibited the most pronounced effects on altering cancer hallmark functions. Specifically, CRP and FFV PEVs increased proliferation in both MV3 and A2058 spheroids. Distinct tetraspanin signatures of melanoma EVs were induced by all PEV types. While the PI3K-Akt and MAPK signaling pathways were activated by both CRP and FFV PEVs, they differently upregulated the immunomodulatory TGF-β and type-I interferon signaling pathways, respectively. CONCLUSIONS Our study revealed both shared and distinct, cancer-promoting functions of PEVs, which contributed to the transcriptome and metastatic capabilities of the melanoma spheroids. Inhibiting the platelet receptors that modulate the PEVs' cancer-promoting properties may open up new strategies for identifying promising treatment targets for cancer therapy.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Umar Butt
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Alessandra V Sousa de Faria
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Garcia-Leon MJ, Liboni C, Mittelheisser V, Bochler L, Follain G, Mouriaux C, Busnelli I, Larnicol A, Colin F, Peralta M, Osmani N, Gensbittel V, Bourdon C, Samaniego R, Pichot A, Paul N, Molitor A, Carapito R, Jandrot-Perrus M, Lefebvre O, Mangin PH, Goetz JG. Platelets favor the outgrowth of established metastases. Nat Commun 2024; 15:3297. [PMID: 38740748 DOI: 10.1038/s41467-024-47516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.
Collapse
Affiliation(s)
- Maria J Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
- Domain therapeutics, Parc d'Innovation - 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg - Illkirch, France.
| | - Cristina Liboni
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Louis Bochler
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarisse Mouriaux
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Colin
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marina Peralta
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Catherine Bourdon
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Unidad de Microscopía Confocal, Madrid, Spain
| | - Angélique Pichot
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Nicodème Paul
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Anne Molitor
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Raphaël Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | | | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Pierre H Mangin
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
5
|
Le Chapelain O, Jadoui S, Gros A, Barbaria S, Benmeziane K, Ollivier V, Dupont S, Solo Nomenjanahary M, Mavouna S, Rogozarski J, Mawhin MA, Caligiuri G, Delbosc S, Porteu F, Nieswandt B, Mangin PH, Boulaftali Y, Ho-Tin-Noé B. The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent. J Exp Clin Cancer Res 2024; 43:84. [PMID: 38493157 PMCID: PMC10944607 DOI: 10.1186/s13046-024-03001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Collapse
Affiliation(s)
- Ophélie Le Chapelain
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Soumaya Jadoui
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Angèle Gros
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Samir Barbaria
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Véronique Ollivier
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Sébastien Dupont
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Mialitiana Solo Nomenjanahary
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Sabrina Mavouna
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Marie-Anne Mawhin
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Sandrine Delbosc
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, F-67065, France
| | - Yacine Boulaftali
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Benoit Ho-Tin-Noé
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
6
|
Singh A, Mommers-Elshof ETAM, Vijver SV, Jansen JHM, Gonder S, Lebbink RJ, Bihan D, Farndale RW, Boon L, Langermann S, Leusen JHW, Flies D, Meyaard L, Pascoal Ramos MI. Leukocyte-associated immunoglobulin-like receptor-1 blockade in combination with programmed death-ligand 1 targeting therapy mediates increased tumour control in mice. Cancer Immunol Immunother 2024; 73:16. [PMID: 38236251 PMCID: PMC10796629 DOI: 10.1007/s00262-023-03600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024]
Abstract
Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding. Multiple studies in mice implicate blockade of LAIR-1:collagen interaction in cancer as a promising therapeutic strategy. Here, we investigated the role of LAIR-1 in anti-tumour responses. We show that although LAIR-1 inhibits activation, proliferation, and cytokine production of mouse T cells in vitro, tumour outgrowth in LAIR-1-deficient mice did not differ from wild type mice in several in vivo tumour models. Furthermore, treatment with NC410, a LAIR-2-Fc fusion protein, did not result in increased tumour clearance in tested immunocompetent mice, which contrasts with previous data in humanized mouse models. This discrepancy may be explained by our finding that NC410 blocks human LAIR-1:collagen interaction more effectively than mouse LAIR-1:collagen interaction. Despite the lack of therapeutic impact of NC410 monotherapy, mice treated with a combination of NC410 and anti-programmed death-ligand 1 did show reduced tumour burden and increased survival. Using LAIR-1-deficient mice, we showed that this effect seemed to be dependent on the presence of LAIR-1. Taken together, our data demonstrate that the absence of LAIR-1 signalling alone is not sufficient to control tumour growth in multiple immunocompetent mouse models. However, combined targeting of LAIR-1 and PD-L1 results in increased tumour control. Thus, additional targeting of the LAIR-1:collagen pathway with NC410 is a promising approach to treating tumours where conventional immunotherapy is ineffective.
Collapse
Affiliation(s)
- Akashdip Singh
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Eline T A M Mommers-Elshof
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Saskia V Vijver
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J H Marco Jansen
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Susanne Gonder
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Robert Jan Lebbink
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | - Jeanette H W Leusen
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | | | - Linde Meyaard
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Zhao J, Huang A, Zeller J, Peter K, McFadyen JD. Decoding the role of platelets in tumour metastasis: enigmatic accomplices and intricate targets for anticancer treatments. Front Immunol 2023; 14:1256129. [PMID: 38106409 PMCID: PMC10722285 DOI: 10.3389/fimmu.2023.1256129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The canonical role of platelets as central players in cardiovascular disease by way of their fundamental role in mediating thrombosis and haemostasis is well appreciated. However, there is now a large body of experimental evidence demonstrating that platelets are also pivotal in various physiological and pathophysiological processes other than maintaining haemostasis. Foremost amongst these is the emerging data highlighting the key role of platelets in driving cancer growth, metastasis and modulating the tumour microenvironment. As such, there is significant interest in targeting platelets therapeutically for the treatment of cancer. Therefore, the purpose of this review is to provide an overview of how platelets contribute to the cancer landscape and why platelets present as valuable targets for the development of novel cancer diagnosis tools and therapeutics.
Collapse
Affiliation(s)
- Jessie Zhao
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VI, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VI, Australia
| | - Angela Huang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Plastic and Hand Surgery, Medical Center – University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VI, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VI, Australia
- Department of Medicine, Monash University, Melbourne, VI, Australia
| | - James D. McFadyen
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VI, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VI, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VI, Australia
| |
Collapse
|
8
|
Puricelli C, Boggio E, Gigliotti CL, Stoppa I, Sutti S, Giordano M, Dianzani U, Rolla R. Platelets, Protean Cells with All-Around Functions and Multifaceted Pharmacological Applications. Int J Mol Sci 2023; 24:4565. [PMID: 36901997 PMCID: PMC10002540 DOI: 10.3390/ijms24054565] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Platelets, traditionally known for their roles in hemostasis and coagulation, are the most prevalent blood component after erythrocytes (150,000-400,000 platelets/μL in healthy humans). However, only 10,000 platelets/μL are needed for vessel wall repair and wound healing. Increased knowledge of the platelet's role in hemostasis has led to many advances in understanding that they are crucial mediators in many other physiological processes, such as innate and adaptive immunity. Due to their multiple functions, platelet dysfunction is involved not only in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism, but also in several other disorders, such as tumors, autoimmune diseases, and neurodegenerative diseases. On the other hand, thanks to their multiple functions, nowadays platelets are therapeutic targets in different pathologies, in addition to atherothrombotic diseases; they can be used as an innovative drug delivery system, and their derivatives, such as platelet lysates and platelet extracellular vesicles (pEVs), can be useful in regenerative medicine and many other fields. The protean role of platelets, from the name of Proteus, a Greek mythological divinity who could take on different shapes or aspects, is precisely the focus of this review.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| |
Collapse
|
9
|
Shi Q, Ji T, Tang X, Guo W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol (Dordr) 2023; 46:521-532. [PMID: 36652166 DOI: 10.1007/s13402-023-00773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to their pivotal roles in coagulation and thrombosis, platelets are crucial in tumor progression, with plenty of clinical and experimental data demonstrating that the interplay of platelets and tumor cells is essential for hematogenous tumor metastasis. After detach from primary sites, tumor cells intravasate into the blood circulation becoming circulating tumor cells and induce platelet activation, aggregation and encasement around tumor cells to form micro tumor thrombi, which create a permissive tumor microenvironment for metastasis. Platelets in micro tumor thrombi protect tumor cells from immune surveillance and anoikis (detachment-triggered apoptosis) through various pathways, which are significant for tumor cell survival in the bloodstream. Moreover, platelets can facilitate tumor metastasis by expediting epithelial-mesenchymal transition (EMT), adhesion to the endothelium, angiogenesis, tumor proliferation processes and platelet-derived microvesicle (PMV) formation. CONCLUSIONS Here, we provide a synopsis of the current understanding of the formation of micro tumor thrombi and the role of micro tumor thrombi in tumor hematogenous metastasis based on the tumor-platelet interplay. We also highlight potential therapeutic strategies targeting platelets for tumor treatment, including cancer-associated platelet-targeted nanomedicines.
Collapse
Affiliation(s)
- Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
10
|
Chen S, Zhang L, Chen L, Huang Q, Wang Y, Liang Y. Comprehensive analysis of glycoprotein VI-mediated platelet activation signaling pathway for predicting pan-cancer survival and response to anti-PD-1 immunotherapy. Comput Struct Biotechnol J 2023; 21:2873-2883. [PMID: 37206616 PMCID: PMC10189353 DOI: 10.1016/j.csbj.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Platelets play a vital role in cancer and immunity. However, few comprehensive studies have been conducted on the role of platelet-related signaling pathways in various cancers and their responses to immune checkpoint blockade (ICB) therapy. In the present study, we focused on the glycoprotein VI-mediated platelet activation (GMPA) signaling pathway and comprehensively evaluated its roles in 19 types of cancers listed in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Cox regression and meta-analyses showed that for all 19 types of cancers, patients with high GMPA scores tended to have a good prognosis. Furthermore, the GMPA signature score could serve as an independent prognostic factor for patients with skin cutaneous melanoma (SKCM). The GMPA signature was linked to tumor immunity in all 19 types of cancers, and was correlated with SKCM tumor histology. Compared to other signature scores, the GMPA signature scores for on-treatment samples were more robust predictors of the response to anti-PD-1 blockade in metastatic melanoma. Moreover, the GMPA signature scores were significantly negatively correlated with EMMPRIN (CD147) and positively correlated with CD40LG expression at the transcriptomic level in most cancer patient samples from the TCGA cohort and on-treatment samples from anti-PD1 therapy cohorts. The results of this study provide an important theoretical basis for the use of GMPA signatures, as well as GPVI-EMMPRIN and GPVI-CD40LG pathways, to predict the responses of cancer patients to various types of ICB therapy.
Collapse
|
11
|
Chen L, Zhu C, Pan F, Chen Y, Xiong L, Li Y, Chu X, Huang G. Platelets in the tumor microenvironment and their biological effects on cancer hallmarks. Front Oncol 2023; 13:1121401. [PMID: 36937386 PMCID: PMC10022734 DOI: 10.3389/fonc.2023.1121401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The interplay between platelets and tumors has long been studied. It has been widely accepted that platelets could promote tumor metastasis. However, the precise interactions between platelets and tumor cells have not been thoroughly investigated. Although platelets may play complex roles in multiple steps of tumor development, most studies focus on the platelets in the circulation of tumor patients. Platelets in the primary tumor microenvironment, in addition to platelets in the circulation during tumor cell dissemination, have recently been studied. Their effects on tumor biology are gradually figured out. According to updated cancer hallmarks, we reviewed the biological effects of platelets on tumors, including regulating tumor proliferation and growth, promoting cancer invasion and metastasis, inducing vasculature, avoiding immune destruction, and mediating tumor metabolism and inflammation.
Collapse
Affiliation(s)
- Lilan Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunyan Zhu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ying Chen
- Division of Immunology, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lei Xiong
- Department of Cardio-Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Guichun Huang, ; Yan Li, ; Xiaoyuan Chu,
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Guichun Huang, ; Yan Li, ; Xiaoyuan Chu,
| | - Guichun Huang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Guichun Huang, ; Yan Li, ; Xiaoyuan Chu,
| |
Collapse
|
12
|
Morris K, Schnoor B, Papa AL. Platelet cancer cell interplay as a new therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188770. [DOI: 10.1016/j.bbcan.2022.188770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
13
|
Targeting glycoprotein VI to disrupt platelet-mediated tumor cell extravasation. Pharmacol Res 2022; 182:106301. [PMID: 35710063 DOI: 10.1016/j.phrs.2022.106301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Activated platelets coat circulating tumor cells, protecting them from shear stress in the blood stream and promoting their evasion from immune surveillance. Platelets promote tumor cell dissemination to distant organs by releasing transforming growth factor-β1 (TGF-β1) into the tumor microenvironment, which induces phenotypic changes to the epithelial-mesenchymal transition. This process facilitates tumor cell transendothelial extravasation and formation of early metastatic niches. Development of antiplatelet agents that interrupt the platelet-tumor cell axis but do not interfere with physiological hemostatic mechanisms is critical. The glycoprotein VI (GPVI), a member of the immunoreceptor family that is co-expressed with the fragment crystallizable (Fc) receptor γ-chain, is exclusively expressed in platelets and megakaryocytes, and blocking the receptor or genetic deficiency has minimal impact on bleeding. Tumor cell-expressed galectin-3, which contains a collagen-like peptide domain, binds to platelet GPVI-dimers, and the receptor-ligand activates platelets to form a protective heteroaggregate coat around tumor cells. This review highlights the potential of targeting the GPVI/FcR γ-chain complex to inhibit platelet activation by galectin-3 expressing tumor cells, disrupting the platelet-tumor cell amplification loop while maintaining the function of platelets in hemostasis.
Collapse
|
14
|
Le Chapelain O, Ho-Tin-Noé B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers (Basel) 2022; 14:cancers14092192. [PMID: 35565321 PMCID: PMC9105443 DOI: 10.3390/cancers14092192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is the complex and heterogenous ecosystem of solid tumors known to influence their growth and their progression. Besides tumor cells, the TME comprises a variety of host-derived cell types, ranging from endothelial cells to fibroblasts and immune cells. Clinical and experimental data are converging to indicate that platelets, originally known for their fundamental hemostatic function, also participate in tumor development and shaping of the TME. Considering the abundance of antiplatelet drugs, understanding if and how platelets contribute to the TME may lead to new therapeutic tools for improved cancer prevention and treatments. Abstract The tumor microenvironment (TME) has gained considerable interest because of its decisive impact on cancer progression, response to treatment, and disease recurrence. The TME can favor the proliferation, dissemination, and immune evasion of cancer cells. Likewise, there is accumulating evidence that intratumoral platelets could favor the development and aggressiveness of solid tumors, notably by influencing tumor cell phenotype and shaping the vascular and immune TME components. Yet, in contrast to other tumor-associated cell types like macrophages and fibroblasts, platelets are still often overlooked as components of the TME. This might be due, in part, to a deficit in investigating and reporting the presence of platelets in the TME and its relationships with cancer characteristics. This review summarizes available evidence from clinical and animal studies supporting the notion that tumor-associated platelets are not incidental bystanders but instead integral and active components of the TME. A particular emphasis is given to the description of intratumoral platelets, as well as to the functional consequences and possible mechanisms of intratumoral platelet accumulation.
Collapse
|
15
|
Ramírez-Torres A, Gil J, Contreras S, Ramírez G, Valencia-González HA, Salazar-Bustamante E, Gómez-Caudillo L, García-Carranca A, Encarnación-Guevara S. Quantitative Proteomic Analysis of Cervical Cancer Tissues Identifies Proteins Associated With Cancer Progression. Cancer Genomics Proteomics 2022; 19:241-258. [PMID: 35181591 DOI: 10.21873/cgp.20317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM To date, several proteomics studies in cervical cancer (CC) have focused mainly on squamous cervical cancer (SCC). Our study aimed to discover and clarify differences in SCC and CAD that may provide valuable information for the identification of proteins involved in tumor progression, in CC as a whole, or specific for SCC or CAD. MATERIALS AND METHODS Total protein extracts from 15 individual samples corresponding to 5 different CC tissue types were compared with a non-cancerous control group using bidimensional liquid chromatography-mass spectrometry (2D LC-MS/MS), isobaric tags for relative and absolute quantitation (ITRAQ), principal component analysis (PCA) and gene set enrichment analysis (GSEA). RESULTS A total of 622 statistically significant different proteins were detected. Exocytosis-related proteins were the most over-represented, accounting for 25% of the identified and quantified proteins. Based on the experimental results, reticulocalbin 3 (RCN3) and Ras-related protein Rab-14 (RAB14) were chosen for further downstream in vitro and vivo analyses. RCN3 was overexpressed in all CC tissues compared to the control and RAB14 was overexpressed in squamous cervical cancer (SCC) compared to invasive cervical adenocarcinoma (CAD). In the tumor xenograft experiment, RAB14 protein expression was positively correlated with increased tumor size. In addition, RCN3-expressing HeLa cells induced a discrete size increment compared to control, at day 47 after inoculation. CONCLUSION RAB14 and RCN3 are suggested as potential biomarkers and therapeutic targets in the treatment of CC.
Collapse
Affiliation(s)
- Alberto Ramírez-Torres
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Jeovanis Gil
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico.,Division of Oncology, Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Sandra Contreras
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Graciela Ramírez
- The National Institute of Cancerology (INCan), Mexico City, Mexico
| | | | - Emmanuel Salazar-Bustamante
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Leopoldo Gómez-Caudillo
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - Sergio Encarnación-Guevara
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico;
| |
Collapse
|
16
|
Hwang BO, Park SY, Cho ES, Zhang X, Lee SK, Ahn HJ, Chun KS, Chung WY, Song NY. Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Front Immunol 2022; 12:807600. [PMID: 34987523 PMCID: PMC8721674 DOI: 10.3389/fimmu.2021.807600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.
Collapse
Affiliation(s)
- Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eunae Sandra Cho
- BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Pathology, Yanbian University Hospital, Yanji City, China
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hyung-Joon Ahn
- Department of Orofacial Pain and Oral Medicine, Dental Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Won-Yoon Chung
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
17
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Yu L, Guo Y, Chang Z, Zhang D, Zhang S, Pei H, Pang J, Zhao ZJ, Chen Y. Bidirectional Interaction Between Cancer Cells and Platelets Provides Potential Strategies for Cancer Therapies. Front Oncol 2021; 11:764119. [PMID: 34722319 PMCID: PMC8551800 DOI: 10.3389/fonc.2021.764119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets. Once activated, platelets serve as allies of cancer cells in tumor growth and metastasis. They can protect circulating tumor cells (CTCs) against the immune system and detachment-induced apoptosis while facilitating angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and platelet-based therapies should be developed for cancer treatment. Here, we discuss the mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based therapeutic approaches.
Collapse
Affiliation(s)
- Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
19
|
Liu Y, Zhang Y, Ding Y, Zhuang R. Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Crit Rev Oncol Hematol 2021; 167:103502. [PMID: 34662726 DOI: 10.1016/j.critrevonc.2021.103502] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence suggests that platelets play an essential role in cancer metastasis. The interactions between platelets and circulating tumor cells (CTCs) promote cancer metastasis. CTCs induce platelet activation and aggregation, and activated platelets gather and protect CTCs from shear stress and natural killer cells. Finally, platelets stimulate CTC anoikis resistance, epithelial-to-mesenchymal transition, angiogenesis, extravasation, and eventually, metastasis. Cell adhesion molecules (CAMs) have been identified as active players during the interaction of CTCs with platelets, but the specific mechanism underlying the contribution of platelet-associated CAMs to CTC metastasis remains unclear. In this review, we introduce the mechanism of platelet-related tumor metastasis and particularly focus on the role of CAMs in it.
Collapse
Affiliation(s)
- Yitian Liu
- Department of Immunology, the Fourth Military Medical University, #169 Changlexilu Road, Xi'an, Shaanxi, 710032, China; Orthopedic Department of Tangdu Hospital, the Fourth Military Medical University, #1 Xinsi Road, Xi'an, Shaanxi, 710032, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, #127 Youyixilu Road, Xi'an, Shaanxi, 710072, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, the Fourth Military Medical University, #1 Xinsi Road, Xi'an, Shaanxi, 710032, China
| | - Ran Zhuang
- Department of Immunology, the Fourth Military Medical University, #169 Changlexilu Road, Xi'an, Shaanxi, 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 Youyixilu Road, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
20
|
Perrella G, Nagy M, Watson SP, Heemskerk JWM. Platelet GPVI (Glycoprotein VI) and Thrombotic Complications in the Venous System. Arterioscler Thromb Vasc Biol 2021; 41:2681-2692. [PMID: 34496636 PMCID: PMC9653110 DOI: 10.1161/atvbaha.121.316108] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The immunoglobulin receptor GPVI (glycoprotein VI) is selectively expressed on megakaryocytes and platelets and is currently recognized as a receptor for not only collagen but also a variety of plasma and vascular proteins, including fibrin, fibrinogen, laminin, fibronectin, and galectin-3. Deficiency of GPVI is protective in mouse models of experimental thrombosis, pulmonary thromboembolism as well as in thromboinflammation, suggesting a role of GPVI in arterial and venous thrombus formation. In humans, platelet GPVI deficiency is associated with a mild bleeding phenotype, whereas a common variant rs1613662 in the GP6 gene is considered a risk factor for venous thromboembolism. However, preclinical studies on the inhibition of GPVI-ligand interactions are focused on arterial thrombotic complications. In this review we discuss the emerging evidence for GPVI in venous thrombus formation and leukocyte-dependent thromboinflammation, extending to venous thromboembolism, pulmonary thromboembolism, and cancer metastasis. We also recapitulate indications for circulating soluble GPVI as a biomarker of thrombosis-related complications. Collectively, we conclude that the current evidence suggests that platelet GPVI is also a suitable cotarget in the prevention of venous thrombosis due to its role in thrombus consolidation and platelet-leukocyte complex formation.
Collapse
Affiliation(s)
- Gina Perrella
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.).,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., S.P.W.)
| | - Magdolna Nagy
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., S.P.W.).,COMPARE, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (S.P.W.)
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.).,Now with Synapse Research Institute, Maastricht, the Netherlands (J.W.M.H.)
| |
Collapse
|
21
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
22
|
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, Kratz E, Kamińska J. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunol Immunother 2021; 70:1497-1510. [PMID: 33146401 PMCID: PMC8139882 DOI: 10.1007/s00262-020-02758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs (tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor associated platelets-TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic cells, and even enhance apoptosis. Undoubtedly, TAPs' role seems to be more complex when compared to tumor associated neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
23
|
Abstract
Until recently, the nucleic acid content of platelets was considered to be fully determined by their progenitor megakaryocyte. However, it is now well understood that additional mediators (eg, cancer cells) can intervene, thereby influencing the RNA repertoire of platelets. Platelets are highly dynamic cells that are able to communicate and influence their environment. For instance, platelets have been involved in various steps of cancer development and progression by supporting tumor growth, survival, and dissemination. Cancer cells can directly and/or indirectly influence platelet RNA content, resulting in tumor-mediated "education" of platelets. Alterations in the tumor-educated platelet RNA profile have been described as a novel source of potential biomarkers. Individual platelet RNA biomarkers as well as complex RNA signatures may be used for early detection of cancer and treatment monitoring. Here, we review the RNA transfer occurring between cancer cells and platelets. We explore the potential use of platelet RNA biomarkers as a liquid biopsy biosource and discuss methods to evaluate the transcriptomic content of platelets.
Collapse
|
24
|
Fang L, Xu Q, Qian J, Zhou JY. Aberrant Factors of Fibrinolysis and Coagulation in Pancreatic Cancer. Onco Targets Ther 2021; 14:53-65. [PMID: 33442266 PMCID: PMC7797325 DOI: 10.2147/ott.s281251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant factors associated with fibrinolysis and thrombosis are found in many cancer patients, which can promote metastasis and are associated with poor prognosis. The relationship between tumor-associated fibrinolysis and thrombosis is poorly understood in pancreatic cancer. This review provides a brief highlight of existing studies that the fibrinolysis and coagulation systems were activated in pancreatic cancer patients, along with aberrant high concentrations of tissue plasminogen activator (t-PA), urine plasminogen activator (u-PA), D-dimer, fibrinogen, or platelets. These factors cooperate with each other, propelling tumor cell shedding, localization, adhesion to distant metastasis. The relationship between thrombosis or fibrinolysis and cancer immune escape is also investigated. In addition, the potential prevention and therapy strategies of pancreatic cancer targeting factors in fibrinolysis and coagulation systems are also been discussed, in which we highlight two effective agents aspirin and low-molecular weight heparin (LMWH). Summarily, this review provides new directions for the research and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lianghua Fang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Qing Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210029, People's Republic of China
| | - Jun Qian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
25
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
27
|
Yadav VK, Lee TY, Hsu JBK, Huang HD, Yang WCV, Chang TH. Computational analysis for identification of the extracellular matrix molecules involved in endometrial cancer progression. PLoS One 2020; 15:e0231594. [PMID: 32315343 PMCID: PMC7173926 DOI: 10.1371/journal.pone.0231594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Recurrence and poorly differentiated (grade 3 and above) and atypical cell type endometrial cancer (EC) have poor prognosis outcome. The mechanisms and characteristics of recurrence and distal metastasis of EC remain unclear. The extracellular matrix (ECM) of the reproductive tract in women undergoes extensive structural remodelling changes every month. Altered ECMs surrounding cells were believed to play crucial roles in a cancer progression. To decipher the associations between ECM and EC development, we generated a PAN-ECM Data list of 1516 genes including ECM molecules (ECMs), synthetic and degradation enzymes for ECMs, ECM receptors, and soluble molecules that regulate ECM and used RNA-Seq data from The Cancer Genome Atlas (TCGA) for the studies. The alterations of PAN-ECM genes by comparing the RNA-Seq expressions profiles of EC samples which have been grouped as tumorigenesis and metastasis group based on their pathological grading were identified. Differential analyses including functional enrichment, co-expression network, and molecular network analysis were carried out to identify the specific PAN-ECM genes that may involve in the progression of EC. Eight hundred and thirty-one and 241 PAN-ECM genes were significantly involved in tumorigenesis (p-value <1.571e-15) and metastasis (p-value <2.2e-16), respectively, whereas 140 genes were in the intersection of tumorigenesis and metastasis. Interestingly, 92 of the 140 intersecting PAN-ECM genes showed contrasting fold changes between the tumorigenesis and metastasis datasets. Enrichment analysis for the contrast PAN-ECM genes indicated pathways such as GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways were activated in metastasis but inhibited in tumorigenesis. The significantly activated ECM and ECM associated genes in GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways may play crucial roles in metastasis of EC. Our study provides a better understanding of the etiology and the progression of EC.
Collapse
Affiliation(s)
- Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Wei-Chung Vivian Yang
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| |
Collapse
|
28
|
Le Chapelain O, Jadoui S, Boulaftali Y, Ho-Tin-Noé B. The reversed passive Arthus reaction as a model for investigating the mechanisms of inflammation-associated hemostasis. Platelets 2020; 31:455-460. [PMID: 32105152 DOI: 10.1080/09537104.2020.1732325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, accumulating evidence has indicated that platelets continuously repair vascular damage at sites of inflammation and/or infection. Studies in mouse models of inflammation have highlighted the fact that the mechanisms underlying bleeding prevention by platelets in inflamed organs can substantially differ from those supporting primary hemostasis following tail tip transection or thrombus formation in models of thrombosis. As a consequence, exploration of the hemostatic function of platelets in inflammation, as well as assessment of the risk of inflammation-induced bleeding associated with a platelet deficit and/or the use of anti-thrombotic drugs, require the use of dedicated experimental models. In the present review, we present the pros and cons of the cutaneous reversed passive Arthus reaction, a model of inflammation which has been instrumental in studying how inflammation causes vascular injury and how platelets continuously intervene to repair it. The limitations and common issues encountered when working with mouse models of inflammation for investigating platelet functions in inflammation are also discussed.
Collapse
Affiliation(s)
| | - Soumaya Jadoui
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France
| | | | | |
Collapse
|
29
|
Maurer S, Kopp HG, Salih HR, Kropp KN. Modulation of Immune Responses by Platelet-Derived ADAM10. Front Immunol 2020; 11:44. [PMID: 32117229 PMCID: PMC7012935 DOI: 10.3389/fimmu.2020.00044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Platelets have a crucial function in maintaining hemostasis. However, beyond their role in coagulation and thrombus formation, platelets have been implicated to affect various pathophysiological conditions such as infectious diseases, autoimmune disorders, and cancer. It is well-established that platelets aid local cancer growth by providing growth factors or contributing to cancer angiogenesis. In addition, they promote metastasis, among others by facilitation of tumor cell-extravasation and epithelial-to-mesenchymal-like transition as well as protecting metastasizing cancer cells from immunosurveillance. A variety of membrane-bound and soluble platelet-derived factors are involved in these processes, and many aspects of platelet biology in both health and disease are regulated by platelet-associated metalloproteinases and their inhibitors. Platelets synthesize (i) members of the matrix metalloproteinase (MMP) family and also inhibitors of MMPs such as members of the "tissue inhibitor of metalloproteinases" (TIMP) family as well as (ii) members of the "a disintegrin and metalloproteinase" (ADAM) family including ADAM10. Notably, platelet-associated metalloproteinase activity not only influences functions of platelets themselves: platelets can also induce expression and/or release of metalloproteinases e.g., in leukocytes or cancer cells, and ADAMs are emerging as important components by which platelets directly affect other cell types and function. This review outlines the function of metalloproteinases in platelet biology with a focus on ADAM10 and discusses the role of platelet-derived metalloproteinases in the interaction of platelets with components of the immune system and/or cancer cells.
Collapse
Affiliation(s)
- Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, Tubingen, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hans-Georg Kopp
- Departments of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, Tubingen, Germany
| | - Korbinian N Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| |
Collapse
|
30
|
San Juan BP, Garcia-Leon MJ, Rangel L, Goetz JG, Chaffer CL. The Complexities of Metastasis. Cancers (Basel) 2019; 11:E1575. [PMID: 31623163 PMCID: PMC6826702 DOI: 10.3390/cancers11101575] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Therapies that prevent metastatic dissemination and tumor growth in secondary organs are severely lacking. A better understanding of the mechanisms that drive metastasis will lead to improved therapies that increase patient survival. Within a tumor, cancer cells are equipped with different phenotypic and functional capacities that can impact their ability to complete the metastatic cascade. That phenotypic heterogeneity can be derived from a combination of factors, in which the genetic make-up, interaction with the environment, and ability of cells to adapt to evolving microenvironments and mechanical forces play a major role. In this review, we discuss the specific properties of those cancer cell subgroups and the mechanisms that confer or restrict their capacity to metastasize.
Collapse
Affiliation(s)
- Beatriz P San Juan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Maria J Garcia-Leon
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laura Rangel
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Christine L Chaffer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| |
Collapse
|
31
|
Ortiz-Otero N, Mohamed Z, King MR. Platelet-Based Drug Delivery for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1092:235-251. [PMID: 30368756 DOI: 10.1007/978-3-319-95294-9_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Platelets can be considered as the "guardian of hemostasis" where their main function is to maintain vascular integrity. In pathological conditions, the hemostatic role of platelets may be hijacked to stimulate disease progression. In 1865, Armand Trousseau was a pioneer in establishing the platelet-cancer metastasis relationship, which he eventually termed as Trousseau's Syndrome to describe the deregulation of the hemostasis-associated pathways induced by cancer progression (Varki, Blood. 110(6):1723-9, 2007). Since these early studies, there has been an increase in experimental evidence not only to elucidate the role of platelets in cancer metastasis but also to create novel cancer therapies by targeting the platelet's impact in metastasis. In this chapter, we discuss the contribution of platelets in facilitating tumor cell transit from the primary tumor to distant metastatic sites as well as novel cancer therapies based on platelet interactions.
Collapse
Affiliation(s)
- Nerymar Ortiz-Otero
- Department of Biomedical Engineering, Vanderbilt~University, Nashville, TN, USA
| | - Zeinab Mohamed
- Department of Biomedical Engineering, Cornell~University, Ithaca, NY, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt~University, Nashville, TN, USA.
| |
Collapse
|
32
|
Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 2019; 133:2696-2706. [PMID: 30952674 DOI: 10.1182/blood.2018877043] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively rendered tumor vessels highly permeable and caused massive intratumoral hemorrhage. While these results established platelets as potential targets for antitumor therapy, their depletion is not a treatment option due to their essential role in hemostasis. Thus, a detailed understanding of how platelets safeguard vascular integrity in tumors is urgently demanded. Here, we show for the first time that functional inhibition of glycoprotein VI (GPVI) on the platelet surface with an antibody (JAQ1) F(ab)2 fragment rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion while not inducing systemic bleeding complications. The intratumor bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells, confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, JAQ1 F(ab)2-mediated GPVI inhibition increased intratumoral accumulation of coadministered chemotherapeutic agents, such as Doxil and paclitaxel, thereby resulting in a profound antitumor effect. In summary, our findings identify platelet GPVI as a key regulator of vascular integrity specifically in growing tumors and could serve as a basis for the development of antitumor strategies based on the interference with platelet function.
Collapse
|
33
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Abstract
For over 100 years, a link has been recognized between thrombosis and cancer. However, whether this was a causal or correlational relationship was debated. It is now well established that cancer and thrombosis are mechanistically related in intricate ways and can directly fuel each other. Here, we present an historical perspective of platelets and how their physiological function in hemostasis can contribute to tumor development and metastasis. This emerging field has garnered great interest as aspirin therapy has been proposed as a prevention strategy for some malignancies. We highlight the advances that have been made, presenting platelets as a key component that supports many of the hallmarks of cancer that have been described and conclude with future directions and studies that are needed to clarify the role of platelets in cancer and solidify platelet modulating therapies within oncology.
Collapse
Affiliation(s)
- Aime T Franco
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Slot 505, 4301 W. Markham Street, Little Rock, AR, 72205, USA.
| | - Jerry Ware
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Slot 505, 4301 W. Markham Street, Little Rock, AR, 72205, USA
| |
Collapse
|
35
|
Li Z, Riesenberg B, Metelli A, Li A, Wu BX. The Role of Platelets in Tumor Growth, Metastasis, and Immune Evasion. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00030-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
37
|
Qi Y, Chen W, Liang X, Xu K, Gu X, Wu F, Fan X, Ren S, Liu J, Zhang J, Li R, Liu J, Liang X. Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction. J Hematol Oncol 2018; 11:117. [PMID: 30223883 PMCID: PMC6142402 DOI: 10.1186/s13045-018-0659-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Platelet glycoprotein Ibα (GPIbα) extracellular domain, which is part of the receptor complex GPIb-IX-V, plays an important role in tumor metastasis. However, the mechanism through which GPIbα participates in the metastatic process remains unclear. In addition, potential bleeding complication remains an obstacle for the clinical use of anti-platelet agents in cancer therapy. METHODS We established a series of screening models and obtained rat anti-mouse GPIbα monoclonal antibodies (mAb) 1D12 and 2B4 that demonstrated potential value in suppressing cancer metastasis. To validate our findings, we further obtained mouse anti-human GPIbα monoclonal antibody YQ3 through the same approach. RESULTS 1D12 and 2B4 affected the von Willebrand factor (vWF)-GPIbα interaction via binding to GPIbα aa 41-50 and aa 277-290 respectively, which markedly inhibited the interaction among platelets, tumor cells, and endothelial cells in vitro, and reduced the mean number of surface nodules in the experimental and spontaneous metastasis models in vivo. As expected, YQ3 inhibited lung cancer adhesion and demonstrated similar value in metastasis. More importantly, for all three mAbs in our study, none of their Fabs induced thrombocytopenia. CONCLUSION Our results therefore supported the hypothesis that GPIbα contributes to tumor metastasis and suggested potential value of using anti-GPIbα mAb to suppress cancer metastasis.
Collapse
Affiliation(s)
- Yingxue Qi
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xinyu Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ke Xu
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, People's Republic of China.
| | - Xiangyu Gu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
38
|
Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018; 10:cancers10080253. [PMID: 30065215 PMCID: PMC6115803 DOI: 10.3390/cancers10080253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
Platelet activation is the first response to tissue damage and, if unrestrained, may promote chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor escape from immune elimination. These findings provide the rationale for the use of antithrombotic agents in the prevention of cancer development and the reduction of metastatic spread and mortality. Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies. The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| |
Collapse
|
39
|
Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 2018; 33:965-983. [PMID: 29657130 PMCID: PMC5997503 DOI: 10.1016/j.ccell.2018.03.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Besides their function in limiting blood loss and promoting wound healing, experimental evidence has highlighted platelets as active players in all steps of tumorigenesis including tumor growth, tumor cell extravasation, and metastasis. Additionally, thrombocytosis in cancer patients is associated with adverse patient survival. Due to the secretion of large amounts of microparticles and exosomes, platelets are well positioned to coordinate both local and distant tumor-host crosstalk. Here, we present a review of recent discoveries in the field of platelet biology and the role of platelets in cancer progression as well as challenges in targeting platelets for cancer treatment.
Collapse
Affiliation(s)
- Monika Haemmerle
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
| | - Rebecca L Stone
- Department of Obstetrics and Gynecology, Johns Hopkins Hospital, Baltimore, MD 21287-1281, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018. [PMID: 29519806 DOI: 10.1182/blood-2017-05-743187] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets have long been recognized as key players in hemostasis and thrombosis; however, growing evidence suggests that they are also significantly involved in cancer, the second leading cause of mortality worldwide. Preclinical and clinical studies showed that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between platelets and cancer cells. For example, cancer changes platelet behavior by directly inducing tumor-platelet aggregates, triggering platelet granule and extracellular vesicle release, altering platelet phenotype and platelet RNA profiles, and enhancing thrombopoiesis. Reciprocally, platelets reinforce tumor growth with proliferation signals, antiapoptotic effect, and angiogenic factors. Platelets also activate tumor invasion and sustain metastasis via inducing an invasive epithelial-mesenchymal transition phenotype of tumor cells, promoting tumor survival in circulation, tumor arrest at the endothelium, and extravasation. Furthermore, platelets assist tumors in evading immune destruction. Hence, cancer cells and platelets maintain a complex, bidirectional communication. Recently, aspirin (acetylsalicylic acid) has been recognized as a promising cancer-preventive agent. It is recommended at daily low dose by the US Preventive Services Task Force for primary prevention of colorectal cancer. The exact mechanisms of action of aspirin in chemoprevention are not very clear, but evidence has emerged that suggests a platelet-mediated effect. In this article, we will introduce how cancer changes platelets to be more cancer-friendly and highlight advances in the modes of action for aspirin in cancer prevention. We also discuss the opportunities, challenges, and opposing viewpoints on applying aspirin and other antiplatelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; and
- Department of Medicine and
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Gresele P, Momi S, Malvestiti M, Sebastiano M. Platelet-targeted pharmacologic treatments as anti-cancer therapy. Cancer Metastasis Rev 2018; 36:331-355. [PMID: 28707198 DOI: 10.1007/s10555-017-9679-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets act as multifunctional cells participating in immune response, inflammation, allergy, tissue regeneration, and lymphoangiogenesis. Among the best-established aspects of a role of platelets in non-hemostatic or thrombotic disorders, there is their participation in cancer invasion and metastasis. The interaction of many different cancer cells with platelets leads to platelet activation, and on the other hand platelet activation is strongly instrumental to the pro-carcinogenic and pro-metastatic activities of platelets. It is thus obvious that over the last years a lot of interest has focused on the possible chemopreventive effect of platelet-targeted pharmacologic treatments. This article gives an overview of the platelet-targeted pharmacologic approaches that have been attempted in the prevention of cancer development, progression, and metastasis, including the application of anti-platelet drugs currently used for cardiovascular disease and of new and novel pharmacologic strategies. Despite the fact that very promising results have been obtained with some of these approaches in pre-clinical models, with the exclusion of aspirin, clinical evidence of a beneficial effect of anti-platelet agents in cancer is however still largely missing. Future studies with platelet-targeted drugs in cancer must carefully deal with design issues, and in particular with the careful selection of patients, and/or explore novel platelet targets in order to provide a solution to the critical issue of the risk/benefit profile of long-term anti-platelet therapy in the prevention of cancer progression and dissemination.
Collapse
Affiliation(s)
- P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy.
| | - S Momi
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | - M Malvestiti
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | - M Sebastiano
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| |
Collapse
|
42
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev 2018; 36:305-329. [PMID: 28752248 PMCID: PMC5557869 DOI: 10.1007/s10555-017-9683-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as "cancers follow bleeding." The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.
| | - Dominika Hempel
- Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA.,Departments of Chemistry, Wayne State University, Detroit, MI, 48202, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, 48202, USA
| |
Collapse
|
43
|
Zhang R, Guo H, Xu J, Li B, Liu YJ, Cheng C, Zhou C, Zhao Y, Liu Y. Activated platelets inhibit hepatocellular carcinoma cell differentiation and promote tumor progression via platelet-tumor cell binding. Oncotarget 2018; 7:60609-60622. [PMID: 27542264 PMCID: PMC5312405 DOI: 10.18632/oncotarget.11300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Lack of differentiation in hepatocellular carcinoma (HCC) is associated with increased circulating platelet size. We measured platelet activation and plasma adenosine diphosphate (ADP) levels in HCC patients based on differentiation status. Local platelet accumulation and platelet-hepatoma cell binding were measured using immunohistochemistry (IHC) or flow cytometry. Using a xenograft assay in NON/SCID mice, we tested the effects of the anti-platelet drug clopidogrel on platelet activation, platelet infiltration, platelet-tumor cell binding and tumor cell differentiation. HCC patients with poor differentiation status displayed elevated platelet activation and higher ADP levels. Platelets accumulated within poorly differentiated tissues and localized at hepatoma cell membranes. Platelet-tumor cell binding was existed in carcinoma tissues, largely mediated by P-selectin on platelets. NOD/SCID mice with xenograft tumors also exhibited increased platelet activation and platelet-tumor cell binding. Clopidogrel therapy triggered hepatoma cell differentiation by attenuating platelet activation and platelet-tumor cell binding. TCF4 knockdown promoted HepG-2 cell differentiation and inhibited tumor formation, and TCF4 could be the potential downstream target for clopidogrel therapy.
Collapse
Affiliation(s)
- Rongfeng Zhang
- Institute of Heart and Vascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huishu Guo
- Department of Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingchao Xu
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue-Jian Liu
- Department of Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Translational Research on Neurological Diseases Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunyan Zhou
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongfu Zhao
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Liu
- Institute of Heart and Vascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Ponert JM, Schwarz S, Haschemi R, Müller J, Pötzsch B, Bendas G, Schlesinger M. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation. PLoS One 2018; 13:e0191303. [PMID: 29346400 PMCID: PMC5773218 DOI: 10.1371/journal.pone.0191303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/01/2018] [Indexed: 11/18/2022] Open
Abstract
Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner.
Collapse
Affiliation(s)
- Jan Moritz Ponert
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Svenja Schwarz
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Reza Haschemi
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Jens Müller
- Institute for Experimental Hematology and Transfusion Medicine, University of Bonn Medical Centre, Bonn, Germany
| | - Bernd Pötzsch
- Institute for Experimental Hematology and Transfusion Medicine, University of Bonn Medical Centre, Bonn, Germany
| | - Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
45
|
Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2017; 34:54-62. [DOI: 10.5482/hamo-13-10-0054] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/28/2013] [Indexed: 12/21/2022] Open
Abstract
SummaryPlatelets are the smallest circulating blood cells and their major function is the maintenance of haemostasis. They do not have a nucleus, but instead a multitude of granules that contain molecules important for several physiological processes. These granules can be released after platelet activation and thereby platelets take part in haemostasis, wound repair or immunological processes. Furthermore, platelets are also involved in the pathophysiology of several diseases, including cancer. Platelets can support various steps of cancer development and progression by promoting tumour growth, angiogenesis and metastasis. Moreover, platelets contribute to the hypercoagulable state frequently observed in cancer patients, leading to an increased risk of venous thromboembolism (VTE). In previous studies a high platelet count was repeatedly found to be associated with an elevated risk of VTE and a worse prognosis in patients with cancer.The aim of this review is to give an overview of the most important alterations of platelet physiology in cancer patients and how these alterations may influence cancer disease and contribute to cancer-associated VTE.
Collapse
|
46
|
Nurden A. Platelets, inflammation and tissue regeneration. Thromb Haemost 2017; 105 Suppl 1:S13-33. [DOI: 10.1160/ths10-11-0720] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/04/2011] [Indexed: 12/20/2022]
Abstract
SummaryBlood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from α-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.
Collapse
|
47
|
Arthur JF, Gardiner EE, Andrews RK, Al-Tamimi M. Focusing on plasma glycoprotein VI. Thromb Haemost 2017; 107:648-55. [DOI: 10.1160/th11-10-0745] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/10/2011] [Indexed: 12/18/2022]
Abstract
SummaryNew methods for analysing both platelet and plasma forms of the platelet-specific collagen receptor, glycoprotein VI (GPVI) in experimental models or human clinical samples, and the development of the first therapeutic compounds based on dimeric soluble GPVI-Fc or anti-GPVI antibody-based constructs, coincide with increased understanding of the potential pathophysiological role of GPVI ligand binding and shedding. Platelet GPVI not only mediates platelet activation at the site of vascular injury where collagen is exposed, but is also implicated in the pathogenesis of other diseases, such as atherosclerosis and coagulopathy, rheumatoid arthritis and tumour metastasis. Here, we describe some of the critical mechanisms for generating soluble GPVI from platelets, and future avenues for exploiting this unique platelet-specific receptor for diagnosis and/or disease prevention.
Collapse
|
48
|
Contursi A, Sacco A, Grande R, Dovizio M, Patrignani P. Platelets as crucial partners for tumor metastasis: from mechanistic aspects to pharmacological targeting. Cell Mol Life Sci 2017; 74:3491-3507. [PMID: 28488110 PMCID: PMC11107532 DOI: 10.1007/s00018-017-2536-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
Platelets are anucleated cells that circulate in the blood as sentinels of tissue integrity. In fact, they are rich in a plethora of proteins and other factors stored in different granules which they selectively release upon stimulation. Moreover, platelets synthesize a vast number of lipids and release various types of vesicles, including exosomes which are rich in genetic material. Platelets possess a central function to interact with other cell types, including inflammatory cells and cancer cells. Recent findings have enlightened the capacity of platelets to induce changes in the phenotype of cancer cells which acquire invasiveness thus enhancing their metastatic potential. Thus, it has been hypothesized that targeting the platelet may represent a novel strategy to prevent the development and progression of cancer. This is supported by the efficacy of the antiplatelet agent low-dose aspirin. Studies are ongoing to verify whether other antiplatelet agents share the anticancer effectiveness of aspirin.
Collapse
Affiliation(s)
- Annalisa Contursi
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Angela Sacco
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosalia Grande
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Melania Dovizio
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Paola Patrignani
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
49
|
Coupland LA, Hindmarsh EJ, Gardiner EE, Parish CR. The influence of platelet membranes on tumour cell behaviour. Cancer Metastasis Rev 2017; 36:215-224. [DOI: 10.1007/s10555-017-9671-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Santilli F, Boccatonda A, Davì G. Aspirin, platelets, and cancer: The point of view of the internist. Eur J Intern Med 2016; 34:11-20. [PMID: 27344083 DOI: 10.1016/j.ejim.2016.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/18/2023]
Abstract
Growing evidence suggests the beneficial effect of aspirin against some types of cancer, particularly of the gastrointestinal tract, and it has been provided for an effect both in cancer prevention as well as in survival improvement of cancer patients. Aspirin benefits increase with duration of treatment, especially after 10years of treatment. The inhibition of platelet activation at sites of gastrointestinal mucosal lesions could be the primary mechanism of action of low-dose aspirin. Indeed, the formation of tumor cell-induced platelet aggregates may favor immune evasion, by releasing angiogenic and growth factors, and also by promoting cancer cell dissemination. Moreover, platelets may contribute to aberrant COX-2 expression in colon carcinoma cells, thereby contributing to downregulation of oncosuppressor genes and upregulation of oncogenes, such as cyclin B1. Platelet adhesion to cancer cells leads also to an increased expression of genes involved in the EMT, such as the EMT-inducing transcription factors ZEB1 and TWIST1 and the mesenchymal marker vimentin. The aspirin-mediated inactivation of platelets may restore antitumor reactivity by blocking the release of paracrine lipid and protein mediators that induce COX-2 expression in adjacent nucleated cells at sites of mucosal injury. Thus, recent findings suggest interesting perspectives on "old" aspirin and NSAID treatment and/or "new" specific drugs to target the "evil" interactions between platelets and cancer for chemoprevention.
Collapse
Affiliation(s)
- F Santilli
- Center for Aging Science (Ce.S.I.), Università G. d'Annunzio" Foundation, Italy; Department of Internal Medicine, "G. d'Annunzio" University of Chieti, Italy
| | - A Boccatonda
- Center for Aging Science (Ce.S.I.), Università G. d'Annunzio" Foundation, Italy; Department of Internal Medicine, "G. d'Annunzio" University of Chieti, Italy
| | - G Davì
- Center for Aging Science (Ce.S.I.), Università G. d'Annunzio" Foundation, Italy; Department of Internal Medicine, "G. d'Annunzio" University of Chieti, Italy.
| |
Collapse
|