1
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Li M, Wang H, Zhang XJ, Cai J, Li H. NAFLD: An Emerging Causal Factor for Cardiovascular Disease. Physiology (Bethesda) 2023; 38:0. [PMID: 37431986 DOI: 10.1152/physiol.00013.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide that poses a significant threat to human health. Cardiovascular disease (CVD) is the leading cause of mortality in NAFLD patients. NAFLD and CVD share risk factors such as obesity, insulin resistance, and type 2 diabetes. However, whether NAFLD is a causal risk factor for CVD remains a matter of debate. This review summarizes the evidence from prospective clinical and Mendelian randomization studies that underscore the potential causal relationship between NAFLD and CVD. The mechanisms of NAFLD contributing to the development of CVD and the necessity of addressing CVD risk while managing NAFLD in clinical practice are also discussed.
Collapse
Affiliation(s)
- Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongmin Wang
- Department of Rehabilitation Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Hung HC, Fan MH, Wang D, Miao CH, Su P, Liu CL. Effect of chimeric antigen receptor T cells against protease-activated receptor 1 for treating pancreatic cancer. BMC Med 2023; 21:338. [PMID: 37667257 PMCID: PMC10478223 DOI: 10.1186/s12916-023-03053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-β-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.
Collapse
Affiliation(s)
- Hao-Chien Hung
- Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Ming-Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Daniel Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Pong Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Friebel J, Moritz E, Witkowski M, Jakobs K, Strässler E, Dörner A, Steffens D, Puccini M, Lammel S, Glauben R, Nowak F, Kränkel N, Haghikia A, Moos V, Schutheiss HP, Felix SB, Landmesser U, Rauch BH, Rauch U. Pleiotropic Effects of the Protease-Activated Receptor 1 (PAR1) Inhibitor, Vorapaxar, on Atherosclerosis and Vascular Inflammation. Cells 2021; 10:cells10123517. [PMID: 34944024 PMCID: PMC8700178 DOI: 10.3390/cells10123517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Protease-activated receptor 1 (PAR1) and toll-like receptors (TLRs) are inflammatory mediators contributing to atherogenesis and atherothrombosis. Vorapaxar, which selectively antagonizes PAR1-signaling, is an approved, add-on antiplatelet therapy for secondary prevention. The non-hemostatic, platelet-independent, pleiotropic effects of vorapaxar have not yet been studied. METHODS AND RESULTS Cellular targets of PAR1 signaling in the vasculature were identified in three patient cohorts with atherosclerotic disease. Evaluation of plasma biomarkers (n = 190) and gene expression in endomyocardial biopsies (EMBs) (n = 12) revealed that PAR1 expression correlated with endothelial activation and vascular inflammation. PAR1 colocalized with TLR2/4 in human carotid plaques and was associated with TLR2/4 gene transcription in EMBs. In addition, vorapaxar reduced atherosclerotic lesion size in apolipoprotein E-knock out (ApoEko) mice. This reduction was associated with reduced expression of vascular adhesion molecules and TLR2/4 presence, both in isolated murine endothelial cells and the aorta. Thrombin-induced uptake of oxLDL was augmented by additional TLR2/4 stimulation and abrogated by vorapaxar. Plaque-infiltrating pro-inflammatory cells were reduced in vorapaxar-treated ApoEko mice. A shift toward M2 macrophages paralleled a decreased transcription of pro-inflammatory cytokines and chemokines. CONCLUSIONS PAR1 inhibition with vorapaxar may be effective in reducing residual thrombo-inflammatory event risk in patients with atherosclerosis independent of its effect on platelets.
Collapse
Affiliation(s)
- Julian Friebel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Eileen Moritz
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
| | - Marco Witkowski
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Jakobs
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Elisabeth Strässler
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Steffens
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Marianna Puccini
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Stella Lammel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Rainer Glauben
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Franziska Nowak
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Nicolle Kränkel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arash Haghikia
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | | | - Stephan B. Felix
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulf Landmesser
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Bernhard H. Rauch
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Human Medicine, Section of Pharmacology and Toxicology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Ursula Rauch
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513794
| |
Collapse
|
6
|
Alternative Splicing in Cardiovascular Disease-A Survey of Recent Findings. Genes (Basel) 2021; 12:genes12091457. [PMID: 34573439 PMCID: PMC8469243 DOI: 10.3390/genes12091457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease. Thus far, the role of alternative splicing has been uncovered in areas ranging from heart development, the response to myocardial infarction to cardiac structural disease. Circular RNAs, a product of alternative back-splicing, were initially discovered in 1976, but landmark publications have only recently identified their regulatory role, tissue-specific expression, and transcriptomic abundance, spurring a renewed interest in the topic. The aim of this review is to provide a brief insight into some of the available findings on the role of alternative splicing in cardiovascular disease, with a focus on atherosclerosis, myocardial infarction, heart failure, dilated cardiomyopathy and circular RNAs in myocardial infarction.
Collapse
|
7
|
Functional Characteristics and Regulated Expression of Alternatively Spliced Tissue Factor: An Update. Cancers (Basel) 2021; 13:cancers13184652. [PMID: 34572880 PMCID: PMC8471299 DOI: 10.3390/cancers13184652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
Collapse
|
8
|
Lewis CS, Karve A, Matiash K, Stone T, Li J, Wang JK, Versteeg HH, Aronow BJ, Ahmad SA, Desai PB, Bogdanov VY. A First-In-Class, Humanized Antibody Targeting Alternatively Spliced Tissue Factor: Preclinical Evaluation in an Orthotopic Model of Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:691685. [PMID: 34395257 PMCID: PMC8358774 DOI: 10.3389/fonc.2021.691685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a KD in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (~ 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.
Collapse
Affiliation(s)
- Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Kateryna Matiash
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Timothy Stone
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jingxing Li
- Technology Development, LakePharma, Inc., Belmont, CA, United States
| | - Jordon K Wang
- Technology Development, LakePharma, Inc., Belmont, CA, United States
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Bruce J Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, United States
| | - Syed A Ahmad
- Division of Surgical Oncology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pankaj B Desai
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Kothari A, Flick MJ. Coagulation Signaling through PAR1 as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:ijms22105138. [PMID: 34066284 PMCID: PMC8152032 DOI: 10.3390/ijms22105138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with a 5-year survival rate of less than 10% following diagnosis. The aggressive and invasive properties of pancreatic cancer tumors coupled with poor diagnostic options contribute to the high mortality rate since most patients present with late-stage disease. Accordingly, PDAC is linked to the highest rate of cancer-associated venous thromboembolic disease of all solid tumor malignancies. However, in addition to promoting clot formation, recent studies suggest that the coagulation system in PDAC mediates a reciprocal relationship, whereby coagulation proteases and receptors promote PDAC tumor progression and dissemination. Here, upregulation of tissue factor (TF) by tumor cells can drive local generation of the central coagulation protease thrombin that promotes cell signaling activity through protease-activated receptors (PARs) expressed by both tumor cells and multiple stromal cell subsets. Moreover, the TF-thrombin-PAR1 signaling axis appears to be a major mechanism of cancer progression in general and PDAC in particular. Here, we summarize the current literature regarding the role of PAR1 in PDAC and review possibilities for pharmacologically targeting PAR1 as a PDAC therapeutic approach.
Collapse
|
10
|
Jin Y, Liu W, Wang F, Wang M, Xu K, Yang A, Wang C, Zhang L, Zhang F, Li M. Tissue factor potentiates adherence of breast cancer cells to human umbilical vein endothelial cells under static and flow conditions. Cell Adh Migr 2021; 15:74-83. [PMID: 33734001 PMCID: PMC7993123 DOI: 10.1080/19336918.2021.1898709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tissue factor (TF) has been extensively studied for tumor metastasis, but its role in mediating cancer cell adhesion to vasculature remains unknown. This study aimed to measure the ability of TF to mediate the adhesion of breast cancer cells to human umbilical vein endothelial cells (HUVECs). MDA-MB-231 cells expressed the highest TF level and adhered more to HUVECs under static and flow conditions, a neutralizing TF antibody abolished the enhanced adhesion of MDA-MB-231 cells to HUVECs. Recombinant human soluble TF (rTF) bonded β1integrin on HUVECs surfaces, β1 or α3integrin antibody combined with TF antibody abolished more cell-cell adhesion. These data suggested that TF mediated adhesion of breast cancer cells to endothelial cells may rely on β1integrin on HUVECs surfaces.
Collapse
Affiliation(s)
- Yanling Jin
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fengxia Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kai Xu
- First Affiliated Clinical Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Aijun Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenyu Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lihan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Kim DH, Kim YR, Bang E, Ha S, Noh SG, Kim BM, Jeong SH, Jung HJ, Lee JY, Chung HY. Mechanism of Lipid Accumulation through PAR2 Signaling in Diabetic Male Mice. Endocrinol Metab (Seoul) 2021; 36:171-184. [PMID: 33677938 PMCID: PMC7937841 DOI: 10.3803/enm.2020.850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Protease-activated protein-2 (PAR2) has been reported to regulate hepatic insulin resistance condition in type 2 diabetes mice. However, the mechanism of lipid metabolism through PAR2 in obesity mice have not yet been examined. In liver, Forkhead box O1 (FoxO1) activity induces peroxisome proliferator-activated receptor γ (PPARγ), leading to accumulation of lipids and hyperlipidemia. Hyperlipidemia significantly influence hepatic steatoses, but the mechanisms underlying PAR2 signaling are complex and have not yet been elucidated. METHODS To examine the modulatory action of FoxO1 and its altered interaction with PPARγ, we utilized db/db mice and PAR2-knockout (KO) mice administered with high-fat diet (HFD). RESULTS Here, we demonstrated that PAR2 was overexpressed and regulated downstream gene expressions in db/db but not in db+ mice. The interaction between PAR2/β-arrestin and Akt was also greater in db/db mice. The Akt inhibition increased FoxO1 activity and subsequently PPARγ gene in the livers that led to hepatic lipid accumulation. Our data showed that FoxO1 was negatively controlled by Akt signaling and consequently, the activity of a major lipogenesis-associated transcription factors such as PPARγ increased, leading to hepatic lipid accumulation through the PAR2 pathway under hyperglycemic conditions in mice. Furthermore, the association between PPARγ and FoxO1 was increased in hepatic steatosis condition in db/db mice. However, HFD-fed PAR2-KO mice showed suppressed FoxO1-induced hepatic lipid accumulation compared with HFD-fed control groups. CONCLUSION Collectively, our results provide evidence that the interaction of FoxO1 with PPARγ promotes hepatic steatosis in mice. This might be due to defects in PAR2/β-arrestin-mediated Akt signaling in diabetic and HFD-fed mice.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Ye Ra Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Byeong Moo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Seong Ho Jeong
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Ji Young Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
12
|
Huang N, Fan X, Zaleta-Rivera K, Nguyen TC, Zhou J, Luo Y, Gao J, Fang RH, Yan Z, Chen ZB, Zhang L, Zhong S. Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interaction. Genome Biol 2020; 21:225. [PMID: 32907628 PMCID: PMC7488101 DOI: 10.1186/s13059-020-02145-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Compared to proteins, glycans, and lipids, much less is known about RNAs on the cell surface. We develop a series of technologies to test for any nuclear-encoded RNAs that are stably attached to the cell surface and exposed to the extracellular space, hereafter called membrane-associated extracellular RNAs (maxRNAs). RESULTS We develop a technique called Surface-seq to selectively sequence maxRNAs and validate two Surface-seq identified maxRNAs by RNA fluorescence in situ hybridization. To test for cell-type specificity of maxRNA, we use antisense oligos to hybridize to single-stranded transcripts exposed on the surface of human peripheral blood mononuclear cells (PBMCs). Combining this strategy with imaging flow cytometry, single-cell RNA sequencing, and maxRNA sequencing, we identify monocytes as the major type of maxRNA+ PBMCs and prioritize 11 candidate maxRNAs for functional tests. Extracellular application of antisense oligos of FNDC3B and CTSS transcripts inhibits monocyte adhesion to vascular endothelial cells. CONCLUSIONS Collectively, these data highlight maxRNAs as functional components of the cell surface, suggesting an expanded role for RNA in cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
- Norman Huang
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Xiaochen Fan
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Jie Gao
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Liangfang Zhang
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
13
|
The Formation and Therapeutic Update of Tumor-Associated Macrophages in Cervical Cancer. Int J Mol Sci 2019; 20:ijms20133310. [PMID: 31284453 PMCID: PMC6651300 DOI: 10.3390/ijms20133310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Both clinicopathological and experimental studies have suggested that tumor-associated macrophages (TAMs) play a key role in cervical cancer progression and are associated with poor prognosis in the respects of tumor cell proliferation, invasion, angiogenesis, and immunosuppression. Therefore, having a clear understanding of TAMs is essential in treating this disease. In this review, we will discuss the origins and categories of macrophages, the molecules responsible for forming and reeducating TAMs in cervical cancer (CC), the biomarkers of macrophages and the therapy development targeting TAMs in CC research.
Collapse
|
14
|
Kim DH, Lee B, Lee J, Kim ME, Lee JS, Chung JH, Yu BP, Dong HH, Chung HY. FoxO6-mediated IL-1β induces hepatic insulin resistance and age-related inflammation via the TF/PAR2 pathway in aging and diabetic mice. Redox Biol 2019; 24:101184. [PMID: 30974318 PMCID: PMC6454229 DOI: 10.1016/j.redox.2019.101184] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
FoxO has been proposed to play a role in the promotion of insulin resistance, and inflammation. FoxO is a pro-inflammatory transcription factor that is a key mediator of generation of inflammatory cytokines such as IL-1β in the liver. However, the detailed association of FoxO6 with insulin resistance and age-related inflammation has not been fully documented. Here, we showed that FoxO6 was elevated in the livers of aging rats and obese mice that exhibited insulin resistance. In addition, virus-mediated FoxO6 activation led to insulin resistance in mice with a notable increase in PAR2 and inflammatory signaling in the liver. On the other hand, FoxO6-KO mice showed reduced PAR2 signaling with a decrease in inflammatory cytokine expression and elevated insulin signaling. Because FoxO6 is closely associated with abnormal production of IL-1β in the liver, we focused on the FoxO6/IL-1β/PAR2 axis to further examine mechanisms underlying FoxO6-mediated insulin resistance and inflammation in the liver. In vitro experiments showed that FoxO6 directly binds to and elevates IL-1β expression. In turn, IL-1β treatment elevated the protein levels of PAR2 with a significant decrease in hepatic insulin signaling, whereas PAR2-siRNA treatment abolished these effects. However, PAR2-siRNA treatment had no effect on IL-1β expression induced by FoxO6, indicating that IL-1β may not be downstream of PAR2. Taken together, we assume that FoxO6-mediated IL-1β is involved in hepatic inflammation and insulin resistance via TF/PAR2 pathway in the liver.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan, 46241, South Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, 41062, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan, 46241, South Korea
| | - Mi Eun Kim
- Department of Biology, College of Natural Science, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Jun Sik Lee
- Department of Biology, College of Natural Science, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, 50612, South Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - H Henry Dong
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan, 46241, South Korea.
| |
Collapse
|
15
|
Lewis CS, Thomas HE, Orr-Asman M, Green LC, Boody RE, Matiash K, Karve A, Hisada YM, Davis HW, Qi X, Mercer C, Lucas FV, Aronow BJ, Mackman N, Versteeg HH, Bogdanov VY. mTOR kinase inhibition reduces tissue factor expression and growth of pancreatic neuroendocrine tumors. J Thromb Haemost 2019; 17:169-182. [PMID: 30472780 PMCID: PMC6345540 DOI: 10.1111/jth.14342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/22/2022]
Abstract
Essentials Tissue factor (TF) isoforms are expressed in pancreatic neuroendocrine tumors (pNET). TF knockdown inhibits proliferation of human pNET cells in vitro. mTOR kinase inhibitor sapanisertib/MLN0128 suppresses TF expression in human pNET cells. Sapanisertib suppresses TF expression and activity and reduces the growth of pNET tumors in vivo. SUMMARY: Background Full-length tissue factor (flTF) and alternatively spliced TF (asTF) contribute to growth and spread of pancreatic ductal adenocarcinoma. It is unknown, however, if flTF and/or asTF contribute to the pathobiology of pancreatic neuroendocrine tumors (pNETs). Objective To assess TF expression in pNETs and the effects of mTOR complex 1/2 (mTORC1/2) inhibition on pNET growth. Methods Human pNET specimens were immunostained for TF. Human pNET cell lines QGP1 and BON were evaluated for TF expression and responsiveness to mTOR inhibition. shRNA were used to knock down TF in BON. TF cofactor activity was assessed using a two-step FXa generation assay. TF promoter activity was assessed using transient transfection of human TF promoter-driven reporter constructs into cells. Mice bearing orthotopic BON tumors were treated with the mTORC1/2 ATP site competitive inhibitor sapanisertib/MLN0128 (3 mg kg-1 , oral gavage) for 34 days. Results Immunostaining of pNET tissue revealed flTF and asTF expression. BON and QGP1 expressed both TF isoforms, with BON exhibiting higher levels. shRNA directed against TF suppressed BON proliferation in vitro. Treatment of BON with sapanisertib inhibited mTOR signaling and suppressed TF levels. BON tumors grown in mice treated with sapanisertib had significantly less TF protein and cofactor activity, and were smaller compared with tumors grown in control mice. Conclusions TF isoforms are expressed in pNETs. Sapanisertib suppresses TF mRNA and protein expression as well as TF cofactor activity in vitro and in vivo. Thus, further studies are warranted to evaluate the clinical utility of TF-suppressing mTORC1/2 inhibitor sapanisertib in pNET management.
Collapse
Affiliation(s)
- Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Hala Elnakat Thomas
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Melissa Orr-Asman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Lisa C Green
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Rachel E Boody
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Kateryna Matiash
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Aniruddha Karve
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Yohei M. Hisada
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill
| | - Harold W Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Carol Mercer
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Fred V Lucas
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine
| | - Bruce J. Aronow
- Computational Medicine and Division of Biomedical Informatics, Cincinnati Children’s Hospital and Medical Center
| | - Nigel Mackman
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine
| |
Collapse
|
16
|
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16:1941-1952. [PMID: 30030891 DOI: 10.1111/jth.14246] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF's activities in cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G protein-coupled receptors. Additional co-receptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switched between its role in coagulation and cell signaling through thiol-disulfide exchange reactions in the context of physiologically relevant lipid microdomains. Inflammatory mediators, including reactive oxygen species, activators of the inflammasome, and the complement cascade play pivotal roles in TF procoagulant activation on monocytes, macrophages and endothelial cells. We furthermore discuss how TF, intracellular ligands, co-receptors and associated proteases are integrated in PAR-dependent cell signaling pathways controlling innate immunity, cancer and metabolic inflammation. Knowledge of the precise interactions of TF in coagulation and cell signaling is important for understanding effects of new anticoagulants beyond thrombosis and identification of new applications of these drugs for potential additional therapeutic benefits.
Collapse
Affiliation(s)
- H Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET) and National University of Tucumán, Tucumán, Argentina
| | - A S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - W Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- German Center for Cardiovascular Research (DZHK), Partnersite Rhein-Main, Mainz, Germany
| |
Collapse
|
17
|
D'Alessandro E, Posma J, Spronk H, ten Cate H. Tissue factor (:Factor VIIa) in the heart and vasculature: More than an envelope. Thromb Res 2018; 168:130-137. [DOI: 10.1016/j.thromres.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/31/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
|
18
|
Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Østergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood 2018; 131:674-685. [PMID: 29246902 PMCID: PMC5805488 DOI: 10.1182/blood-2017-02-768218] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A point mutation in this motif markedly reduces TF-FVIIa association with integrins, attenuates integrin translocation into early endosomes, and reduces delayed mitogen-activated protein kinase phosphorylation required for the induction of proangiogenic cytokines. Pharmacologic or genetic blockade of the small GTPase ADP-ribosylation factor 6 (arf6) that regulates integrin trafficking increases availability of TF-FVIIa with procoagulant activity on the cell surface, while inhibiting TF-FVIIa signaling that leads to proangiogenic cytokine expression and tumor cell migration. These experiments delineate the structural basis for the crosstalk of the TF-FVIIa complex with integrin trafficking and suggest a crucial role for endosomal PAR2 signaling in pathways of tissue repair and tumor biology.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Enbo Liu
- San Diego Biomedical Research Institute, San Diego, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer Disse
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
19
|
Unruh D, Ünlü B, Lewis CS, Qi X, Chu Z, Sturm R, Keil R, Ahmad SA, Sovershaev T, Adam M, Van Dreden P, Woodhams BJ, Ramchandani D, Weber GF, Rak JW, Wolberg AS, Mackman N, Versteeg HH, Bogdanov VY. Antibody-based targeting of alternatively spliced tissue factor: a new approach to impede the primary growth and spread of pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:25264-75. [PMID: 26967388 PMCID: PMC5041902 DOI: 10.18632/oncotarget.7955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/13/2016] [Indexed: 01/08/2023] Open
Abstract
Alternatively spliced Tissue Factor (asTF) is a secreted form of Tissue Factor (TF), the trigger of blood coagulation whose expression levels are heightened in several forms of solid cancer, including pancreatic ductal adenocarcinoma (PDAC). asTF binds to β1 integrins on PDAC cells, whereby it promotes tumor growth, metastatic spread, and monocyte recruitment to the stroma. In this study, we determined if targeting asTF in PDAC would significantly impact tumor progression. We here report that a novel inhibitory anti-asTF monoclonal antibody curtails experimental PDAC progression. Moreover, we show that tumor-derived asTF is able to promote PDAC primary growth and spread during early as well as later stages of the disease. This raises the likelihood that asTF may comprise a viable target in early- and late-stage PDAC. In addition, we show that TF expressed by host cells plays a significant role in PDAC spread. Together, our data demonstrate that targeting asTF in PDAC is a novel strategy to stem PDAC progression and spread.
Collapse
Affiliation(s)
- Dusten Unruh
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Betül Ünlü
- Leiden University Medical Center, Leiden, The Netherlands
| | - Clayton S Lewis
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoyang Qi
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Zhengtao Chu
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Robert Sturm
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ryan Keil
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Syed A Ahmad
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | - Georg F Weber
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Janusz W Rak
- McGill University Health Centre, Montreal Children's Hospital, Montreal, Canada
| | - Alisa S Wolberg
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
20
|
Arderiu G, Espinosa S, Peña E, Crespo J, Aledo R, Bogdanov VY, Badimon L. Tissue factor variants induce monocyte transformation and transdifferentiation into endothelial cell-like cells. J Thromb Haemost 2017; 15:1689-1703. [PMID: 28585414 DOI: 10.1111/jth.13751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/29/2022]
Abstract
Essentials Monocytes (Mo) transdifferentiate into endothelial cell-like (ECL) cells. Mo induce tissue factor (TF) expression and secretion in microvascular endothelial cells (mECs). TF interacts with Mo in a paracrine fashion, inducing their transdifferentiation into ECL cells. TF generates a positive feedback crosstalk between Mo and mECs that promotes angiogenesis. SUMMARY Background Monocytes (Mo) increase neovascularization by releasing proangiogenic mediators and/or transdifferentiating into endothelial cell-like (ECL) cells. Recently, we have reported that Mo-microvascular endothelial cells (mECs) crosstalk induces mEC-tissue factor (TF) expression and promotes angiogenesis. However, the effect of TF on Mo remains unknown. Objective Here, we analyzed whether TF might exert angiogenic effects by inducing transdifferentiation of Mo. Methods Full-length TF (flTF) and alternatively spliced TF (asTF) were overexpressed in mECs, and their supernatants were added to Mo cultures. CD16 positivity and expression of vascular endothelial cell (VEC) markers in Mo were analyzed by fluorescence activated cell sorting. The capacity to form tube-like structures were visualized in three-dimensional cultures. Results In mECs flTF and asTF expression and release were increased in cultures with Mo-conditioned media. TF variants induced expansion of a CD16+ Mo subset and Mo transdifferentiation into ECL-cells expressing VEC markers that can form new microvessels. CD16+ Mo exposed to TF showed an increased expression of VE-cadherin, von Willebrand factor (VWF) and eNOS. Mo cultured with supernatants obtained from TF-silenced mECs did not transdifferentiate to ECL-cells or expressed VEC markers. Blocking β1-integrin in Mo significantly blocked the effects of the TF variants. Conclusions Mo induce mECs to express and release TF, which drives CD16- Mo to transform into CD16+ Mo and to transdifferentiate into ECL-cells that can form new microvessels. Our results reveal a TF-mediated positive feedback between mECs and Mo that stimulates Mo differentiation and induces angiogenesis.
Collapse
Affiliation(s)
- G Arderiu
- Cardiovascular Science Institute-ICCC, Hospital de Sant Pau (UAB) and IIB-Sant Pau, Barcelona, Spain
| | - S Espinosa
- Cardiovascular Science Institute-ICCC, Hospital de Sant Pau (UAB) and IIB-Sant Pau, Barcelona, Spain
| | - E Peña
- Cardiovascular Science Institute-ICCC, Hospital de Sant Pau (UAB) and IIB-Sant Pau, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| | - J Crespo
- Cardiovascular Science Institute-ICCC, Hospital de Sant Pau (UAB) and IIB-Sant Pau, Barcelona, Spain
| | - R Aledo
- Cardiovascular Science Institute-ICCC, Hospital de Sant Pau (UAB) and IIB-Sant Pau, Barcelona, Spain
| | - V Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - L Badimon
- Cardiovascular Science Institute-ICCC, Hospital de Sant Pau (UAB) and IIB-Sant Pau, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
22
|
Ramchandani D, Unruh D, Lewis CS, Bogdanov VY, Weber GF. Activation of carbonic anhydrase IX by alternatively spliced tissue factor under late-stage tumor conditions. J Transl Med 2016; 96:1234-1245. [PMID: 27721473 PMCID: PMC5121009 DOI: 10.1038/labinvest.2016.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Molecules of the coagulation pathway predispose patients to cancer-associated thrombosis and also trigger intracellular signaling pathways that promote cancer progression. The primary transcript of tissue factor, the main physiologic trigger of blood clotting, can undergo alternative splicing yielding a secreted variant, termed asTF (alternatively spliced tissue factor). asTF is not required for normal hemostasis, but its expression levels positively correlate with advanced tumor stages in several cancers, including pancreatic adenocarcinoma. The asTF-overexpressing pancreatic ductal adenocarcinoma cell line Pt45.P1/asTF+ and its parent cell line Pt45.P1 were tested for growth and mobility under normoxic conditions that model early-stage tumors, and in the hypoxic environment of late-stage cancers. asTF overexpression in Pt45.P1 cells conveys increased proliferative ability. According to cell cycle analysis, the major fraction of Pt45.P1/asTF+ cells reside in the dividing G2/M phase of the cell cycle, whereas the parental Pt45.P1 cells are mostly confined to the quiescent G0/G1 phase. asTF overexpression is also associated with significantly higher mobility in cells plated under either normoxia or hypoxia. A hypoxic environment leads to upregulation of carbonic anhydrase IX (CAIX), which is more pronounced in Pt45.P1/asTF+ cells. Inhibition of CAIX by the compound U-104 significantly decreases cell growth and mobility of Pt45.P1/asTF+ cells in hypoxia, but not in normoxia. U-104 also reduces the growth of Pt45.P1/asTF+ orthotopic tumors in nude mice. CAIX is a novel downstream mediator of asTF in pancreatic cancer, particularly under hypoxic conditions that model late-stage tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Vladimir Y. Bogdanov
- College of Medicine, University of Cincinnati,address correspondence to either: Georg F. Weber, College of Pharmacy, University of Cincinnati, 3225 Eden Avenue, Cincinnati, OH 45267-0004. , phone 513-558-0947 or : Vladimir Y. Bogdanov, College of Medicine, University of Cincinnati, OH 45267, USA.
| | - Georg F. Weber
- James L. Winkle College of Pharmacy, University of Cincinnati,address correspondence to either: Georg F. Weber, College of Pharmacy, University of Cincinnati, 3225 Eden Avenue, Cincinnati, OH 45267-0004. , phone 513-558-0947 or : Vladimir Y. Bogdanov, College of Medicine, University of Cincinnati, OH 45267, USA.
| |
Collapse
|
23
|
Witkowski M, Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc Med 2016; 26:297-303. [DOI: 10.1016/j.tcm.2015.12.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
24
|
Witkowski M, Weithauser A, Tabaraie T, Steffens D, Kränkel N, Witkowski M, Stratmann B, Tschoepe D, Landmesser U, Rauch-Kroehnert U. Micro-RNA-126 Reduces the Blood Thrombogenicity in Diabetes Mellitus via Targeting of Tissue Factor. Arterioscler Thromb Vasc Biol 2016; 36:1263-71. [PMID: 27127202 PMCID: PMC4894779 DOI: 10.1161/atvbaha.115.306094] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 04/18/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Diabetes mellitus involves vascular inflammatory processes and is a main contributor to cardiovascular mortality. Notably, heightened levels of circulating tissue factor (TF) account for the increased thrombogenicity and put those patients at risk for thromboembolic events. Here, we sought to investigate the role of micro-RNA (miR)–driven TF expression and thrombogenicity in diabetes mellitus. Approach and Results— Plasma samples of patients with diabetes mellitus were analyzed for TF protein and activity as well as miR-126 expression before and after optimization of the antidiabetic treatment. We found low miR-126 levels to be associated with markedly increased TF protein and TF-mediated thrombogenicity. Reduced miR-126 expression was accompanied by increased vascular inflammation as evident from the levels of vascular adhesion molecule-1 and fibrinogen, as well as leukocyte counts. With optimization of the antidiabetic treatment miR-126 levels increased and thrombogenicity was reduced. Using a luciferase reporter system, we demonstrated miR-126 to directly bind to the F3-3′-untranslated region, thereby reducing TF expression both on mRNA and on protein levels in human microvascular endothelial cells as well as TF mRNA and activity in monocytes. Conclusions— Circulating miR-126 exhibits antithrombotic properties via regulating post-transcriptional TF expression, thereby impacting the hemostatic balance of the vasculature in diabetes mellitus.
Collapse
Affiliation(s)
- Marco Witkowski
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Alice Weithauser
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Termeh Tabaraie
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Daniel Steffens
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Nicolle Kränkel
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Mario Witkowski
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Bernd Stratmann
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Ulf Landmesser
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Ursula Rauch-Kroehnert
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
25
|
Abstract
Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | - Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; 3(rd) Medical Department, University Medical Center, Mainz, Germany
| |
Collapse
|
26
|
Bogdanov VY, Versteeg HH. "Soluble Tissue Factor" in the 21st Century: Definitions, Biochemistry, and Pathophysiological Role in Thrombus Formation. Semin Thromb Hemost 2015; 41:700-7. [PMID: 26408917 DOI: 10.1055/s-0035-1556049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue factor (TF), the main trigger of blood coagulation, is essential for normal hemostasis. Over the past 20 years, heightened intravascular levels and activity of TF have been increasingly perceived as an entity that significantly contributes to venous as well as arterial thrombosis. Various forms of the TF protein in the circulation have been described and proposed to be thrombogenic. Aside from cell and vessel wall-associated TF, several forms of non-cell-associated TF circulate in plasma and may serve as a causative factor in thrombosis. At the present time, no firm consensus exists regarding the extent, the vascular setting(s), and/or the mechanisms by which such TF forms contribute to thrombus initiation and propagation. Here, we summarize the existing paradigms and recent, sometimes paradigm-shifting findings elucidating the structural, mechanistic, and pathophysiological characteristics of plasma-borne TF.
Collapse
Affiliation(s)
- Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Henri H Versteeg
- Department of Internal Medicine, Section of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Kocatürk B, Tieken C, Vreeken D, Ünlü B, Engels CC, de Kruijf EM, Kuppen PJ, Reitsma PH, Bogdanov VY, Versteeg HH. Alternatively spliced tissue factor synergizes with the estrogen receptor pathway in promoting breast cancer progression. J Thromb Haemost 2015; 13:1683-93. [PMID: 26179105 PMCID: PMC4560996 DOI: 10.1111/jth.13049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Procoagulant full-length tissue factor (flTF) and its minimally coagulant alternatively spliced isoform (asTF), promote breast cancer (BrCa) progression via different mechanisms. We previously showed that flTF and asTF are expressed by BrCa cells, resulting in autoregulation in a cancer milieu. BrCa cells often express hormone receptors such as the estrogen receptor (ER), leading to the formation of hormone-regulated cell populations. OBJECTIVE To investigate whether TF isoform-specific and ER-dependent pathways interact in BrCa. METHODS Tissue factor isoform-regulated gene sets were assessed using ingenuity pathway analysis. Tissues from a cohort of BrCa patients were divided into ER-positive and ER-negative groups. Associations between TF isoform levels and tumor characteristics were analyzed in these groups. BrCa cells expressing TF isoforms were assessed for proliferation, migration and in vivo growth in the presence or absence of estradiol. RESULTS Ingenuity pathway analysis pointed to similarities between ER- and TF-induced gene expression profiles. In BrCa tissue specimens, asTF expression was associated with grade and stage in ER-positive but not in ER-negative tumors. flTF was only associated with grade in ER-positive tumors. In MCF-7 cells, asTF accelerated proliferation in the presence of estradiol in a β1 integrin-dependent manner. No synergy between asTF and the ER pathway was observed in a migration assay. Estradiol accelerated the growth of asTF-expressing tumors but not control tumors in vivo in an orthotopic setting. CONCLUSION Tissue factor isoform and estrogen signaling share downstream targets in BrCa; the concomitant presence of asTF and estrogen signaling is required to promote BrCa cell proliferation.
Collapse
Affiliation(s)
- B Kocatürk
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - C Tieken
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - D Vreeken
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - B Ünlü
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - C C Engels
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - E M de Kruijf
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - P J Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - P H Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - V Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - H H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
28
|
Unruh D, Sagin F, Adam M, Van Dreden P, Woodhams BJ, Hart K, Lindsell CJ, Ahmad SA, Bogdanov VY. Levels of Alternatively Spliced Tissue Factor in the Plasma of Patients with Pancreatic Cancer May Help Predict Aggressive Tumor Phenotype. Ann Surg Oncol 2015; 22 Suppl 3:S1206-11. [DOI: 10.1245/s10434-015-4592-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/30/2022]
|
29
|
EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice. Blood 2015; 125:2845-54. [PMID: 25733582 DOI: 10.1182/blood-2014-11-610717] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/23/2015] [Indexed: 01/14/2023] Open
Abstract
Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow-derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.
Collapse
|
30
|
Abstract
The hemostatic system plays pleiotropic roles in cancer progression by shaping the tumor microenvironment and metastatic niches through thrombin-dependent fibrin deposition and platelet activation. Expanding experimental evidence implicates coagulation protease receptors expressed by tumor cells as additional players that directly influence tumor biology. Pro-angiogenic G protein-coupled signaling of TF through protease activated receptor 2 and regulation of tumor cell and vascular integrins through ligation by alternative spliced TF are established pathways driving tumor progression. Our recent work shows that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is also crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. In aggressive triple-negative breast cancer cells, EPCR expression is a characteristic of cancer stem cell-like populations that have tumor initiating properties in vivo. Blocking antibodies to EPCR attenuate in vivo tumor growth and proliferation specifically of EPCR(+) cells on defined integrin matrices in vitro. We also showed that tumor-associated macrophages are a source for upstream coagulation proteases that can activate TF- and EPCR-dependent cellular responses, suggesting that tumor cells utilize the tumor microenvironment for tumor promoting coagulation protease signaling.
Collapse
|
31
|
Ruf W, Samad F. Tissue factor pathways linking obesity and inflammation. Hamostaseologie 2015; 35:279-83. [PMID: 25623940 DOI: 10.5482/hamo-14-11-0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/13/2015] [Indexed: 01/26/2023] Open
Abstract
Obesity is a major cause for a spectrum of metabolic syndrome-related diseases that include insulin resistance, type 2 diabetes, and steatosis of the liver. Inflammation elicited by macrophages and other immune cells contributes to the metabolic abnormalities in obesity. In addition, coagulation activation following tissue factor (TF) upregulation in adipose tissue is frequently found in obese patients and particularly associated with diabetic complications. Genetic and pharmacological evidence indicates that TF makes significant contributions to the development of the metabolic syndrome by signaling through G protein-coupled protease activated receptors (PARs). Adipocyte TF-PAR2 signaling contributes to diet-induced obesity by decreasing metabolism and energy expenditure, whereas hematopoietic TF-PAR2 signaling is a major cause for adipose tissue inflammation, hepatic steatosis and inflammation, as well as insulin resistance. In the liver of mice on a high fat diet, PAR2 signaling increases transcripts of key regulators of gluconeogenesis, lipogenesis and inflammatory cytokines. Increased markers of hepatic gluconeogenesis correlate with decreased activation of AMP-activated protein kinase (AMPK), a known regulator of these pathways and a target for PAR2 signaling. Clinical markers of a TF-induced prothrombotic state may thus indicate a risk in obese patient for developing complications of the metabolic syndrome.
Collapse
Affiliation(s)
- W Ruf
- Wolfram Ruf, M.D., Professor, Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Mail stop: SP258, Tel. 858/784-2748, Fax -8480, E-mail: ,
| | | |
Collapse
|
32
|
Arderiu G, Peña E, Badimon L. Angiogenic microvascular endothelial cells release microparticles rich in tissue factor that promotes postischemic collateral vessel formation. Arterioscler Thromb Vasc Biol 2014; 35:348-57. [PMID: 25425620 DOI: 10.1161/atvbaha.114.303927] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Therapeutic angiogenesis is a promising strategy for treating ischemia. Our previous work showed that endogenous endothelial tissue factor (TF) expression induces intracrine signaling and switches-on angiogenesis in microvascular endothelial cells (mECs). We have hypothesized that activated mECs could exert a further paracrine regulation through the release of TF-rich microvascular endothelial microparticles (mEMPs) and induce neovascularization of ischemic tissues. APPROACH AND RESULTS Here, we describe for the first time that activated mECs are able to induce reparative neovascularization in ischemic zones by releasing TF-rich microparticles. We show in vitro and in vivo that mEMPs released by both wild-type and TF-upregulated-mECs induce angiogenesis and collateral vessel formation, whereas TF-poor mEMPs derived from TF-silenced mECs are not able to trigger angiogenesis. Isolated TF-bearing mEMPs delivered to nonperfused adductor muscles in a murine hindlimb ischemia model enhance collateral flow and capillary formation evidenced by MRI. TF-bearing mEMPs increase angiogenesis operating via paracrine regulation of neighboring endothelial cells, signaling through the β1-integrin pathway Rac1-ERK1/2-ETS1 and triggering CCL2 (chemokine [C-C motif] ligand 2) production to form new and competent mature neovessels. CONCLUSIONS These findings demonstrate that TF-rich mEMPs released by microvascular endothelial cells can overcome the consequences of arterial occlusion and tissue ischemia by promoting postischemic neovascularization and tissue reperfusion.
Collapse
Affiliation(s)
- Gemma Arderiu
- From the Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau and Hospital de Sant Pau, Barcelona, Spain (G.A., E.P., L.B.); and Cardiovascular Research Chair Universitat Autònoma de Barcelona, Barcelona, Spain (L.B.)
| | - Esther Peña
- From the Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau and Hospital de Sant Pau, Barcelona, Spain (G.A., E.P., L.B.); and Cardiovascular Research Chair Universitat Autònoma de Barcelona, Barcelona, Spain (L.B.)
| | - Lina Badimon
- From the Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau and Hospital de Sant Pau, Barcelona, Spain (G.A., E.P., L.B.); and Cardiovascular Research Chair Universitat Autònoma de Barcelona, Barcelona, Spain (L.B.).
| |
Collapse
|
33
|
Lee SJ, Choi EK, Seo KW, Bae JU, Park SY, Kim CD. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium. PLoS One 2014; 9:e104588. [PMID: 25116953 PMCID: PMC4130585 DOI: 10.1371/journal.pone.0104588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Eun Kyoung Choi
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Kyo Won Seo
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jin Ung Bae
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Giannarelli C, Alique M, Rodriguez DT, Yang DK, Jeong D, Calcagno C, Hutter R, Millon A, Kovacic JC, Weber T, Faries PL, Soff GA, Fayad ZA, Hajjar RJ, Fuster V, Badimon JJ. Alternatively spliced tissue factor promotes plaque angiogenesis through the activation of hypoxia-inducible factor-1α and vascular endothelial growth factor signaling. Circulation 2014; 130:1274-86. [PMID: 25116956 DOI: 10.1161/circulationaha.114.006614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alternatively spliced tissue factor (asTF) is a novel isoform of full-length tissue factor, which exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. METHODS AND RESULTS Carotid (n=10) and coronary (n=8) specimens from patients with stable or unstable angina were classified as complicated or uncomplicated on the basis of plaque morphology. Analysis of asTF expression and cell type-specific expression revealed a strong expression and colocalization of asTF with macrophages and neovessels within complicated, but not uncomplicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via hypoxia-inducible factor-1α upregulation through integrins and activation of phosphatidylinositol-3-kinase/Akt and mitogen-activated protein kinase pathways. Hypoxia-inducible factor-1α upregulation by asTF also was associated with increased vascular endothelial growth factor expression in primary human endothelial cells, and vascular endothelial growth factor-Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization after carotid wire injury in ApoE(-/-) mice. CONCLUSIONS The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Here, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the hypoxia-inducible factor-1/vascular endothelial growth factor signaling. This mechanism may be relevant to neovascularization and the progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated versus uncomplicated human carotid and coronary plaques.
Collapse
Affiliation(s)
- Chiara Giannarelli
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.).
| | - Matilde Alique
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - David T Rodriguez
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Dong Kwon Yang
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Dongtak Jeong
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Claudia Calcagno
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Randolph Hutter
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Antoine Millon
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Jason C Kovacic
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Thomas Weber
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Peter L Faries
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Gerald A Soff
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Zahi A Fayad
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Roger J Hajjar
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Valentin Fuster
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Juan J Badimon
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| |
Collapse
|
35
|
Abstract
In this issue of Blood, Sparkenbaugh et al identify coagulation factor Xa (FXa), the target for new protease-selective oral anticoagulants, as a crucial mediator for both coagulation abnormalities and chronic vascular inflammation that characterize sickle cell disease.1
Collapse
|
36
|
Leppert U, Eisenreich A. The role of tissue factor isoforms in cancer biology. Int J Cancer 2014; 137:497-503. [PMID: 24806794 DOI: 10.1002/ijc.28959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022]
Abstract
Tissue Factor (TF) is an evolutionary conserved glycoprotein, which is of immense importance for a variety of biologic processes. TF is expressed in two naturally occurring protein isoforms, membrane-bound "full-length" (fl)TF and soluble alternatively spliced (as)TF. The TF isoform expression is differentially modulated on post-transcriptional level via regulatory factors, such as serine/arginine-rich (SR) proteins, SR protein kinases and micro (mi)RNAs. Both isoforms mediate a variety of physiologic- and pathophysiologic-relevant functions, such as thrombogenicity, angiogenesis, cell signaling, tumor cell proliferation and metastasis. In this review, we will depict the main mechanisms regulating the TF isoform expression in cancer and under other pathophysiologic-relevant conditions. Moreover, we will summarize and discuss the latest findings regarding the role of TF and its isoforms in cancer biology.
Collapse
Affiliation(s)
- Ulrike Leppert
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charite Centrum 04/13, Berlin, Germany
| | - Andreas Eisenreich
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charite Centrum 04/13, Berlin, Germany
| |
Collapse
|
37
|
Ünlü B, Versteeg HH. Effects of tumor-expressed coagulation factors on cancer progression and venous thrombosis: is there a key factor? Thromb Res 2014; 133 Suppl 2:S76-84. [DOI: 10.1016/s0049-3848(14)50013-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Van Dreden P, Woodhams B, Rousseau A, Dreyfus JF, Vasse M. Contribution of procoagulant phospholipids, thrombomodulin activity and thrombin generation assays as prognostic factors in intensive care patients with septic and non-septic organ failure. Clin Chem Lab Med 2014; 51:387-96. [PMID: 23096108 DOI: 10.1515/cclm-2012-0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) observed in patients with sepsis and in nonseptic patients organ failure (OF) is associated with a high mortality rate. We investigated whether new coagulation assays [quantification of procoagulant phospholipids (PPL) activity, functional assays measuring the activity of thrombomodulin (TMa) or tissue factor (TFa) and thrombin generation using calibrated automated thrombography (CAT)] could constitute new tools to better understand the physiopathology of MODS and have any prognostic value. METHODS We measured TMa, TFa, PPL and CAT in 32 healthy controls, 24 patients with sepsis and 26 patients with non-septic OF. We compared these parameters with usual coagulation assays [prothrombin time, activated partial thromboplastin time, protein C (PC), protein S, D-Dimers (D-Di), soluble thrombomodulin (sTM)] and markers of inflammation (IL-6, CRP). Samples were collected within 24 h of the diagnosis. RESULTS TMa, TFa, PPL, the lag time and time to thrombin peak levels were increased in both groups of patients. For both groups D-Di, IL-6, CRP and endogenous thrombin potential (ETP) were higher in non-survivors than in survivors, while PC and PPL were lower in non-survivors than in survivors. TMa increase was more marked in non-survivors patients with OF, while the ratio TMa/sTM was low in non-survivors with sepsis. Received operating characteristic (ROC) curve analysis indicated that thrombin peak and ETP were the more powerful discriminating factors in patients with sepsis or non-septic OF, respectively. CONCLUSIONS PPL, TMa and CAT assays could represent promising tools to identify patients with increased risk of mortality in MODS and could procure insights into pathogenesis of MODS.
Collapse
|
39
|
Davila M, Robles-Carrillo L, Unruh D, Huo Q, Gardiner C, Sargent IL, Adam M, Woodhams BJ, Francis JL, Bogdanov VY, Amirkhosravi A. Microparticle association and heterogeneity of tumor-derived tissue factor in plasma: is it important for coagulation activation? J Thromb Haemost 2014; 12:186-96. [PMID: 24298933 DOI: 10.1111/jth.12475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tumor-derived tissue factor (TF) activates coagulation in vitro and in vivo in an orthotopic model of human pancreatic cancer. Here, we further characterized tumor-derived TF in this model. METHODS Conditioned medium (CM) of L3.6pl human pancreatic tumor cells and plasma from nude mice bearing L3.6pl tumors were ultracentrifuged, and the pellets were filtered through membranes with different pore sizes. The size distribution of particles was analyzed in CM or plasma fractions with nanoparticle tracking and dynamic light scattering. Human TF antigen and activity were measured in pellets and supernatants with ELISA and clotting or thrombin generation assays, respectively. Human alternatively spliced TF (asTF) was measured with ELISA. Human TF and thrombin-antithrombin complex (TAT) concentrations were assessed in plasma of mice injected with filtered fractions of CM. RESULTS Particles in both CM and plasma were < 0.4 μm. TF antigen and activity in the CM were mainly associated with microparticles (MP). Approximately 50% of antigen and 20% of activity were associated with particles of < 0.1 μm. Injection of < 0.1 μm particles into mice caused a 30% drop in platelet counts and an increase in TAT levels. In contrast, ~ 90% of TF antigen in tumor-bearing mice plasmas was non-sedimentable, whereas TF activity was exclusively associated with MP. Particles of < 0.1 μm and the supernatants of both CM and plasma gained TF activity after addition of exogenous phospholipids. Although asTF was found in MP-free CM supernatants, it was also present in CM and plasma pellets. CONCLUSIONS Tumor-derived particles of < 0.1 μm and non-sedimentable TF are or can become procoagulant in the presence of phospholipids, and may contribute to the procoagulant potential of circulating TF.
Collapse
Affiliation(s)
- M Davila
- Florida Hospital Center for Thrombosis Research, Orlando, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood 2014; 123:1747-56. [PMID: 24449213 DOI: 10.1182/blood-2013-08-523936] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Activation of coagulation and vascular inflammation are prominent features of sickle cell disease (SCD). Previously, we have shown that inhibition of tissue factor (TF) attenuates activation of coagulation and vascular inflammation in mouse models of SCD. In this study, we examined the mechanism by which coagulation proteases enhance vascular inflammation in sickle BERK mice. To specifically investigate the contribution of FXa and thrombin, mice were fed chow containing either rivaroxaban or dabigatran, respectively. In addition, we used bone marrow transplantation to generate sickle mice deficient in either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) on nonhematopoietic cells. FXa inhibition and PAR-2 deficiency in nonhematopoietic cells attenuated systemic inflammation, measured by plasma levels of interleukin-6 (IL-6). In contrast, neither thrombin inhibition nor PAR-1 deficiency in nonhematopoietic cells affected plasma levels of IL-6 in sickle mice. However, thrombin did contribute to neutrophil infiltration in the lung, independently of PAR-1 expressed by nonhematopoietic cells. Furthermore, the TF-dependent increase in plasma levels of soluble vascular cell adhesion molecule-1 in sickle mice was not mediated by FXa or thrombin. Our data indicate that TF, FXa, and thrombin differentially contribute to vascular inflammation in a mouse model of SCD.
Collapse
|
41
|
Yokota N, Zarpellon A, Chakrabarty S, Bogdanov VY, Gruber A, Castellino FJ, Mackman N, Ellies LG, Weiler H, Ruggeri ZM, Ruf W. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J Thromb Haemost 2014; 12:71-81. [PMID: 24175924 PMCID: PMC3947224 DOI: 10.1111/jth.12442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor cell tissue factor (TF)-initiated coagulation supports hematogenous metastasis by fibrin formation, platelet activation and monocyte/macrophage recruitment. Recent studies identified host anticoagulant mechanisms as a major impediment to successful hematogenous tumor cell metastasis. OBJECTIVE Here we address mechanisms that contribute to enhanced metastasis in hyperthrombotic mice with functional thrombomodulin deficiency (TM(Pro) mice). METHODS Pharmacological and genetic approaches were combined to characterize relevant thrombin targets in a mouse model of experimental hematogenous metastasis. RESULTS TF-dependent, but contact pathway-independent, syngeneic breast cancer metastasis was associated with marked platelet hyperreactivity and formation of leukocyte-platelet aggregates in immune-competent TM(Pro) mice. Blockade of CD11b or genetic deletion of platelet glycoprotein Ibα excluded contributions of these receptors to enhanced platelet-dependent metastasis in hyperthrombotic mice. Mice with very low levels of the endothelial protein C receptor (EPCR) did not phenocopy the enhanced metastasis seen in TM(Pro) mice. Genetic deletion of the thrombin receptor PAR1 or endothelial thrombin signaling targets alone did not diminish enhanced metastasis in TM(Pro) mice. Combined deficiency of PAR1 on tumor cells and the host reduced metastasis in TM(Pro) mice. CONCLUSIONS Metastasis in the hyperthrombotic TM(Pro) mouse model is mediated by platelet hyperreactivity and contributions of PAR1 signaling on tumor and host cells.
Collapse
Affiliation(s)
- Naho Yokota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Alessandro Zarpellon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Vladimir Y. Bogdanov
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - András Gruber
- Departments of Biomedical Engineering and Medicine, Oregon Health and Science University, Portland, OR
| | | | - Nigel Mackman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lesley G. Ellies
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI
| | - Zaverio M. Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
42
|
Li Y, Wei S. [Advances on mechanisms of coagulation with non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2013; 16:676-80. [PMID: 24345495 PMCID: PMC6000641 DOI: 10.3779/j.issn.1009-3419.2013.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, researchers have been increasingly finding coagulation disorders are commonly the first sign of malignancy. It has now been established that cancer development leads to an increased risk of thrombosis, and conversely, excessive activation of blood coagulation profoundly influences cancer progression. In patients with lung cancer, a sustained stimulation of blood coagulation takes place. Cancer cells trigger coagulation through expression of tissue factor, and affect coagulation through expression of thrombin, release of microparticles that augment coagulation and so on. Coagulation also facilitates tumour progression through release of platelet granule contents, inhibition of natural killer cells and recruitment of macrophages. Non-small cell lung cancer (NSCLC) accounts for about 80%-85% of all lung malignancies. In the present review, we summarized the newly updated data about the physiopathological mechanisms of various components of the clotting system in different stages of carcinogenesis in NSCLC.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | | |
Collapse
|
43
|
Abstract
Clinical and epidemiological studies support a connection between obesity and thrombosis, involving elevated expression of the prothrombotic molecules plasminogen activator inhibitor-1 and tissue factor (TF) and increased platelet activation. Cardiovascular diseases and metabolic syndrome-associated disorders, including obesity, insulin resistance, type 2 diabetes, and hepatic steatosis, involve inflammation elicited by infiltration and activation of immune cells, particularly macrophages, into adipose tissue. Although TF has been clearly linked to a procoagulant state in obesity, emerging genetic and pharmacologic evidence indicate that TF signaling via G protein-coupled protease-activated receptors (PAR2, PAR1) additionally drives multiple aspects of the metabolic syndrome. TF-PAR2 signaling in adipocytes contributes to diet-induced obesity by decreasing metabolism and energy expenditure, whereas TF-PAR2 signaling in hematopoietic and myeloid cells drives adipose tissue inflammation, hepatic steatosis, and insulin resistance. TF-initiated coagulation leading to thrombin-PAR1 signaling also contributes to diet-induced hepatic steatosis and inflammation in certain models. Thus, in obese patients, clinical markers of a prothrombotic state may indicate a risk for the development of complications of the metabolic syndrome. Furthermore, TF-induced signaling could provide new therapeutic targets for drug development at the intersection between obesity, inflammation, and thrombosis.
Collapse
|
44
|
Unruh D, Turner K, Srinivasan R, Kocatürk B, Qi X, Chu Z, Aronow BJ, Plas DR, Gallo CA, Kalthoff H, Kirchhofer D, Ruf W, Ahmad SA, Lucas FV, Versteeg HH, Bogdanov VY. Alternatively spliced tissue factor contributes to tumor spread and activation of coagulation in pancreatic ductal adenocarcinoma. Int J Cancer 2013; 134:9-20. [PMID: 23754313 DOI: 10.1002/ijc.28327] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/24/2013] [Indexed: 02/04/2023]
Abstract
Alternatively spliced tissue factor (asTF) promotes neovascularization and monocyte recruitment via integrin ligation. While asTF mRNA has been detected in some pancreatic ductal adenocarcinoma (PDAC) cell lines and increased asTF expression can promote PDAC growth in a subcutaneous model, the expression of asTF protein in bona fide PDAC lesions and/or its role in metastatic spread are yet to be ascertained. We here report that asTF protein is abundant in lesional and stromal compartments of the five studied types of carcinoma including PDAC. Analysis of 29 specimens of PDAC revealed detectable asTF in >90% of the lesions with a range of staining intensities. asTF levels in PDAC lesions positively correlated with the degree of monocyte infiltration. In an orthotopic model, asTF-overexpressing high-grade PDAC cell line Pt45P1/asTF+ produced metastases to distal lymph nodes, which stained positive for asTF. PDAC cells stimulated with and/or overexpressing asTF exhibited upregulation of genes implicated in PDAC progression and metastatic spread. Pt45P1/asTF+ cells displayed higher coagulant activity compared to Pt45P1 cells; the same effect was observed for cell-derived microparticles (MPs). Our findings demonstrate that asTF is expressed in PDAC and lymph node metastases and potentiates PDAC spread in vivo. asTF elicits global changes in gene expression likely involved in tumor progression and metastatic dissemination, and it also enhances the procoagulant potential of PDAC cells and cell-derived MPs. Thus, asTF may comprise a novel therapeutic target to treat PDAC and, possibly, its thrombotic complications.
Collapse
Affiliation(s)
- Dusten Unruh
- Division of Hematology/Oncology, Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Alternatively spliced tissue factor promotes breast cancer growth in a β1 integrin-dependent manner. Proc Natl Acad Sci U S A 2013; 110:11517-22. [PMID: 23801760 DOI: 10.1073/pnas.1307100110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Full-length tissue factor (flTF), the coagulation initiator, is overexpressed in breast cancer (BrCa), but associations between flTF expression and clinical outcome remain controversial. It is currently not known whether the soluble alternatively spliced TF form (asTF) is expressed in BrCa or impacts BrCa progression. We are unique in reporting that asTF, but not flTF, strongly associates with both tumor size and grade, and induces BrCa cell proliferation by binding to β1 integrins. asTF promotes oncogenic gene expression, anchorage-independent growth, and strongly up-regulates tumor expansion in a luminal BrCa model. In basal BrCa cells that constitutively express both TF isoforms, asTF blockade reduces tumor growth and proliferation in vivo. We propose that asTF plays a major role in BrCa progression acting as an autocrine factor that promotes tumor progression. Targeting asTF may comprise a previously unexplored therapeutic strategy in BrCa that stems tumor growth, yet does not impair normal hemostasis.
Collapse
|
46
|
Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, Unruh D, Blomkalns AL, Piegore MG, Weintraub DS, Rudich SM, Kuhel DG, Hui DY, Weintraub NL. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics 2013; 45:697-709. [PMID: 23737535 DOI: 10.1152/physiolgenomics.00042.2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells.
Collapse
Affiliation(s)
- Tapan K Chatterjee
- Department of Internal Medicine, University of Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The hemostatic system is involved in multiple interactions with transformed cells that progress from a dormant, non-vascularized tumor to highly metastatic phenotypes. Oncogenic transformations up regulate not only the initiator of the coagulation cascade, tissue factor (TF), but also induce other molecules that are required for TF's direct cell signaling activity, including the protease activated receptor (PAR) 2 and factor VIIa. TF-dependent signaling is a major driver for primary tumor progression, whereas TF-initiated coagulation and other components of the hemostatic system support metastasis. Basic research continues to identify pivotal molecular interactions in these processes and provides potential leads for targeting specific tumor promoting pathways associated with hemostasis and thrombosis.
Collapse
|
48
|
Schaffner F, Yokota N, Ruf W. Tissue factor proangiogenic signaling in cancer progression. Thromb Res 2012; 129 Suppl 1:S127-31. [PMID: 22682123 DOI: 10.1016/s0049-3848(12)70032-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer progression from a dormant, non-vascularized benign tumor to metastatic disease is a multiple steps process that critically depends on contributions from the hemostatic system. Tissue factor (TF), protease activated receptors (PARs), factor VIIa, and the endothelial protein C receptor (EPCR) are expressed by tumor cells as well as the host compartment. These components of the hemostatic system regulate tumor growth, angiogenesis and metastasis. Here we review the evidence that TF-dependent signaling is the major driver of primary tumor growth, whereas TF-initiated coagulation and interactions of procoagulant tumor cells with the host compartments initiate multiple pathways that support and regulate the efficiency of metastatic tumor dissemination.
Collapse
Affiliation(s)
- Florence Schaffner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Tissue factor (TF) and its signaling mediators play a crucial role in angiogenesis. We have previously shown that TF-induced endothelial cell (EC) CCL2 release contributes to neovessel formation. OBJECTIVE In this study, we have investigated the signaling pathways involved in TF-induced EC tube formation. METHODS The human microvascular endothelial cell line (HMEC-1) cultured onto basement membrane-like gel (Matrigel) was used to study TF signaling pathways during neovessels formation. RESULTS Inhibition of endogenous TF expression in ECs using siRNA resulted in inhibition of a stable tube-like structure formation in three-dimensional cultures, associated with a down-regulation of Akt activation, an increased phosphorylation of Raf at Ser(259) with a subsequent reduction of Raf kinase and a reduction of ERK1/2 phosphorylation ending up in Ets-1 transcription factor inhibition. Conversely, overexpression of TF resulted in an increase in tube formation and up-regulation of Akt protein. Moreover, immunoprecipitation of Akt and western blotting of the immunoprecipitates with anti-TF antibody revealed a direct interaction between TF and Akt. The effects of silencing TF were partially reversed by a PAR2 agonist that rescued tube formation, indicating that the TF-Akt pathway induces PAR2-independent effector signaling. Finally, enforced expression of Akt in TF-silenced ECs rescued tube formation in a Matrigel assay and induced Ets-1 phosphorylation. CONCLUSIONS In EC, TF forms a complex with Akt activating Raf/ERK and Ets-1 signaling induces microvessel formation.
Collapse
Affiliation(s)
- G Arderiu
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB), IIB-Sant Pau, Barcelona CiberOBN, Instituto de Salut Carlos III, Spain
| | | | | | | |
Collapse
|
50
|
Godby RC, Van Den Berg YW, Srinivasan R, Sturm R, Hui DY, Konieczny SF, Aronow BJ, Ozhegov E, Ruf W, Versteeg HH, Bogdanov VY. Nonproteolytic properties of murine alternatively spliced tissue factor: implications for integrin-mediated signaling in murine models. Mol Med 2012; 18:771-9. [PMID: 22481268 DOI: 10.2119/molmed.2011.00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/29/2012] [Indexed: 11/06/2022] Open
Abstract
This study was performed to determine whether murine alternatively spliced tissue factor (masTF) acts analogously to human alternatively spliced tissue factor (hasTF) in promoting neovascularization via integrin ligation. Immunohistochemical evaluation of a spontaneous murine pancreatic ductal adenocarcinoma model revealed increased levels of masTF and murine full-length tissue factor (mflTF) in tumor lesions compared with benign pancreas; furthermore, masTF colocalized with mflTF in spontaneous aortic plaques of Ldlr(-/-) mice, indicating that masTF is likely involved in atherogenesis and tumorigenesis. Recombinant masTF was used to perform in vitro and ex vivo studies examining its integrin-mediated biologic activity. Murine endothelial cells (ECs) rapidly adhered to masTF in a β3-dependent fashion. Using adult and embryonic murine ECs, masTF potentiated cell migration in transwell assays. Scratch assays were performed using murine and primary human ECs; the effects of masTF and hasTF were comparable in murine ECs, but in human ECs, the effects of hasTF were more pronounced. In aortic sprouting assays, the potency of masTF-triggered vessel growth was undistinguishable from that observed with hasTF. The proangiogenic effects of masTF were found to be Ccl2-mediated, yet independent of vascular endothelial growth factor. In murine ECs, masTF and hasTF upregulated genes involved in inflammatory responses; murine and human ECs stimulated with masTF and hasTF exhibited increased interaction with murine monocytic cells under orbital shear. We propose that masTF is a functional homolog of hasTF, exerting some of its key effects via β3 integrins. Our findings have implications for the development of murine models to examine the interplay between blood coagulation, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Richard C Godby
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|