1
|
Mironova GY, Kowalewska PM, El-Lakany M, Tran CHT, Sancho M, Zechariah A, Jackson WF, Welsh DG. The conducted vasomotor response and the principles of electrical communication in resistance arteries. Physiol Rev 2024; 104:33-84. [PMID: 37410448 PMCID: PMC11918294 DOI: 10.1152/physrev.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
Biological tissues are fed by arterial networks whose task is to set blood flow delivery in accordance with energetic demand. Coordinating vasomotor activity among hundreds of neighboring segments is an essential process, one dependent upon electrical information spreading among smooth muscle and endothelial cells. The "conducted vasomotor response" is a functional expression of electrical spread, and it is this process that lies at the heart of this critical review. Written in a narrative format, this review first highlights historical manuscripts and then characterizes the conducted response across a range of preparations. Trends are highlighted and used to guide subsequent sections, focused on cellular foundations, biophysical underpinnings, and regulation in health and disease. Key information has been tabulated; figures reinforce grounding concepts and reveal a framework within which theoretical and experimental work can be rationalized. This summative review highlights that despite 30 years of concerted experimentation, key aspects of the conducted response remain ill defined. Of note is the need to rationalize the regulation and deterioration of conduction in pathobiological settings. New quantitative tools, along with transgenic technology, are discussed as a means of propelling this investigative field forward.
Collapse
Affiliation(s)
- Galina Yu Mironova
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paulina M Kowalewska
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammed El-Lakany
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Cam Ha T Tran
- Department of Physiology, Faculty of Medicine, University of Nevada (Reno), Reno, Nevada, United States
| | - Maria Sancho
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anil Zechariah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Gánti B, Molnár E, Fazekas R, Mikecs B, Lohinai Z, Mikó S, Vág J. Evidence of spreading vasodilation in the human gingiva evoked by nitric oxide. J Periodontal Res 2019; 54:499-505. [PMID: 30865289 DOI: 10.1111/jre.12650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/18/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Spreading vasodilation is an important means of increasing local blood flow effectively during increased metabolic demands or in case of vascular injury. Our aim was to develop a technique proving the presence of spreading vasodilation in the human keratinized gingiva. METHODS Local vasodilation was evoked by the application of nitric oxide (NO) donor nitroglycerin into a well, fixed 2 mm above the marginal gingiva, in 20 subjects with healthy periodontal tissue. Either 1 or 8 mg/mL nitroglycerin solutions were dropped into the test well at the upper right second incisor, and saline was applied into the control well at the upper left first incisor. The gingival blood flow (GBF) was recorded for 15 minutes by a laser speckle contrast imager below the well and in the surrounding area in the mesial, distal, apical and coronal directions. Gingival thickness was measured by an ultrasonic biometer. RESULTS Peak GBF increase was similar after 1 mg/mL and after 8 mg/mL nitroglycerin application in the well (51% ± 12% vs 42% ± 8%) and in the apical region (33 ± 9% vs 55% ± 13%). While the lower dose of nitroglycerin increased GBF only in the apical region around the well, the higher dose induced significant elevations in all surrounding regions, with apical prominence. Hyperaemia lasted 10-14 minutes in the low-dose group whereas it extended beyond the observation period in the high-dose group. Neither the baseline nor the NO-induced peak GBF were correlated with gingival thickness. CONCLUSION The role of the direct effect of NO in the regulation of perfusion was demonstrated in the human gingiva as well as the propagation of local vasodilation to distant, especially apical areas, probably by the mechanism of flow-mediated dilation. This mechanism may have a clinical importance for flap survival or wound healing.
Collapse
Affiliation(s)
- Bernadett Gánti
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Réka Fazekas
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Barbara Mikecs
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Sándor Mikó
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - János Vág
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Fazekas R, Molnár E, Lohinai Z, Dinya E, Tóth Z, Windisch P, Vág J. Functional characterization of collaterals in the human gingiva by laser speckle contrast imaging. Microcirculation 2019; 25:e12446. [PMID: 29457306 DOI: 10.1111/micc.12446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/13/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The rate of blood flow between the various areas of the gingiva in resting position and under challenge is unknown. In this study, the LSCI method was used to map spatial and temporal changes in gingival blood flow after transient compression. METHODS Horizontal, vertical, and papilla base compressions were applied on the attached gingiva in 21 healthy patients (13 women, 8 men). LSCI was used to determine dynamic changes in regional blood flow during a five-second occlusion interval and subsequent reperfusion for twenty minutes. RESULTS Resting blood flow in the attached gingiva apical to the papillae was higher as compared to that in the midbuccal area of the teeth. During short-term horizontal compression, ischemia was greater coronal than apical to the occlusion line. Postocclusive hyperemia was observed not only in the regions affected by ischemia but encompassed a wider area. Hyperemic response was more pronounced and prolonged in male than in female patients. CONCLUSIONS Blood flow in the attached gingiva shows spatial differences. Our findings corroborate the apicocoronal orientation of blood circulation. Periodontal and papillary collaterals may have little role in the blood supply of the adjacent attached gingiva under physiological conditions.
Collapse
Affiliation(s)
- Réka Fazekas
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Health and Public Services, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Tóth
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Péter Windisch
- Department of Periodontology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - János Vág
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Moon J, Ha Y, Kim M, Sim J, Lee Y, Suh M. Dual Electrochemical Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide and Potassium Ion Changes in a Rat Brain during Spontaneous Neocortical Epileptic Seizure. Anal Chem 2016; 88:8942-8. [DOI: 10.1021/acs.analchem.6b02396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jungmi Moon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yejin Ha
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Misun Kim
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeongeun Sim
- Center
for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Youngmi Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minah Suh
- Center
for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| |
Collapse
|
7
|
Hsieh J, Trajcevski KE, Farr SL, Baker CL, Lake EJ, Taher J, Iqbal J, Hussain MM, Adeli K. Glucagon-Like Peptide 2 (GLP-2) Stimulates Postprandial Chylomicron Production and Postabsorptive Release of Intestinal Triglyceride Storage Pools via Induction of Nitric Oxide Signaling in Male Hamsters and Mice. Endocrinology 2015; 156:3538-47. [PMID: 26132919 DOI: 10.1210/en.2015-1110] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intestinal overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles is a common feature of diabetic dyslipidemia and contributes to cardiovascular risk in insulin resistant states. We previously reported that glucagon-like peptide-2 (GLP-2) is a key endocrine stimulator of enterocyte fat absorption and chylomicron output in the postprandial state. GLP-2's stimulatory effect on chylomicron production in the postabsorptive state has been confirmed in human studies. The mechanism by which GLP-2 regulates chylomicron production is unclear, because its receptor is not expressed on enterocytes. We provide evidence for a key role of nitric oxide (NO) in mediating the stimulatory effects of GLP-2 during the postprandial and postabsorptive periods. Intestinal chylomicron production was assessed in GLP-2-treated hamsters administered the pan-specific NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester (L-NAME), and in GLP-2-treated endothelial NOS knockout mice. L-NAME blocked GLP-2-stimulated apoB48 secretion and reduced triglycerides (TGs) in the TG-rich lipoprotein (TRL) fraction of the plasma in the postprandial state. Endothelial NOS-deficient mice were resistant to GLP-2 stimulation and secreted fewer large apoB48-particles. When TG storage pools were allowed to accumulate, L-NAME mitigated the GLP-2-mediated increase in TRL-TG, suggesting that NO is required for early mobilization and secretion of stored TG and preformed chylomicrons. Importantly, the NO donor S-nitroso-L-glutathione was able to elicit an increase in TRL-TG in vivo and stimulate chylomicron release in vitro in primary enterocytes. We describe a novel role for GLP-2-mediated NO-signaling as a critical regulator of intestinal lipid handling and a potential contributor to postprandial dyslipidemia.
Collapse
Affiliation(s)
- Joanne Hsieh
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Karin E Trajcevski
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Sarah L Farr
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Christopher L Baker
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Elizabeth J Lake
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Jennifer Taher
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Jahangir Iqbal
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Mahmood M Hussain
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Khosrow Adeli
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| |
Collapse
|
9
|
Lillie MA, Piscitelli MA, Vogl AW, Gosline JM, Shadwick RE. Cardiovascular design in fin whales: high-stiffness arteries protect against adverse pressure gradients at depth. J Exp Biol 2013; 216:2548-63. [DOI: 10.1242/jeb.081802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARY
Fin whales have an incompliant aorta, which, we hypothesize, represents an adaptation to large, depth-induced variations in arterial transmural pressures. We hypothesize these variations arise from a limited ability of tissues to respond to rapid changes in ambient ocean pressures during a dive. We tested this hypothesis by measuring arterial mechanics experimentally and modelling arterial transmural pressures mathematically. The mechanical properties of mammalian arteries reflect the physiological loads they experience, so we examined a wide range of fin whale arteries. All arteries had abundant adventitial collagen that was usually recruited at very low stretches and inflation pressures (2–3 kPa), making arterial diameter largely independent of transmural pressure. Arteries withstood significant negative transmural pressures (−7 to −50 kPa) before collapsing. Collapse was resisted by recruitment of adventitial collagen at very low stretches. These findings are compatible with the hypothesis of depth-induced variation of arterial transmural pressure. Because transmural pressures depend on thoracic pressures, we modelled the thorax of a diving fin whale to assess the likelihood of significant variation in transmural pressures. The model predicted that deformation of the thorax body wall and diaphragm could not always equalize thoracic and ambient pressures because of asymmetrical conditions on dive descent and ascent. Redistribution of blood could partially compensate for asymmetrical conditions, but inertial and viscoelastic lag necessarily limits tissue response rates. Without pressure equilibrium, particularly when ambient pressures change rapidly, internal pressure gradients will develop and expose arteries to transient pressure fluctuations, but with minimal hemodynamic consequence due to their low compliance.
Collapse
Affiliation(s)
- M. A. Lillie
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - M. A. Piscitelli
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - A. W. Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - J. M. Gosline
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - R. E. Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|