1
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Stapleton PA. The Application of Engineered Nanomaterials in Perinatal Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303072. [PMID: 37438678 PMCID: PMC10784409 DOI: 10.1002/smll.202303072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Pregnancy is a vulnerable life stage for the mother and developing fetus. Because of this dual concern, approved therapeutic options for pre-existing conditions or pregnancy-induced pathologies, placental deformities, or fetal concerns are extremely limited. These cases often leave patients and clinicians having to choose between maternal health and fetal development. Recent advancements in nanomedicine and nanotherapeutic devices have made the development of perinatal therapeutics an attractive objective. However, perinatal medicine requires a multifaceted approach given the interactions between maternal, placental, and fetal physiology. Maternal-fetal interactions are centralized to the placenta, a specialized transient barrier organ, to allow for nutrient and waste exchange. Perinatal nanotherapeutics must be designed for placental avoidance or uptake. In this review, pregnancy-related conditions, experimental models, and modes of drug delivery during pregnancy are discussed.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ, 08854, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Bauwelinck M, De Boever P, Dons E, Standaert A, Ambros A, Laeremans M, Avila-Palencia I, Carrasco-Turigas G, Wegener S, Anaya E, Orjuela JP, de Nazelle A, Nieuwenhuijsen MJ, Panis LI, Dadvand P. Greenspace exposure and the retinal microvasculature in healthy adults across three European cities. Health Place 2024; 89:103342. [PMID: 39236517 DOI: 10.1016/j.healthplace.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Emerging evidence points to the beneficial role of greenspace exposure in promoting cardiovascular health. Most studies have evaluated such associations with conventional cardiovascular endpoints such as mortality, morbidity, or macrovascular markers. In comparison, the microvasculature, a crucial compartment of the vascular system where early subclinical signs of cardiovascular problems appear, has not been studied in association with greenspace exposure. The current study assessed the association between surrounding greenness and microvascular status, as assessed by retinal vessel diameters. METHODS This study included a sample of healthy adults (n = 114 and 18-65 years old) residing in three European cities [Antwerp (Belgium), Barcelona (Spain), and London (UK)]. The exposures to greenspace at the home and work/school locations were characterized as average surrounding greenness [normalized difference vegetation index (NDVI)] within buffers of 100 m, 300 m, and 500 m. The central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE) were calculated from fundus pictures taken at three different time points. We developed linear mixed-effect models to estimate the association of greenspace exposure with indicators of retinal microvasculature, adjusted for relevant individual and area-level covariates. RESULTS We observed the most robust associations with CRVE. Higher levels of greenspace at work/school were associated with smaller retinal venules [(seasonal NDVI) 300m: 3.85, 95%CI -6.67,-1.03; 500m: 5.11, 95%CI -8.04, -2.18]. Findings for surrounding greenness and CRAE were not conclusive. CONCLUSION Our study suggests an association of greenspace exposure with better microvascular status, specifically for retinal venules. Future research is needed to confirm our findings across different contextual settings.
Collapse
Affiliation(s)
- Mariska Bauwelinck
- Brussels Institute for Social and Population Studies (BRISPO), Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick De Boever
- Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium; Antwerp University Hospital (UZA), 2650, Edegem, Belgium.
| | - Evi Dons
- Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Arnout Standaert
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Albert Ambros
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Michelle Laeremans
- Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Ione Avila-Palencia
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Glòria Carrasco-Turigas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Wegener
- University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Vienna, Austria
| | - Esther Anaya
- Centre for Environmental Policy (CEP), Imperial College, London, United Kingdom
| | - Juan Pablo Orjuela
- Centre for Environmental Policy (CEP), Imperial College, London, United Kingdom; Transport Studies Unit, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Audrey de Nazelle
- Centre for Environmental Policy (CEP), Imperial College, London, United Kingdom
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Luc Int Panis
- Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Min S, Tao W, Miao Y, Li Y, Wu T, He X, Zhang Y, Liu B, Meng Z, Han K, Liu S, Li L, Chen J, Zhao S, Zhang J, Zhang X. Dual Delivery of Tetramethylpyrazine and miR-194-5p Using Soft Mesoporous Organosilica Nanoparticles for Acute Lung Injury Therapy. Int J Nanomedicine 2023; 18:6469-6486. [PMID: 38026537 PMCID: PMC10640848 DOI: 10.2147/ijn.s420802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.
Collapse
Affiliation(s)
- Simin Min
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
- Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, 234000, People’s Republic of China
| | - Weiting Tao
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Yuchen Miao
- Department of Chemistry, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Yan Li
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Tianyu Wu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Xiaoyu He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Yijing Zhang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Bangye Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Zixin Meng
- School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Ke Han
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Saisai Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Li Li
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Jie Chen
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Shidi Zhao
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Junjie Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Xiaonan Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| |
Collapse
|
5
|
Hashim AR, Bashir DW, Yasin NAE, Galal MK, M EGS. Ameliorative effect of N-acetylcysteine against glyphosate-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42275-42289. [PMID: 33797725 DOI: 10.1007/s11356-021-13659-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate (GLP) is the most commonly used herbicide that presents many hazards to the environment and living organisms. The present study aimed to explore hepatotoxic properties of GLP on adult albino rats, and the ability of N-acetylcysteine (NAC) to ameliorate these toxic effects. Thirty mature male albino rats were distributed into 3 groups (10 rats/group): Group I (C) a negative control, Group II (GLP) orally administered Roundup 0.8503 ml/kg/day which contain GLP (375 mg/kg) (1/10 of LD50) by gavage needle, and Group III (NAC+ GLP) received NAC (160 mg/kg, 1h before Roundup) by gavage needle and Roundup (0.8503 ml/kg) orally for 6 weeks. Blood and liver samples were collected and processed for biochemical, histopathological, ultrastructural, and immunohistochemical investigations. Group II displayed a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels, as well as overexpression of apoptotic markers. The total antioxidant capacity "TAC" and mRNA expression of NRF2 were significantly decreased. Concerning the histopathological findings, there were various degenerative changes as the hepatocytes showed hydropic swelling with nuclear pyknosis. These alterations were confirmed ultrastructurally as most of the cytoplasmic organelles were lost and the mitochondria appeared to deteriorate. Immunohistochemical results showed intense immunoreactivity against proliferating cell nuclear antigen (PCNA) and caspase-3. NAC administration before GLP partially ameliorates these alterations. ALT, AST, and MDA levels as well as expression of apoptotic markers were significantly reduced. TAC and mRNA expression of NRF2 were significantly increased. Histopathological alterations were partially improved as the hepatocytes returned normal and ultrastructurally they showed nearly normal cytoplasmic organelles. Additionally, the intense expression of PCNA and caspase-3 was significantly reduced. We concluded that NAC can ameliorate most of the adverse effects of GLP exposure through its antioxidant property and free radicals scavenging capacity.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Korsiak J, Perepeluk KL, Peterson NG, Kulka R, Weichenthal S. Air pollution and retinal vessel diameter and blood pressure in school-aged children in a region impacted by residential biomass burning. Sci Rep 2021; 11:12790. [PMID: 34140605 PMCID: PMC8211781 DOI: 10.1038/s41598-021-92269-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Little is known about the early-life cardiovascular health impacts of fine particulate air pollution (PM2.5) and oxidant gases. A repeated-measures panel study was used to evaluate associations between outdoor PM2.5 and the combined oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) and retinal vessel diameter and blood pressure in children living in a region impacted by residential biomass burning. A median of 6 retinal vessel and blood pressure measurements were collected from 64 children (ages 4-12 years), for a total of 344 retinal measurements and 432 blood pressure measurements. Linear mixed-effect models were used to estimate associations between PM2.5 or Ox (same-day, 3-day, 7-day, and 21-day means) and retinal vessel diameter and blood pressure. Interactions between PM2.5 and Ox were also examined. Ox was inversely associated with retinal arteriolar diameter; the strongest association was observed for 7-day mean exposures, where each 10 ppb increase in Ox was associated with a 2.63 μm (95% CI - 4.63, - 0.63) decrease in arteriolar diameter. Moreover, Ox modified associations between PM2.5 and arteriolar diameter, with weak inverse associations observed between PM2.5 and arteriolar diameter only at higher concentrations of Ox. Our results suggest that outdoor air pollution impacts the retinal microvasculature of children and interactions between PM2.5 and Ox may play an important role in determining the magnitude and direction of these associations.
Collapse
Affiliation(s)
- Jill Korsiak
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Kay-Lynne Perepeluk
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Nicholas G Peterson
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON, K1A 0K9, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada.
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
7
|
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 2020; 17:55. [PMID: 33099312 PMCID: PMC7585297 DOI: 10.1186/s12989-020-00385-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Derek S Adler
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Stamatina Kollontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Laura Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
9
|
Xu S, Sui J, Fu Y, Wu W, Liu T, Yang S, Liang G. Titanium dioxide nanoparticles induced the apoptosis of RAW264.7 macrophages through miR-29b-3p/NFAT5 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26153-26162. [PMID: 32361970 DOI: 10.1007/s11356-020-08952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in consumer and industrial products, contributing to their prevalent presence in our surroundings. In this study, several miRNAs in the immuno-related pathways were found to be dysregulated in RAW264.7 cells after 24-h exposure to TiO2 NPs, including miR-29b-3p, which had not been previously found to be associated with the dysregulation of immunity after exposure to TiO2 NPs. The KEGG pathway and GO enrichment analysis suggested that miR-29b-3p functioned both in the T and B cell receptor signaling pathways. The NFAT5 gene was predicted to regulate miR-29b-3p using the MiRDB online database. The expression of miR-29b-3p and NFAT5 was found to be inversely correlated using qRT-PCR and western blotting analysis. Dual-luciferase reporter gene assays demonstrated the precise regulatory relationship between miR-29b-3p and NFAT5. The upregulation of miR-29b-3p was found to reinforce the apoptosis of cells, while no changes were found in terms of the cell cycle or cell proliferation, using MTT, cell apoptosis, and cycle detection experiments. Our results demonstrate that miR-29b-3p is involved in the response of RAW264.7 cells to exposure to TiO2, proving evidence for the further study of the toxicity and mechanisms of nano-TiO2 exposure.
Collapse
Affiliation(s)
- Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yanyun Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
10
|
Lim YH, Park HY, Yi SM, Park E, Lee BE, Oh SY, Hong YC. Influence of vitamin B deficiency on PM 2.5-induced cardiac autonomic dysfunction. Eur J Prev Cardiol 2019; 27:2296-2298. [PMID: 31813277 DOI: 10.1177/2047487319888595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Youn-Hee Lim
- Department of Public Health, University of Copenhagen, Denmark.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Republic of Korea
| | - Hye Yin Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Republic of Korea.,Samsung Health Research Institute, Samsung Electronics Co Ltd, Republic of Korea
| | - Seung-Muk Yi
- Department of Environmental Health, Seoul National University, Republic of Korea
| | - EunHa Park
- Department of Environmental Health, Seoul National University, Republic of Korea
| | - Bo-Eun Lee
- Department of Environmental Health Research, National Institute of Environmental Research, Republic of Korea
| | | | - Yun-Chul Hong
- Department of Public Health, University of Copenhagen, Denmark.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Republic of Korea
| |
Collapse
|
11
|
Kreyling WG, Holzwarth U, Schleh C, Hirn S, Wenk A, Schäffler M, Haberl N, Semmler-Behnke M, Gibson N. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure. Part Fibre Toxicol 2019; 16:29. [PMID: 31288843 PMCID: PMC6617842 DOI: 10.1186/s12989-019-0303-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Industrially produced quantities of TiO2 nanoparticles are steadily rising, leading to an increasing risk of inhalation exposure for both professionals and consumers. Particle inhalation can result in inflammatory and allergic responses, and there are concerns about other negative health effects from either acute or chronic low-dose exposure. Results To study the fate of inhaled TiO2-NP, adult rats were exposed to 2-h intra-tracheal inhalations of 48V-radiolabeled, 20 nm TiO2-NP aerosols (deposited NP-mass 1.4 ± 0.5 μg). At five time points (1 h, 4 h, 24 h, 7d, 28d) post-exposure, a complete balance of the [48V]TiO2-NP fate was quantified in organs, tissues, carcass, lavage and body fluids, including excretions. After fast mucociliary airway clearance (fractional range 0.16–0.31), long-term macrophage-mediated clearance (LT-MC) from the alveolar region is 2.6-fold higher after 28d (integral fraction 0.40 ± 0.04) than translocation across the air-blood-barrier (integral fraction 0.15 ± 0.01). A high NP fraction remains in the alveoli (0.44 ± 0.05 after 28d), half of these on the alveolar epithelium and half in interstitial spaces. There is clearance from both retention sites at fractional rates (0.02–0.03 d− 1) by LT-MC. Prior to LT-MC, [48V]TiO2-NP are re-entrained to the epithelium as reported earlier for 20 nm inhaled gold-NP (AuNP) and iridium-NP (IrNP). Conclusion Comparing the 28-day biokinetics patterns of three different inhaled NP materials TiO2-NP, AuNP and IrNP, the long-term kinetics of interstitial relocation and subsequent re-entrainment onto the lung-epithelium is similar for AuNP and Ir-NP but slower than for TiO2-NP. We discuss mechanisms and pathways of NP relocation and re-entrainment versus translocation. Additionally, after 28 days the integral translocated fractions of TiO2-NP and IrNP across the air-blood-barrier (ABB) are similar and become 0.15 while the translocated AuNP fraction is only 0.04. While NP dissolution proved negligible, translocated TiO2-NP and IrNP are predominantly excreted in urine (~ 0.1) while the urinary AuNP excretion amounts to a fraction of only 0.01. Urinary AuNP excretion is below 0.0001 during the first week but rises tenfold thereafter suggesting delayed disagglomeration. Of note, all three NP dissolve minimally, since no ionic radio-label release was detectable. These biokinetics data of inhaled, same-sized NP suggest significant time-dependent differences of the ABB translocation and subsequent fate in the organism. Electronic supplementary material The online version of this article (10.1186/s12989-019-0303-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang G Kreyling
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany. .,Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany.
| | - Uwe Holzwarth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Carsten Schleh
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany.,Current address: Abteilung Gesundheit, Berufsgenossenschaft Holz und Metall, Am Knie 8, D-81241, München, Germany
| | - Stephanie Hirn
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany
| | - Alexander Wenk
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany.,Current address: Dept. Infrastructure, Safety, Occupational Protection, Helmholtz Center München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany
| | - Martin Schäffler
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany
| | - Nadine Haberl
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany
| | - Manuela Semmler-Behnke
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany
| | - Neil Gibson
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
12
|
Pandey A, Dhabade P, Kumarasamy A. Inflammatory Effects of Subacute Exposure of Roundup in Rat Liver and Adipose Tissue. Dose Response 2019; 17:1559325819843380. [PMID: 31205454 PMCID: PMC6537504 DOI: 10.1177/1559325819843380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Roundup is a popular herbicide containing glyphosate as an active ingredient. The formulation of Roundup is speculated to have critical toxic effects, one among which is chronic inflammation. The present study analyzed adverse inflammatory effects in the liver and adipose tissue of rats after a subacute exposure of Roundup. Adult male rats were exposed to various doses of Roundup (0, 5, 10, 25, 50, 100 and 250 mg/kg bodyweight [bw] glyphosate) orally, everyday for 14 days. On day 15, liver and adipose tissues from dosed rats were analyzed for inflammation markers. C-reactive protein in liver, cytokines IL-1β, TNF-α, IL-6, and inflammatory response marker, and prostaglandin–endoperoxide synthase were upregulated in liver and adipose of rats exposed to higher (100 and 250 mg/kg bw/d) doses of Roundup. Cumulatively, our data suggest development of inflammation in lipid and hepatic organs upon exposure to Roundup. Furthermore, liver histological studies showed formation of vacuoles, fibroid tissue, and glycogen depletion in the groups treated with doses of higher Roundup. These observations suggest progression of fatty liver disease in Roundup-treated adult rats. In summary, our data suggest progression of multiorgan inflammation, liver scarring, and dysfunction post short-term exposure of Roundup in adult male rats.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prachi Dhabade
- Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Anand Kumarasamy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Abstract
Undoubtedly, plastics have changed human existence. These pervasive products are used in nearly every field to include technological, biomedical, and domestic applications. Post-consumer plastic waste disposal leading to plastic pollution in landfills, waterways, and oceans represents a worldwide environmental challenge. Accumulation and continued material fragmentation from micro- to nanoplastics has identified concerns pertaining to environmental and human exposures and toxicity. While many studies have focused on particle fate and identification, the toxicological considerations must focus on the biological relevance of particle deposition within a particular organism, compartment, organ, and tissue. Further, concerns exist regarding the physical and chemical properties of the plastic particles during their production and/or degradation. In this mini-review we will discuss (1) particle characterization and assessment, (2) environmental concerns, and (3) human toxicity.
Collapse
Affiliation(s)
- PA Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
- Correspondence:; Tel: +8484450142
| |
Collapse
|
14
|
Fournier SB, D'Errico JN, Stapleton PA. Engineered nanomaterial applications in perinatal therapeutics. Pharmacol Res 2018; 130:36-43. [PMID: 29477479 PMCID: PMC5965276 DOI: 10.1016/j.phrs.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023]
Abstract
Engineered nanomaterials (ENM) are widely used in commercial, domestic, and more recently biomedical applications. While the majority of exposures to ENM are unintentional, biomedical platforms are being evaluated for use in individualized and/or tissue-targeted therapies. Treatments are often avoided during prenatal periods to reduce adverse effects on the developing fetus. The placenta is central to maternal-fetal medicine. Perturbation of placental functions can limit transfer of necessary nutrients, alter production of hormones needed during pregnancy, or allow undesired passage of xenobiotics to the developing fetus. The development of therapeutics to target specific maternal, placental, or fetal tissues would be especially important to reduce or circumvent toxicities. Therefore, this review will discuss the potential use of ENM in perinatal medicine, the applicable physiochemical properties of ENM in therapeutic use, and current methodologies of ENM testing in perinatal medicine, and identify maternal, fetal, and offspring concerns associated with ENM exposure during gestation. As potential nanoparticle-based therapies continue to develop, so does the need for thorough consideration and evaluation for use in perinatal medicine.
Collapse
Affiliation(s)
- S B Fournier
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - P A Stapleton
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Stapleton PA, McBride CR, Yi J, Abukabda AB, Nurkiewicz TR. Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 2018; 78:20-28. [PMID: 29545171 PMCID: PMC6034709 DOI: 10.1016/j.reprotox.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/08/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Preconceptive health encompasses male and female reproductive capability. In females, this takes into account each of the stages of the estrous cycle. Microvascular reactivity varies throughout the estrous cycle in response to hormonal changes and in preparation for pregnancy. Microvascular alterations in response to engineered nanomaterial (ENM) exposure have been described within 24-h of inhalation; however, the impact upon the uterine vasculature at differing estrous stages and at late-stage pregnancy is unclear. Female Sprague Dawley (SD) rats (virgin and late stage pregnancy [GD 19]) were exposed to nano-TiO aerosols (173.2 ± 6.4 nm, 10.2 ± 0.46 mg/m3, 5 h) 24-h prior to experimentation leading to a single calculated deposition of 42.2 ± 1.9 µg nano- TiO2 (exposed) or 0µg (control). Animals were anesthetized, estrous status verified, and prepared for in situ assessment of leukocyte trafficking and vascular function by means of intravital microscopy, Uterine basal arteriolar reactivity was stimulated using iontophoretically applied chemicals: acetylcholine (ACh, 0.025 M; 20, 40, 100, 200 nA), sodium nitroprusside (SNP, 0.05 M; 20, 40, 100 nA), phenylephrine (PE, 0.05 M; 20, 40, 100 nA). Finally, adenosine (ADO, 10−4 M) was superfused over the tissue to identify maximum diameter. In situ vessel reactivity after exposure was significantly blunted based on estrous stage, but not at late-stage pregnancy. Local uterine venular leukocyte trafficking and systemic inflammatory markers were also significantly affected during preparatory (proestrus), fertile (estrus), and infertile (diestrus) periods after ENM inhalation. Overall, these deficits in reactivity and increased inflammatory activity may impair female fertility after ENM exposure.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA.
| | - C R McBride
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - J Yi
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA
| | - A B Abukabda
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - T R Nurkiewicz
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
Armstead AL, Simoes TA, Wang X, Brydson R, Brown A, Jiang BH, Rojanasakul Y, Li B. Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles. J Mater Chem B 2017. [DOI: 10.1039/c7tb01372h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Particles on the nano- and micro-meter scales present unique cell-specific cellular effects (i.e.cytotoxicity and oxidative stress).
Collapse
Affiliation(s)
- Andrea L. Armstead
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| | - Thiago A. Simoes
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Xianfeng Wang
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| | - Rik Brydson
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Andy Brown
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Bing-Hua Jiang
- Department of Pathology
- Anatomy and Cell Biology
- Thomas Jefferson University
- Philadelphia
- USA
| | - Yon Rojanasakul
- School of Pharmacy
- West Virginia University
- Morgantown
- USA
- Mary Babb Randolph Cancer Center
| | - Bingyun Li
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
17
|
Armstead AL, Li B. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6421-6433. [PMID: 27942214 PMCID: PMC5138053 DOI: 10.2147/ijn.s121238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no “standardized” approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) “dusts,” composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
18
|
Rueda-Romero C, Hernández-Pérez G, Ramos-Godínez P, Vázquez-López I, Quintana-Belmares RO, Huerta-García E, Stepien E, López-Marure R, Montiel-Dávalos A, Alfaro-Moreno E. Titanium dioxide nanoparticles induce the expression of early and late receptors for adhesion molecules on monocytes. Part Fibre Toxicol 2016; 13:36. [PMID: 27338562 PMCID: PMC4917990 DOI: 10.1186/s12989-016-0147-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND There is growing evidence that exposure to titanium dioxide nanoparticles (TiO2 NPs) could be harmful. Previously, we have shown that TiO2 NPs induces endothelial cell dysfunction and damage in glial cells. Considering that inhaled particles can induce systemic effects and the evidence that nanoparticles may translocate out of the lungs, we evaluated whether different types of TiO2 NPs can induce the expression of receptors for adhesion molecules on monocytes (U937 cell line). We evaluated the role of reactive oxygen spices (ROS) on these effects. METHODS The expression of receptors for early (sLe(x) and PSGL-1) and late (LFA-1, VLA-4 and αVβ3) adhesion molecules was evaluated in U937 cells on a time course (3-24 h) using a wide range of concentrations (0.001-100 μg/mL) of three types of TiO2 NPs (<25 nm anatase, 50 nm anatase-rutile or < 100 nm anatase). Cells exposed to TNFα were considered positive controls, and unexposed cells, negative controls. In some experiments we added 10 μmolar of N-acetylcysteine (NAC) to evaluate the role of ROS. RESULTS All tested particles, starting at a concentration of 0.03 μg/mL, induced the expression of receptors for early and late adhesion molecules. The largest increases were induced by the different molecules after 3 h of exposure for sLe(x) and PSGL-1 (up to 3-fold of the positive controls) and after 18 h of exposure for LFA-1, VLA-4 and αVβ3 (up to 2.5-fold of the positive controls). Oxidative stress was observed as early as 10 min after exposure, but the maximum peak was found after 4 h of exposure. Adhesion of exposed or unexposed monocytes to unexposed or exposed endothelial cells was tested, and we observed that monocytes cells adhere in similar amounts to endothelial cells if one of the two cell types, or both were exposed. When NAC was added, the expression of the receptors was inhibited. CONCLUSIONS These results show that small concentrations of particles may activate monocytes that attach to endothelial cells. These results suggest that distal effects can be induced by small amounts of particles that may translocate from the lungs. ROS play a central role in the induction of the expression of these receptors.
Collapse
Affiliation(s)
- Cristhiam Rueda-Romero
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
- Universidad Interserrana del Estado de Puebla, Ahuacatlán, Puebla México
| | - Guillermina Hernández-Pérez
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
- Universidad Interserrana del Estado de Puebla, Ahuacatlán, Puebla México
| | - Pilar Ramos-Godínez
- Electron Microscopy Laboratory, Subdirección de Patología, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Inés Vázquez-López
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Raúl Omar Quintana-Belmares
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Elizabeth Huerta-García
- Cell Biology Laboratory, Physiology Department, Instituto Nacional de Cardiología, Ciudad de México, México
| | - Ewa Stepien
- M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Rebeca López-Marure
- Cell Biology Laboratory, Physiology Department, Instituto Nacional de Cardiología, Ciudad de México, México
| | - Angélica Montiel-Dávalos
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Ernesto Alfaro-Moreno
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
- Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| |
Collapse
|
19
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Stapleton PA. Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. J Physiol 2015; 594:2161-73. [PMID: 26332609 DOI: 10.1113/jp270581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/13/2015] [Indexed: 12/24/2022] Open
Abstract
Air pollution particulate matter and engineered nanomaterials are encompassed in the broad definition of xenobiotic particles. While the effects of perinatal air pollution exposure have been investigated, elucidation of outcomes associated with nanomaterial exposure, the focus of this review, is still in its infancy. As the potential uses of nanomaterials, and therefore exposures, increase exponentially so does the need for thorough evaluation. Up to this point, the majority of research in the field of cardiovascular nanotoxicology has focused on the coronary and vascular reactions to pulmonary exposures in young adult, healthy, male models; however, as intentional and unintentional contacts persist, the non-pulmonary risks to under-represented populations become a critical concern. Development of the maternal-fetal circulation during successful mammalian gestation is one of the most unusual complex, dynamic, and acutely demanding physiological systems. Fetal development in a hostile gestational environment can lead to systemic alterations, which may encourage adult disease. Therefore, the purpose of this review is to highlight the few knowns associated with gestational engineered nanomaterial exposure segmented by physiological periods of development or systemic targets: preconception and maternal, gestational, fetal and progeny (Abstract figure). Overall, the limited studies currently available provide compelling evidence of maternal, fetal and offspring dysfunctions after engineered nanomaterial exposure. Understanding the mechanisms associated with these multigenerational effects may allow pregnant women to safely reap the benefits of nanotechnology-enabled products and assist in the implementation of exposure controls to protect the mother and fetus allowing for development of safety by design for engineered nanomaterials.
Collapse
Affiliation(s)
- P A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| |
Collapse
|
21
|
Stapleton PA, Abukabda AB, Hardy SL, Nurkiewicz TR. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. Am J Physiol Heart Circ Physiol 2015; 309:H1609-20. [PMID: 26386111 DOI: 10.1152/ajpheart.00546.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term "xenobiotic particles" has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alaeddin B Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Steven L Hardy
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
22
|
Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment. Toxicol Appl Pharmacol 2015; 288:420-8. [PMID: 26375943 DOI: 10.1016/j.taap.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO2 aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m(3), 5h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10(-4)M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated.
Collapse
Affiliation(s)
- P A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - C R McBride
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - J Yi
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - T R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
23
|
Maurer MM, Donohoe GC, Maleki H, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry. J Proteomics 2015; 130:85-93. [PMID: 26375203 DOI: 10.1016/j.jprot.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/14/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
Abstract
Mounting evidence suggests that pulmonary exposure to nanoparticles (NPs) has a toxic effect on biological systems. A number of studies have shown that exposure to NPs result in systemic inflammatory response, oxidative stress, and leukocyte adhesion. However, significant knowledge gaps exist for understanding the key molecular mechanisms responsible for altered microvasculature function. Utilizing comprehensive LC-MS/MS and comparative proteomic analysis strategies, important proteins related to TiO2 NP exposure in rat plasma have been identified. Molecular pathway analysis of these proteins revealed 13 canonical pathways as being significant (p ≤ 0.05), but none were found to be significantly up or down-regulated (z>|2|). This work lays the foundation for future research that will monitor relative changes in protein abundance in plasma and tissue as a function of post-exposure time and TiO2 NP dosage to further elucidate mechanisms of pathway activation as well as to decipher other affected pathways.
Collapse
Affiliation(s)
- Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Carroll McBride
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
24
|
Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, Hollander JM, Nurkiewicz TR. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 2015; 9:941-51. [PMID: 25475392 DOI: 10.3109/17435390.2014.984251] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Cody E Nichols
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Jinghai Yi
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Carroll R McBride
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Valerie C Minarchick
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Danielle L Shepherd
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| |
Collapse
|
25
|
Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS One 2015; 10:e0118778. [PMID: 25738830 PMCID: PMC4349695 DOI: 10.1371/journal.pone.0118778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022] Open
Abstract
Exposure to hard metal tungsten carbide cobalt (WC-Co) "dusts" in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.
Collapse
Affiliation(s)
- Andrea L. Armstead
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
| | - Valerie C. Minarchick
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Dale W. Porter
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Timothy R. Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Bingyun Li
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Minarchick VC, Stapleton PA, Porter DW, Wolfarth MG, Çiftyürek E, Barger M, Sabolsky EM, Nurkiewicz TR. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol 2014; 13:323-37. [PMID: 23645470 DOI: 10.1007/s12012-013-9213-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) are an engineered nanomaterial (ENM) that possesses unique catalytic, oxidative, and reductive properties. Currently, CeO2 NPs are being used as a fuel catalyst but these properties are also utilized in the development of potential drug treatments for radiation and stroke protection. These uses of CeO2 NPs present a risk for human exposure; however, to date, no studies have investigated the effects of CeO2 NPs on the microcirculation following pulmonary exposure. Previous studies in our laboratory with other nanomaterials have shown impairments in normal microvascular function after pulmonary exposures. Therefore, we predicted that CeO2 NP exposure would cause microvascular dysfunction that is dependent on the tissue bed and dose. Twenty-four-hour post-exposure to CeO2 NPs (0-400 μg), mesenteric, and coronary arterioles was isolated and microvascular function was assessed. Our results provided evidence that pulmonary CeO2 NP exposure impairs endothelium-dependent and endothelium-independent arteriolar dilation in a dose-dependent manner. The CeO2 NP exposure dose which causes a 50 % impairment in arteriolar function (EC50) was calculated and ranged from 15 to 100 μg depending on the chemical agonist and microvascular bed. Microvascular assessments with acetylcholine revealed a 33-75 % reduction in function following exposure. Additionally, there was a greater sensitivity to CeO2 NP exposure in the mesenteric microvasculature due to the 40 % decrease in the calculated EC50 compared to the coronary microvasculature EC50. CeO2 NP exposure increased mean arterial pressure in some groups. Taken together, these observed microvascular changes may likely have detrimental effects on local blood flow regulation and contribute to cardiovascular dysfunction associated with particle exposure.
Collapse
Affiliation(s)
- Valerie C Minarchick
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, PO Box 9105, Morgantown, WV, 26506-9105, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Stapleton PA, Nurkiewicz TR. Vascular distribution of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:338-48. [PMID: 24777845 DOI: 10.1002/wnan.1271] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/19/2014] [Accepted: 03/29/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Once considered primarily occupational, novel nanotechnology innovations, and applications have led to widespread domestic use and intentional biomedical exposures. With these exciting advances, the breadth and depth of toxicological considerations must also be expanded. The vascular system interacts with every tissue in the body, striving to maintain homeostasis. Engineered nanomaterials (ENM) have been reported to distribute in many different tissues and organs. However, these observations have tended to use approaches requiring tissue homogenization and/or gross organ analyses. These techniques, while effective in establishing presence, preclude an exact determination of where ENM are deposited within a tissue. If nanotechnology is to achieve its full potential, it is necessary to identify this exact distribution and deposition of ENM throughout the cardiovascular system, with respect to vascular hemodynamics and in vivo ENM modifications taken into account. Distinct levels of the vasculature will first be described as individual compartments. Then the vasculature will be considered as a whole. These unique compartments and biophysical conditions will be discussed in terms of their propensity to favor ENM deposition. Understanding levels of the vasculature will also be discussed. Ultimately, future studies must verify the mechanisms speculated on and presented herein. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | |
Collapse
|
28
|
Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol 2013; 209:227.e1-11. [PMID: 23643573 DOI: 10.1016/j.ajog.2013.04.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/01/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. Although the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding "special" circulations is the enhanced maternal system to support fetal development. The Barker hypothesis proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity. Therefore, the objective of this study was 2-fold: (1) to determine whether maternal ENM exposure alters uterine and/or fetal microvascular function and (2) test the Barker hypothesis at the microvascular level. STUDY DESIGN Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (11.3 ± 0.039 mg/m(3)/hr, 5 hr/d, 8.2 ± 0.85 days) to evaluate the maternal and fetal microvascular consequences of maternal exposure. Microvascular tissue isolation (gestation day 20) and arteriolar reactivity studies (<150 μm passive diameter) of the uterine premyometrial and fetal tail arteries were conducted. RESULTS ENM exposures led to significant maternal and fetal microvascular dysfunction, which was seen as robustly compromised endothelium-dependent and -independent reactivity to pharmacologic and mechanical stimuli. Isolated maternal uterine arteriolar reactivity was consistent with a metabolically impaired profile and hostile gestational environment that impacted fetal weight. The fetal microvessels that were isolated from exposed dams demonstrated significant impairments to signals of vasodilation specific to mechanistic signaling and shear stress. CONCLUSION To our knowledge, this is the first report to provide evidence that maternal ENM inhalation is capable of influencing fetal health and that the Barker hypothesis is applicable at the microvascular level.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506-9105, USA
| | | | | | | | | | | |
Collapse
|
29
|
Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 2012. [PMID: 23203034 PMCID: PMC3509550 DOI: 10.3390/ijms131113781] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.
Collapse
|
30
|
Urankar RN, Lust RM, Mann E, Katwa P, Wang X, Podila R, Hilderbrand SC, Harrison BS, Chen P, Ke PC, Rao AM, Brown JM, Wingard CJ. Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Part Fibre Toxicol 2012; 9:38. [PMID: 23072542 PMCID: PMC3518151 DOI: 10.1186/1743-8977-9-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/10/2012] [Indexed: 12/25/2022] Open
Abstract
Background The exceptional physical-chemical properties of carbon nanotubes have lead to their use in diverse commercial and biomedical applications. However, their utilization has raised concerns about human exposure that may predispose individuals to adverse health risks. The present study investigated the susceptibility to cardiac ischemic injury following a single exposure to various forms of multi-walled carbon nanotubes (MWCNTs). It was hypothesized that oropharyngeal aspiration of MWCNTs exacerbates myocardial ischemia and reperfusion injury (I/R injury). Methods Oropharyngeal aspiration was performed on male C57BL/6J mice with a single amount of MWCNT (0.01 - 100 μg) suspended in 100 μL of a surfactant saline (SS) solution. Three forms of MWCNTs were used in this study: unmodified, commercial grade (C-grade), and functionalized forms that were modified either by acid treatment (carboxylated, COOH) or nitrogenation (N-doped) and a SS vehicle. The pulmonary inflammation, serum cytokine profile and cardiac ischemic/reperfusion (I/R) injury were assessed at 1, 7 and 28 days post-aspiration. Results Pulmonary response to MWCNT oropharyngeal aspiration assessed by bronchoalveolar lavage fluid (BALF) revealed modest increases in protein and inflammatory cell recruitment. Lung histology showed modest tissue inflammation as compared to the SS group. Serum levels of eotaxin were significantly elevated in the carboxylated MWCNT aspirated mice 1 day post exposure. Oropharyngeal aspiration of all three forms of MWCNTs resulted in a time and/or dose-dependent exacerbation of myocardial infarction. The severity of myocardial injury varied with the form of MWCNTs used. The N-doped MWCNT produced the greatest expansion of the infarct at any time point and required a log concentration lower to establish a no effect level. The expansion of the I/R injury remained significantly elevated at 28 days following aspiration of the COOH and N-doped forms, but not the C-grade as compared to SS. Conclusion Our results suggest that oropharyngeal aspiration of MWCNT promotes increased susceptibility of cardiac tissue to ischemia/reperfusion injury without a significant pulmonary inflammatory response. The cardiac injury effects were observed at low concentrations of MWCNTs and presence of MWCNTs may pose a significant risk to the cardiovascular system.
Collapse
Affiliation(s)
- Rakhee N Urankar
- Department of Physiology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Brody 6N98, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mann EE, Thompson LC, Shannahan JH, Wingard CJ. Changes in cardiopulmonary function induced by nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:691-702. [PMID: 22915448 DOI: 10.1002/wnan.1194] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nanoparticles (NP) are highly applicable in a variety of technological and biomedical fields because of their unique physicochemical properties. The increased development and utilization of NP has amplified human exposure and raised concerns regarding their potential to generate toxicity. The biological impacts of NP exposures have been shown to be dependent on aerodynamic size, chemical composition, and the route of exposure (oral, dermal, intravenous, and inhalation), while recent research has demonstrated the cardiovascular (CV) system as an important site of toxicity. Proposed mechanisms responsible for these effects include inflammation, oxidative stress, autonomic dysregulation, and direct interactions of NP with CV cells. Specifically, NP have been shown to impact vascular endothelial cell (EC) integrity, which may disrupt the dynamic endothelial regulation of vascular tone, possibly altering systemic vascular resistance and impairing the appropriate distribution of blood flow throughout the circulation. Cardiac consequences of NP-induced toxicity include disruption of heart rate and electrical activity via catecholamine release, increased susceptibility to ischemia/reperfusion injury, and modified baroreceptor control of cardiac function. These and other CV outcomes likely contribute to adverse health effects promoting myocardial infarction, hypertension, cardiac arrhythmias, and thrombosis. This review will assess the current knowledge regarding the principle sites of CV toxicity following NP exposure. Furthermore, we will propose mechanisms contributing to altered CV function and hypothesize possible outcomes resulting in decrements in human health.
Collapse
Affiliation(s)
- Erin E Mann
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | |
Collapse
|