1
|
Nagata E, Takao M, Toriumi H, Suzuki M, Fujii N, Kohara S, Tsuda A, Nakayama T, Kadokura A, Hadano M. Hypersensitivity of Intrinsically Photosensitive Retinal Ganglion Cells in Migraine Induces Cortical Spreading Depression. Int J Mol Sci 2024; 25:7980. [PMID: 39063222 PMCID: PMC11276861 DOI: 10.3390/ijms25147980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Migraine is a complex disorder characterized by episodes of moderate-to-severe, often unilateral headaches and generally accompanied by nausea, vomiting, and increased sensitivity to light (photophobia), sound (phonophobia), and smell (hyperosmia). Photophobia is considered the most bothersome symptom of migraine attacks. Although the underlying mechanism remains unclear, the intrinsically photosensitive retinal ganglion cells (ipRGCs) are considered to be involved in photophobia associated with migraine. In this study, we investigated the association between the sensitivity of ipRGCs and migraines and cortical spreading depression (CSD), which may trigger migraine attacks. The pupillary responses closely associated with the function of ipRGCs in patients with migraine who were irradiated with lights were evaluated. Blue (486 nm) light irradiation elicited a response from ipRGCs; however, red light (560 nm) had no such effect. Melanopsin, a photosensitive protein, phototransduces in ipRGCs following blue light stimulation. Hypersensitivity of ipRGCs was observed in patients with migraine. CSD was more easily induced with blue light than with incandescent light using a mouse CSD model. Moreover, CSD was suppressed, even in the presence of blue light, after injecting opsinamide, a melanopsin inhibitor. The hypersensitivity of ipRGCs in patients with migraine may induce CSD, resulting in migraine attacks.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Motoharu Takao
- Department of Human and Information Science, Tokai University, Hiratsuka 259-1292, Japan;
| | - Haruki Toriumi
- Department of Acupuncture and Moxibustion, Shonan Keiiku Hospital, Fujisawa 252-0816, Japan; (H.T.); (M.S.)
| | - Mari Suzuki
- Department of Acupuncture and Moxibustion, Shonan Keiiku Hospital, Fujisawa 252-0816, Japan; (H.T.); (M.S.)
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Akio Tsuda
- Bioresearch Center Co., Ltd., Tokyo 101-0032, Japan;
| | - Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Ayana Kadokura
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Manaka Hadano
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| |
Collapse
|
2
|
Dönmez-Demir B, Yemisci M, Uruk G, Söylemezoğlu F, Bolbos R, Kazmi S, Dalkara T. Cortical spreading depolarization-induced constriction of penetrating arteries can cause watershed ischemia: A potential mechanism for white matter lesions. J Cereb Blood Flow Metab 2023; 43:1951-1966. [PMID: 37435741 PMCID: PMC10676143 DOI: 10.1177/0271678x231186959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023]
Abstract
Periventricular white matter lesions (WMLs) are common MRI findings in migraine with aura (MA). Although hemodynamic disadvantages of vascular supply to this region create vulnerability, the pathophysiological mechanisms causing WMLs are unclear. We hypothesize that prolonged oligemia, a consequence of cortical spreading depolarization (CSD) underlying migraine aura, may lead to ischemia/hypoxia at hemodynamically vulnerable watershed zones fed by long penetrating arteries (PAs). For this, we subjected mice to KCl-triggered single or multiple CSDs. We found that post-CSD oligemia was significantly deeper at medial compared to lateral cortical areas, which induced ischemic/hypoxic changes at watershed areas between the MCA/ACA, PCA/anterior choroidal and at the tip of superficial and deep PAs, as detected by histological and MRI examination of brains 2-4 weeks after CSD. BALB-C mice, in which MCA occlusion causes large infarcts due to deficient collaterals, exhibited more profound CSD-induced oligemia and were more vulnerable compared to Swiss mice such that a single CSD was sufficient to induce ischemic lesions at the tip of PAs. In conclusion, CSD-induced prolonged oligemia has potential to cause ischemic/hypoxic injury at hemodynamically vulnerable brain areas, which may be one of the mechanisms underlying WMLs located at the tip of medullary arteries seen in MA patients.
Collapse
Affiliation(s)
- Buket Dönmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gökhan Uruk
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Radu Bolbos
- CERMEP – imagerie du vivant, Groupement Hospitalier Est, Bron, France
| | - Shams Kazmi
- Biomedical Engineering Department, The University of Texas at Austin, Austin, Texas, USA
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Cao J, Grover P, Kainerstorfer JM. A model of neurovascular coupling and its application to cortical spreading depolarization. J Theor Biol 2023; 572:111580. [PMID: 37459953 DOI: 10.1016/j.jtbi.2023.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Cortical spreading depolarization (CSD) is a neuropathological condition involving propagating waves of neuronal silence, and is related to multiple diseases, such as migraine aura, traumatic brain injury (TBI), stroke, and cardiac arrest, as well as poor outcome of patients. While CSDs of different severity share similar roots on the ion exchange level, they can lead to different vascular responses (namely spreading hyperemia and spreading ischemia). In this paper, we propose a mathematical model relating neuronal activities to predict vascular changes as measured with near-infrared spectroscopy (NIRS) and fMRI recordings, and apply it to the extreme case of CSD, where sustained near-complete neuronal depolarization is seen. We utilize three serially connected models (namely, ion exchange, neurovascular coupling, and hemodynamic model) which are described by differential equations. Propagating waves of ion concentrations, as well as the associated vasodynamics and hemodynamics, are simulated by solving these equations. Our proposed model predicts vasodynamics and hemodynamics that agree both qualitatively and quantitatively with experimental literature. Mathematical modeling and simulation offer a powerful tool to help understand the underlying mechanisms of CSD and help interpret the data. In addition, it helps develop novel monitoring techniques prior to data collection. Our simulated results strongly suggest that fMRI is unable to reliably distinguish between spreading hyperemia and spreading ischemia, while NIRS signals are substantially distinct in the two cases.
Collapse
Affiliation(s)
- Jiaming Cao
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States
| | - Pulkit Grover
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, PA, United States
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, PA, United States.
| |
Collapse
|
4
|
Anzabi M, Li B, Wang H, Kura S, Sakadžić S, Boas D, Østergaard L, Ayata C. Optical coherence tomography of arteriolar diameter and capillary perfusion during spreading depolarizations. J Cereb Blood Flow Metab 2021; 41:2256-2263. [PMID: 33593116 PMCID: PMC8393288 DOI: 10.1177/0271678x21994013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
Spreading depolarization (SD) is associated with profound oligemia and reduced oxygen availability in the mouse cortex during the depolarization phase. Coincident pial arteriolar constriction has been implicated as the primary mechanism for the oligemia. However, where in the vascular bed the hemodynamic response starts has been unclear. To resolve the origin of the hemodynamic response, we used optical coherence tomography (OCT) to simultaneously monitor changes in the vascular tree from capillary bed to pial arteries in mice during two consecutive SDs 15 minutes apart. We found that capillary flow dropped several seconds before pial arteriolar constriction. Moreover, penetrating arterioles constricted before pial arteries suggesting upstream propagation of constriction. Smaller caliber distal pial arteries constricted stronger than larger caliber proximal arterioles, suggesting that the farther the constriction propagates, the weaker it gets. Altogether, our data indicate that the hemodynamic response to cortical SD originates in the capillary bed.
Collapse
Affiliation(s)
- Maryam Anzabi
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Baoqiang Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
| | - Hui Wang
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Sreekanth Kura
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Sava Sakadžić
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - David Boas
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, USA
| |
Collapse
|
5
|
Unekawa M, Tomita Y, Toriumi H, Osada T, Masamoto K, Kawaguchi H, Izawa Y, Itoh Y, Kanno I, Suzuki N, Nakahara J. Spatiotemporal dynamics of red blood cells in capillaries in layer I of the cerebral cortex and changes in arterial diameter during cortical spreading depression and response to hypercapnia in anesthetized mice. Microcirculation 2019; 26:e12552. [PMID: 31050358 DOI: 10.1111/micc.12552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Control of red blood cell velocity in capillaries is essential to meet local neuronal metabolic requirements, although changes of capillary diameter are limited. To further understand the microcirculatory response during cortical spreading depression, we analyzed the spatiotemporal changes of red blood cell velocity in intraparenchymal capillaries. METHODS In urethane-anesthetized Tie2-green fluorescent protein transgenic mice, the velocity of fluorescence-labeled red blood cells flowing in capillaries in layer I of the cerebral cortex was automatically measured with our Matlab domain software (KEIO-IS2) in sequential images obtained with a high-speed camera laser-scanning confocal fluorescence microscope system. RESULTS Cortical spreading depression repeatedly increased the red blood cell velocity prior to arterial constriction/dilation. During the first cortical spreading depression, red blood cell velocity significantly decreased, and sluggishly moving or retrograde-moving red blood cells were observed, concomitantly with marked arterial constriction. The velocity subsequently returned to around the basal level, while oligemia after cortical spreading depression with slight vasoconstriction remained. After several passages of cortical spreading depression, hypercapnia-induced increase of red blood cell velocity, regional cerebral blood flow and arterial diameter were all significantly reduced, and the correlations among them became extremely weak. CONCLUSIONS Taken together with our previous findings, these simultaneous measurements of red blood cell velocity in multiple capillaries, arterial diameter and regional cerebral blood flow support the idea that red blood cell flow might be altered independently, at least in part, from arterial regulation, that neuro-capillary coupling plays a role in rapidly meeting local neural demand.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Tomita Hospital, Okazaki, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Tomita Hospital, Okazaki, Japan
| | - Haruki Toriumi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Kawaguchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Iwao Kanno
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Department of Neurology, Shonan Keiiku Hospital, Fujisawa, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Unekawa M, Ikeda K, Tomita Y, Kawakami K, Suzuki N. Enhanced susceptibility to cortical spreading depression in two types of Na +,K +-ATPase α2 subunit-deficient mice as a model of familial hemiplegic migraine 2. Cephalalgia 2017; 38:1515-1524. [PMID: 29041816 DOI: 10.1177/0333102417738249] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Patients with familial hemiplegic migraine type 2 (FHM2) have a mutated ATP1A2 gene (encoding Na+,K+-ATPase α2 subunit) and show prolonged migraine aura. Cortical spreading depression (CSD), which involves mass depolarization of neurons and astrocytes that propagates slowly through the gray matter, is profoundly related to aura. Methods In two types of Atp1a2-defective heterozygous mice, Atp1a2tm1Kwk (C-KO) and Atp1a2tm2Kwk (N-KO), the sensitivity and responsiveness to CSD were examined under urethane anesthesia. Results In both cases, heterozygotes exhibited a low threshold for induction of CSD, faster propagation rate, slower recovery from DC deflection, and profound suppression of the electroencephalogram, compared to wild-type mice. A high dose of KCl elicited repeated CSDs for a longer period, with a tendency for a greater frequency of CSD occurrence in heterozygotes. The difference of every endpoint was slightly greater in N-KO than C-KO. Change of regional cerebral blood flow in response to CSD showed no significant difference. Conclusion Heterozygotes of Atp1a2-defective mice simulating FHM2 demonstrated high susceptibility to CSD rather than cortical vasoreactivity, and these effects may differ depending upon the knockout strategy for the gene disruption. These results suggest that patients with FHM2 may exhibit high susceptibility to CSD, resulting in migraine.
Collapse
Affiliation(s)
- Miyuki Unekawa
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ikeda
- 2 Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,3 Division of Biology, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Yutaka Tomita
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoshi Kawakami
- 3 Division of Biology, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Norihiro Suzuki
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Appavu B, Riviello JJ. Electroencephalographic Patterns in Neurocritical Care: Pathologic Contributors or Epiphenomena? Neurocrit Care 2017; 29:9-19. [DOI: 10.1007/s12028-017-0424-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Sánchez-Porras R, Santos E, Schöll M, Kunzmann K, Stock C, Silos H, Unterberg AW, Sakowitz OW. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain. J Cereb Blood Flow Metab 2017; 37:1720-1734. [PMID: 27126324 PMCID: PMC5435283 DOI: 10.1177/0271678x16646586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 11/16/2022]
Abstract
Spreading depolarization (SD) generates significant alterations in cerebral haemodynamics, which can have detrimental consequences on brain function and integrity. Ketamine has shown an important capacity to modulate SD; however, its impact on SD haemodynamic response is incompletely understood. We investigated the effect of two therapeutic ketamine dosages, a low-dose of 2 mg/kg/h and a high-dose of 4 mg/kg/h, on the haemodynamic response to SD in the gyrencephalic swine brain. Cerebral blood volume, pial arterial diameter and cerebral blood flow were assessed through intrinsic optical signal imaging and laser-Doppler flowmetry. Our findings indicate that frequent SDs caused a persistent increase in the baseline pial arterial diameter, which can lead to a diminished capacity to further dilate. Ketamine infused at a low-dose reduced the hyperemic/vasodilative response to SD; however, it did not alter the subsequent oligemic/vasoconstrictive response. This low-dose did not prevent the baseline diameter increase and the diminished dilative capacity. Only infusion of ketamine at a high-dose suppressed SD and the coupled haemodynamic response. Therefore, the haemodynamic response to SD can be modulated by continuous infusion of ketamine. However, its use in pathological models needs to be explored to corroborate its possible clinical benefit.
Collapse
Affiliation(s)
| | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schöll
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Kevin Kunzmann
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Christian Stock
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Humberto Silos
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver W Sakowitz
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
9
|
Hansen FB, Secher N, Jensen MS, Østergaard L, Tønnesen E, Granfeldt A. Cortical spreading depolarizations in the postresuscitation period in a cardiac arrest male rat model. J Neurosci Res 2017; 95:2040-2050. [PMID: 28198552 DOI: 10.1002/jnr.24033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Neurological injury develops over days following cardiac arrest (CA); however, the exact mechanisms remain unknown. After stroke or trauma, the progression of neurological injury is associated with cortical-spreading depolarizations (CSDs). The objective was to investigate whether CA and subsequent resuscitation in rats are associated with 1) the development of spontaneous negative direct current (DC) shifts indicative of CSDs, and 2) changes in artificially induced CSDs in the postresuscitation period. Male Sprague-Dawley rats were randomized into four groups: 1) CA 90, 2) Control 90, 3) CA 360, and 4) Control 360. Following 8 min of asphyxial CA, animals were resuscitated using adrenaline, ventilation, and chest compressions. Animals were observed for 90 or 360 min, respectively, before a 210-min data collection period. Cortical potentials were recorded through burr holes over the right hemisphere. Animals were intubated and monitored with invasive blood pressure, ECG, and arterial blood gas samples throughout the study. Spontaneous DC shifts occurred in only 1 of the 14 CA animals. In control animals, DC shifts were easy to induce, and their shape was highly uniform, consistent with that of classical CSDs. In CA animals, significantly fewer DC shifts could be induced, and their shape was profoundly altered compared with controls. We observed frequent epileptiform discharges and temporal clusters of activity. Spontaneous CSDs were not a consistent finding in CA animals. Instead, spontaneous epileptiform discharges and temporal cluster of activity were observed, while the shapes of induced DC shifts were profoundly altered compared with controls. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.,Department of Accident and Emergency Medicine, Regional Hospital Horsens, Horsens, Denmark
| | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | | | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Else Tønnesen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Unekawa M, Tomita Y, Masamoto K, Toriumi H, Osada T, Kanno I, Suzuki N. Dynamic diameter response of intraparenchymal penetrating arteries during cortical spreading depression and elimination of vasoreactivity to hypercapnia in anesthetized mice. J Cereb Blood Flow Metab 2017; 37:657-670. [PMID: 26935936 PMCID: PMC5381456 DOI: 10.1177/0271678x16636396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Cortical spreading depression (CSD) induces marked hyperemia with a transient decrease of regional cerebral blood flow (rCBF), followed by sustained oligemia. To further understand the microcirculatory mechanisms associated with CSD, we examined the temporal changes of diameter of intraparenchymal penetrating arteries during CSD. In urethane-anesthetized mice, the diameter of single penetrating arteries at three depths was measured using two-photon microscopy during passage of repeated CSD, with continuous recordings of direct current potential and rCBF. The first CSD elicited marked constriction superimposed on the upstrokes of profound dilation throughout each depth of the penetrating artery, and the vasoreaction temporally corresponded to the change of rCBF. Second or later CSD elicited marked dilation with little or no constriction phase throughout each depth, and the vasodilation also temporally corresponded to the increase of rCBF. Furthermore, the peak dilation showed good negative correlations with basal diameter and increase of rCBF. Vasodilation induced by 5% CO2 inhalation was significantly suppressed after CSD passage at any depth as well as hyperperfusion. These results may indicate that CSD-induced rCBF changes mainly reflect the diametric changes of the intraparenchymal arteries, despite the elimination of responsiveness to hypercapnia.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Haruki Toriumi
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
11
|
Ebine T, Toriumi H, Shimizu T, Unekawa M, Takizawa T, Kayama Y, Shibata M, Suzuki N. Alterations in the threshold of the potassium concentration to evoke cortical spreading depression during the natural estrous cycle in mice. Neurosci Res 2016; 112:57-62. [DOI: 10.1016/j.neures.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
12
|
Toriumi H, Shimizu T, Ebine T, Takizawa T, Kayama Y, Koh A, Shibata M, Suzuki N. Repetitive trigeminal nociceptive stimulation in rats increases their susceptibility to cortical spreading depression. Neurosci Res 2016; 106:74-8. [DOI: 10.1016/j.neures.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 01/30/2023]
|
13
|
Kanno I, Masamoto K. Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: Toward finding the determinants in maintaining the CBF homeostasis. PROGRESS IN BRAIN RESEARCH 2016; 225:77-97. [PMID: 27130412 DOI: 10.1016/bs.pbr.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods exist to evaluate the cerebral blood flow (CBF) at both the macroscopic and microscopic spatial scales. These methods provide complementary information for understanding the mechanism in maintaining an adequate blood supply in response to neural demand. The macroscopic CBF assesses perfusion flow, which is usually measured using radioactive tracers, such as diffusible, nondiffusible, or microsphere. Each of them determines CBF based on indicator dilution principle or particle fraction principle under the assumption that CBF is steady state during the measurement. Macroscopic CBF therefore represents averaged CBF over a certain space and time domains. On the other hand, the microscopic CBF assesses bulk flow, usually measures using real-time microscopy. The method assesses hemodynamics of microvessels, ie, vascular dimensions and flow velocities of fluorescently labeled or nonlabeled RBC and plasma markers. The microscopic CBF continuously fluctuates in time and space. Smoothing out this heterogeneity may lead to underestimation in the macroscopic CBF. To link the two measurements, it is needed to introduce a common parameter which is measurable for the both methods, such as mean transit time. Additionally, applying the defined physiological and/or pharmacological perturbation may provide a good exercise to determine how the specific perturbations interfere the quantitative relationships between the macroscopic and microscopic CBF. Finally, bridging these two-scale methods potentially gives a further indication how the absolute CBF is regulated with respect to a specific type of the cerebrovascular tones or capillary flow velocities in the brain.
Collapse
Affiliation(s)
- I Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - K Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
14
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
15
|
Østergaard L, Dreier JP, Hadjikhani N, Jespersen SN, Dirnagl U, Dalkara T. Neurovascular coupling during cortical spreading depolarization and -depression. Stroke 2015; 46:1392-401. [PMID: 25882051 DOI: 10.1161/strokeaha.114.008077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/17/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Leif Østergaard
- From the Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Denmark (L.Ø., S.N.J.); Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark (L.Ø.); Center for Stroke Research and Departments of Experimental Neurology and Neurology, Charité Universitätsmedizin, Berlin, Germany (J.P.D., U.D.); Pathophysiology and Cognition Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School (N.H.); Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark (S.N.J.); and Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey (T.D.).
| | - Jens Peter Dreier
- From the Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Denmark (L.Ø., S.N.J.); Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark (L.Ø.); Center for Stroke Research and Departments of Experimental Neurology and Neurology, Charité Universitätsmedizin, Berlin, Germany (J.P.D., U.D.); Pathophysiology and Cognition Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School (N.H.); Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark (S.N.J.); and Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey (T.D.)
| | - Nouchine Hadjikhani
- From the Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Denmark (L.Ø., S.N.J.); Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark (L.Ø.); Center for Stroke Research and Departments of Experimental Neurology and Neurology, Charité Universitätsmedizin, Berlin, Germany (J.P.D., U.D.); Pathophysiology and Cognition Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School (N.H.); Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark (S.N.J.); and Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey (T.D.)
| | - Sune Nørhøj Jespersen
- From the Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Denmark (L.Ø., S.N.J.); Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark (L.Ø.); Center for Stroke Research and Departments of Experimental Neurology and Neurology, Charité Universitätsmedizin, Berlin, Germany (J.P.D., U.D.); Pathophysiology and Cognition Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School (N.H.); Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark (S.N.J.); and Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey (T.D.)
| | - Ulrich Dirnagl
- From the Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Denmark (L.Ø., S.N.J.); Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark (L.Ø.); Center for Stroke Research and Departments of Experimental Neurology and Neurology, Charité Universitätsmedizin, Berlin, Germany (J.P.D., U.D.); Pathophysiology and Cognition Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School (N.H.); Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark (S.N.J.); and Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey (T.D.)
| | - Turgay Dalkara
- From the Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Denmark (L.Ø., S.N.J.); Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark (L.Ø.); Center for Stroke Research and Departments of Experimental Neurology and Neurology, Charité Universitätsmedizin, Berlin, Germany (J.P.D., U.D.); Pathophysiology and Cognition Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School (N.H.); Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark (S.N.J.); and Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey (T.D.)
| |
Collapse
|
16
|
Unekawa M, Tomita Y, Toriumi H, Osada T, Masamoto K, Kawaguchi H, Itoh Y, Kanno I, Suzuki N. Hyperperfusion counteracted by transient rapid vasoconstriction followed by long-lasting oligemia induced by cortical spreading depression in anesthetized mice. J Cereb Blood Flow Metab 2015; 35:689-98. [PMID: 25586145 PMCID: PMC4420891 DOI: 10.1038/jcbfm.2014.250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 12/11/2014] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression (CSD) involves mass depolarization of neurons and glial cells accompanied with changes in regional cerebral blood flow (rCBF) and energy metabolism. To further understand the mechanisms of CBF response, we examined the temporal diametric changes in pial arteries, pial veins, and cortical capillaries. In urethane-anesthetized mice, the diameters of these vessels were measured while simultaneously recording rCBF with a laser Doppler flowmeter. We observed a considerable increase in rCBF during depolarization in CSD induced by application of KCl, accompanied by a transient dip of rCBF with marked vasoconstriction of pial arteries, which resembled the response to pin-prick-induced CSD. Arterial constriction diminished or disappeared during the second and third passages of CSD, whereas the rCBF increase was maintained without a transient dip. Long-lasting oligemia with a decrease in the reciprocal of mean transit time of injected dye and mild constriction of pial arteries was observed after several passages of the CSD wave. These results indicate that CSD-induced rCBF changes consist of initial hyperemia with a transient dip and followed by a long-lasting oligemia, partially corresponding to the diametric changes of pial arteries, and further suggest that vessels other than pial arteries, such as intracortical vessels, are involved.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Haruki Toriumi
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Kawaguchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshiaki Itoh
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
17
|
Unekawa M, Tomita Y, Toriumi H, Masamoto K, Kanno I, Suzuki N. Potassium-induced cortical spreading depression bilaterally suppresses the electroencephalogram but only ipsilaterally affects red blood cell velocity in intraparenchymal capillaries. J Neurosci Res 2013; 91:578-84. [DOI: 10.1002/jnr.23184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/10/2012] [Accepted: 11/10/2012] [Indexed: 12/21/2022]
|
18
|
Unekawa M, Tomita Y, Toriumi H, Suzuki N. Suppressive effect of chronic peroral topiramate on potassium-induced cortical spreading depression in rats. Cephalalgia 2012; 32:518-27. [PMID: 22523186 DOI: 10.1177/0333102412444015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the chronic effect of topiramate (TPM) on cortical spreading depression (CSD), which is thought to be related to migraine aura. METHODS Male rats (n = 30) were randomized to once-daily peroral treatment with TPM (50, 100, 200 or 600 mg/kg) or vehicle for 6 weeks. We evaluated the characteristics of CSD induced by topical application of KCl under isoflurane anesthesia and the changes in plasma level of TPM in each group. The effect of single administration of TPM on CSD was also evaluated. RESULTS After the final administration of TPM, when the plasma level of TPM was high, KCl-induced CSD frequency and CSD propagation velocity were dose-dependently reduced and the interval between CSD episodes was elongated, compared with the vehicle control. However, before the final administration of TPM, when the plasma level was very low, the KCl-induced CSD profile was the same as that in the vehicle control. Single administration of TPM did not alter the CSD profile. Local cerebral blood flow was not significantly altered by chronic administration of TPM. CONCLUSION TPM suppressed the frequency and propagation of CSD along the cerebral cortex, and might be a candidate for relief of migraine.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | |
Collapse
|