1
|
David E, Grazhdani H, Aliotta L, Gavazzi LM, Foti PV, Palmucci S, Inì C, Tiralongo F, Castiglione D, Renda M, Pacini P, Di Bella C, Solito C, Gigli S, Fazio A, Bella R, Basile A, Cantisani V. Imaging of Carotid Stenosis: Where Are We Standing? Comparison of Multiparametric Ultrasound, CT Angiography, and MRI Angiography, with Recent Developments. Diagnostics (Basel) 2024; 14:1708. [PMID: 39202195 PMCID: PMC11352936 DOI: 10.3390/diagnostics14161708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Atherosclerotic disease of the carotid arteries is a crucial risk factor in predicting the likelihood of future stroke events. In addition, emerging studies suggest that carotid stenosis may also be an indicator of plaque load on coronary arteries and thus have a correlation with the risk of acute cardiovascular events. Furthermore, although in symptomatic patients the degree of stenosis is the main morphological parameter studied, recent evidence suggests, especially in asymptomatic patients, that plaque vulnerability should also be evaluated as an emerging and significant imaging parameter. The reference diagnostic methods for the evaluation of carotid stenosis are currently ultrasonography, magnetic resonance imaging (MRI), and computed tomography angiography (CTA). In addition, other more invasive methods such as 123I-metaiodobenzylguanidine (MIBG) scintigraphy and PET-CT, as well as digital subtraction angiography, can be used. Each method has advantages and disadvantages, and there is often some confusion in their use. For example, the usefulness of MRI is often underestimated. In addition, implementations for each method have been developed over the years and are already enabling a significant increase in diagnostic accuracy. The purpose of our study is to make an in-depth analysis of all the methods in use and in particular their role in the diagnostic procedure of carotid stenosis, also discussing new technologies.
Collapse
Affiliation(s)
- Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Lorenzo Aliotta
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Livio Maria Gavazzi
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Corrado Inì
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Francesco Tiralongo
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Davide Castiglione
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Carmen Solito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Silvia Gigli
- Department of Diagnostic Imaging, Sandro Pertini Hospital, Via dei Monti Tiburtini, 385, 00157 Rome, Italy;
| | - Alessandro Fazio
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Rita Bella
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| |
Collapse
|
2
|
Fernández-Alvarez V, Linares-Sánchez M, Suárez C, López F, Guntinas-Lichius O, Mäkitie AA, Bradley PJ, Ferlito A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023; 13:1236. [PMID: 37627301 PMCID: PMC10452902 DOI: 10.3390/biom13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Carotid artery disease has traditionally been assessed based on the degree of luminal narrowing. However, this approach, which solely relies on carotid stenosis, is currently being questioned with regard to modern risk stratification approaches. Recent guidelines have introduced the concept of the "vulnerable plaque," emphasizing specific features such as thin fibrous caps, large lipid cores, intraplaque hemorrhage, plaque rupture, macrophage infiltration, and neovascularization. In this context, imaging-based biomarkers have emerged as valuable tools for identifying higher-risk patients. Non-invasive imaging modalities and intravascular techniques, including ultrasound, computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy, have played pivotal roles in characterizing and detecting unstable carotid plaques. The aim of this review is to provide an overview of the evolving understanding of carotid artery disease and highlight the significance of imaging techniques in assessing plaque vulnerability and informing clinical decision-making.
Collapse
Affiliation(s)
- Verónica Fernández-Alvarez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Miriam Linares-Sánchez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Carlos Suárez
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
| | - Fernando López
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
- Department of Otorhinolaryngology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncologia del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Patrick J. Bradley
- Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospitals, Derby Road, Nottingham NG7 2UH, UK;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
3
|
Advances in Noninvasive Carotid Wall Imaging with Ultrasound: A Narrative Review. J Clin Med 2022; 11:jcm11206196. [PMID: 36294515 PMCID: PMC9604731 DOI: 10.3390/jcm11206196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Carotid atherosclerosis is a major cause for stroke, with significant associated disease burden morbidity and mortality in Western societies. Diagnosis, grading and follow-up of carotid atherosclerotic disease relies on imaging, specifically ultrasound (US) as the initial modality of choice. Traditionally, the degree of carotid lumen stenosis was considered the sole risk factor to predict brain ischemia. However, modern research has shown that a variety of other imaging biomarkers, such as plaque echogenicity, surface morphology, intraplaque neovascularization and vasa vasorum contribute to the risk for rupture of carotid atheromas with subsequent cerebrovascular events. Furthermore, the majority of embolic strokes of undetermined origin are probably arteriogenic and are associated with nonstenosing atheromas. Therefore, a state-of-the-art US scan of the carotid arteries should take advantage of recent technical developments and should provide detailed information about potential thrombogenic (/) and emboligenic arterial wall features. This manuscript reviews recent advances in ultrasonographic assessment of vulnerable carotid atherosclerotic plaques and highlights the fields of future development in multiparametric arterial wall imaging, in an attempt to convey the most important take-home messages for clinicians performing carotid ultrasound.
Collapse
|
4
|
Fresilli D, Di Leo N, Martinelli O, Di Marzo L, Pacini P, Dolcetti V, Del Gaudio G, Canni F, Ricci LI, De Vito C, Caiazzo C, Carletti R, Di Gioia C, Carbone I, Feinstein SB, Catalano C, Cantisani V. 3D-Arterial analysis software and CEUS in the assessment of severity and vulnerability of carotid atherosclerotic plaque: a comparison with CTA and histopathology. Radiol Med 2022; 127:1254-1269. [PMID: 36114929 PMCID: PMC9587943 DOI: 10.1007/s11547-022-01551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Purpose Our purpose is to assess Multiparametric Ultrasound (MPUS) efficacy for evaluation of carotid plaque vulnerability and carotid stenosis degree in comparison with Computed Tomography angiography (CTA) and histology. Material and methods 3D-Arterial Analysis is a 3D ultrasound software that automatically provides the degree of carotid stenosis and a colorimetric map of carotid plaque vulnerability. We enrolled 106 patients who were candidates for carotid endarterectomy. Prior to undergoing surgery, all carotid artery plaques were evaluated with Color-Doppler-US (CDUS), Contrast-Enhanced Ultrasound (CEUS), and 3D Arterial analysis (3DAA) US along with Computerized Tomographic Angiography (CTA) to assess the carotid artery stenosis degree. Post-surgery, the carotid specimens were fixed with 10% neutral buffered formalin solution, embedded in paraffin and used for light microscopic examination to assess plaque vulnerability morphological features.
Results The results of the CTA examinations revealed 91 patients with severe carotid stenoses with a resultant diagnostic accuracy of 82.3% for CDUS, 94.5% for CEUS, 98.4% for 3DAA, respectively. The histopathological examination showed 71 vulnerable plaques with diagnostic accuracy values of 85.8% for CDUS, 93.4% for CEUS, 90.3% for 3DAA, 92% for CTA, respectively.
Conclusions The combination of CEUS and 3D Arterial Analysis may provide a powerful new clinical tool to identify and stratify “at-risk” patients with atherosclerotic carotid artery disease, identifying vulnerable plaques. These applications may also help in the postoperative assessment of treatment options to manage cardiovascular risks.
Collapse
Affiliation(s)
- Daniele Fresilli
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | - Nicola Di Leo
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ombretta Martinelli
- Department of Surgery "Paride Stefanini'', Vascular and Endovascular Surgery Division, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Luca Di Marzo
- Department of Surgery "Paride Stefanini'', Vascular and Endovascular Surgery Division, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Patrizia Pacini
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Vincenzo Dolcetti
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanni Del Gaudio
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabrizio Canni
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ludovica Isabella Ricci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Corrado Caiazzo
- Breast Service, Local Health Agency of Naples ASL NA1, Naples, Italy
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Diagnostic Imaging Unit, ICOT Hospital, Sapienza University of Rome, Via Franco Faggiana1668, 04100, Latina, Italy
| | - Steven B Feinstein
- Department of Internal Medicine, Section of Cardiology, Rush University Medical Center, Chicago, IL, USA
| | - Carlo Catalano
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Vito Cantisani
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| |
Collapse
|
5
|
Alzahrani A, Alotaibi SA, Aslam M, Sultan SR. Reliability and Accuracy of Tomographic 3-D Ultrasound for Grading Vessel Stenosis: A Phantom Study. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1899-1906. [PMID: 35715330 DOI: 10.1016/j.ultrasmedbio.2022.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The aim of this phantom study was to assess the accuracy of 3-D tomographic ultrasound (t3DUS) for grading stenosis, using the manufacturer's measurements as the gold standard. The percentage of maximum stenosis was obtained using 2-D ultrasound (2DUS) and t3DUS imaging techniques on a peripheral vascular phantom, including channels with 50%, 75% and 90% stenosis. The inter-observer reproducibility of t3DUS for grading stenosis was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman plots. Mean and mean differences were used to evaluate the accuracy of 2DUS and t3DUS in measuring maximum stenosis in all channels. Inter-operator agreement was excellent, with an ICC value of 0.99 (95% confidence interval: 0.994-0.998, p < 0.001). Bias in measurements was -0.59 ± 2.01% (95% limits of agreement: 4.54, 3.36). The mean difference (MD) between maximum stenosis measurements and reference values for all channels was lower in t3DUS than in 2DUS (t3DUS MD: +1.01%, diameter reduction 2DUS MD: -6.10%; area reduction 2DUS MD: +8.20%). Tomographic 3DUS is a reproducible and accurate imaging method for grading stenosis. The current B-mode 2DUS stenosis grading criteria used in vascular assessment may be underestimating or overestimating the percentage stenosis. Further phantom and human studies investigating the reliability of t3DUS for grading stenosis and other metrics including plaque volume are required.
Collapse
Affiliation(s)
- Adel Alzahrani
- Department of Diagnostic Radiology, King Abdullah Medical City, Makkah, Saudi Arabia; Vascular Laboratory, Hammersmith Hospital, Imperial College NHS Healthcare Trust, London, UK
| | - Sultan A Alotaibi
- Vascular Laboratory, Hammersmith Hospital, Imperial College NHS Healthcare Trust, London, UK; Medical Imaging, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Mohammed Aslam
- Vascular Laboratory, Hammersmith Hospital, Imperial College NHS Healthcare Trust, London, UK
| | - Salahaden R Sultan
- Department of Radiologic Sciences, College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Grubic N, Colledanchise KN, Liblik K, Johri AM. The Role of Carotid and Femoral Plaque Burden in the Diagnosis of Coronary Artery Disease. Curr Cardiol Rep 2020; 22:121. [PMID: 32778953 DOI: 10.1007/s11886-020-01375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW With limitations of cardiovascular disease risk stratification by traditional risk factors, the role of noninvasive imaging techniques, such as vascular ultrasound, has emerged as a prominent utility for decision-making in coronary artery disease. A review of current guidelines and contemporary approaches for carotid and femoral plaque assessment is needed to better inform the diagnosis, management, and treatment of atherosclerosis in clinical practice. RECENT FINDINGS The recent consensus-based guidelines for carotid plaque assessment in coronary artery disease have been established, supported by some outcomes-based research. Currently, there is a gap of evidence on the use of femoral ultrasound to detect atherosclerosis, as well as predict adverse cardiovascular outcomes. The quantification and characterization of individualized plaque burden are important to stratify risk in asymptomatic or symptomatic atherosclerosis patients. Standardized quantification guidelines, supported by further outcomes-based research, are required to assess disease severity and progression.
Collapse
Affiliation(s)
- Nicholas Grubic
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada.,Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kayla N Colledanchise
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada.
| |
Collapse
|
7
|
Johri AM, Nambi V, Naqvi TZ, Feinstein SB, Kim ESH, Park MM, Becher H, Sillesen H. Recommendations for the Assessment of Carotid Arterial Plaque by Ultrasound for the Characterization of Atherosclerosis and Evaluation of Cardiovascular Risk: From the American Society of Echocardiography. J Am Soc Echocardiogr 2020; 33:917-933. [PMID: 32600741 DOI: 10.1016/j.echo.2020.04.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Atherosclerotic plaque detection by carotid ultrasound provides cardiovascular disease risk stratification. The advantages and disadvantages of two-dimensional (2D) and three-dimensional (3D) ultrasound methods for carotid arterial plaque quantification are reviewed. Advanced and emerging methods of carotid arterial plaque activity and composition analysis by ultrasound are considered. Recommendations for the standardization of focused 2D and 3D carotid arterial plaque ultrasound image acquisition and measurement for the purpose of cardiovascular disease stratification are formulated. Potential clinical application towards cardiovascular risk stratification of recommended focused carotid arterial plaque quantification approaches are summarized.
Collapse
Affiliation(s)
| | | | | | | | - Esther S H Kim
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Park
- Cleveland Clinic Heart and Vascular Institute, Cleveland, Ohio
| | - Harald Becher
- University of Alberta Hospital, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Henrik Sillesen
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Fu Q, Wang X, Wu T, Wang R, Wu X, Wang Y, Feng Z. Carotid atherosclerosis biomarkers in cardiovascular diseases prevention: A systematic review and bibliometric analysis. Eur J Radiol 2020; 129:109133. [PMID: 32610187 DOI: 10.1016/j.ejrad.2020.109133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE While carotid atherosclerosis (CA) biomarkers are valuable surrogates for cardiovascular events, their inadequate utility is highlighted by clinical practice. We performed an interdisciplinary systematic review and bibliometric analysis to identify the knowledge gaps and offer directions for future research. METHODS We applied a comprehensive search strategy to construct a representative dataset of the bibliographic records of CA from 1997 to 2018. A total of 31,793 retrieved articles and 407,473 cited references were included in the analysis. The co-word network and co-citation network were derived to describe the major disciplines and topics of CA research. Milestones detected by burst analysis were reviewed to delineate the evolutionary patterns and emerging trends of research on CA biomarkers. RESULTS CA is a multidisciplinary field of study which could be divided into 3 communities: the primary prevention of CVD, the secondary prevention of CVD and imaging techniques to characterize carotid atherosclerosis. The evolution of a CA biomarker may go through 3 stages: the conceptualization stage, the validation stage and the reclassification stage. Measurements that include different CA plaque features, rather than separately, have shown greater value for cardiovascular risk or clinical decision-making. CONCLUSIONS Although wide variability exists in the evolutionary stages of CA biomarkers, combined evaluation of CA plaque imaging features shows potential value to improve risk prediction and clinical decision-making for CVD prevention.
Collapse
Affiliation(s)
- Qian Fu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Xiaojun Wang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Tailai Wu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Ruoxi Wang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Xiang Wu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yang Wang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Zhanchun Feng
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
9
|
Artas H, Okcesiz I. Three-dimensional ultrasonographic evaluation of carotid artery plaque surface irregularity. Arch Med Sci 2020; 16:58-65. [PMID: 32051706 PMCID: PMC6963133 DOI: 10.5114/aoms.2018.81135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of this study was to evaluate 3-dimensional (3D) ultrasonography (US) in determining the surface irregularity of carotid artery plaques. MATERIAL AND METHODS This study included 50 patients (20 females and 30 males) aged between 56 and 82 years with plaques in the carotid artery which were detected during routine neck ultrasound. Simultaneously these cases were evaluated in terms of plaque echogenicities and surface characteristics with 2D and 3D US. RESULTS 3D imaging was successfully performed in 45 of the 50 cases and the technical success rate was 90%. A single plaque was detected in 64.4% of the patients, with the remaining 35.6% having more than one plaque. The lengths of the plaques ranged from 2 to 12 mm (mean: 3.98 ±1.70 mm); the widths ranged from 1.8 to 3.2 mm (mean: 2.11 ±0.37 mm). No significant difference was found between 2D and 3D plaque echo-structures (observer 1, p = 0.317; observer 2, p = 0.276), but there were significant differences between 2D and 3D plaque surface irregularities (observer 1, p = 0.002; observer 2, p = 0.004). The inter-observer agreement on 2D and 3D plaque echo-structure and surface irregularity was very good (k coefficients were 0.89 and 0.83, respectively, for echo-structure, and 0.91 and 0.95, respectively, for surface irregularity). CONCLUSIONS The present study shows that 3D US examination is a valuable non-invasive method for investigation of surface irregularity of carotid artery plaques.
Collapse
Affiliation(s)
- Hakan Artas
- Department of Radiology, Faculty of Medicine, Firat University, Elazığ, Turkey
| | - Izzet Okcesiz
- Department of Radiology, Faculty of Medicine, Firat University, Elazığ, Turkey
| |
Collapse
|
10
|
Song S, Heo R, Lee SE, Park J, Lee J, Kim S, Cho IJ, Chang HJ. Comparing the feasibility and accuracy of three-dimensional ultrasound to two-dimensional ultrasound and computed tomography angiography in the assessment of carotid atherosclerosis. Echocardiography 2019; 36:2241-2250. [PMID: 31742790 DOI: 10.1111/echo.14543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/29/2019] [Accepted: 10/22/2019] [Indexed: 12/01/2022] Open
Abstract
AIMS Two-dimensional ultrasound (2D-US) is the mainstay imaging technique used to evaluate carotid atherosclerosis. An automated single sweep three-dimensional ultrasound (3D-US) technique became available. We evaluated the feasibility and accuracy of 3D-US in the assessment of carotid plaques compared to those of 2D-US. Carotid computed tomography angiography (CTA) was used as a reference. METHODS AND RESULTS Among 126 stroke patients who underwent carotid 2D-US, 73 underwent 3D-US and carotid CTA. 3D-US was pursued when there were carotid plaques or when area stenosis was ≥ 20% by 2D-US. Both 2D- and 3D-US images of the carotid arteries were acquired using a dedicated ultrasound system that was equipped with the single sweep volumetric transducer. In total, 266 arteries from 73 patients were selected for comparison of the detection rate of carotid plaques between 2D- and 3D-US. Among the 73 patients, carotid CTA detected 139 plaques. 3D-US demonstrated a higher detection rate of carotid plaques than did 2D-US (108 plaques (77.9%) vs. 70 plaques (50.4%)) when using carotid CTA as a reference standard. Carotid plaque volume (PV) of 133 vessels from 73 patients were quantitatively evaluated using both 3D-US and carotid CTA. Plaque volume of carotid artery was comparable between 3D-US and CTA (148.5 ± 133.0 mm3 vs. 154.1 ± 134.6 mm3 , P = .998, R: 0.9825, P-value for r < .001). CONCLUSION 3D-US using a single sweep technique was a feasible and accurate method of detecting arterial plaques and assessing plaque volume.
Collapse
Affiliation(s)
- Shinjeong Song
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.,Yonsei-Cedars Sinai Integrative Cardiovascular Imaging Research Centre, Yonsei University, Seoul, South Korea
| | - Ran Heo
- Yonsei-Cedars Sinai Integrative Cardiovascular Imaging Research Centre, Yonsei University, Seoul, South Korea.,Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Centre, Seoul, Korea
| | - Sang-Eun Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.,Yonsei-Cedars Sinai Integrative Cardiovascular Imaging Research Centre, Yonsei University, Seoul, South Korea
| | - Jinki Park
- Medical Imaging Research Group, Samsung Medison, Seoul, Korea
| | - Jinyong Lee
- Medical Imaging Research Group, Samsung Medison, Seoul, Korea
| | - Sujin Kim
- Yonsei-Cedars Sinai Integrative Cardiovascular Imaging Research Centre, Yonsei University, Seoul, South Korea
| | - In Jeong Cho
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.,Yonsei-Cedars Sinai Integrative Cardiovascular Imaging Research Centre, Yonsei University, Seoul, South Korea
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.,Yonsei-Cedars Sinai Integrative Cardiovascular Imaging Research Centre, Yonsei University, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Saxena A, Ng EYK, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed Eng Online 2019; 18:66. [PMID: 31138235 PMCID: PMC6537161 DOI: 10.1186/s12938-019-0685-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the past few decades, imaging has been developed to a high level of sophistication. Improvements from one-dimension (1D) to 2D images, and from 2D images to 3D models, have revolutionized the field of imaging. This not only helps in diagnosing various critical and fatal diseases in the early stages but also contributes to making informed clinical decisions on the follow-up treatment profile. Carotid artery stenosis (CAS) may potentially cause debilitating stroke, and its accurate early detection is therefore important. In this paper, the technical development of various CAS diagnosis imaging modalities and its impact on the clinical efficacy is thoroughly reviewed. These imaging modalities include duplex ultrasound (DUS), computed tomography angiography (CTA) and magnetic resonance angiography (MRA). For each of the imaging modalities considered, imaging methodology (principle), critical imaging parameters, and the extent of imaging the vulnerable plaque are discussed. DUS is usually the initial recommended CAS diagnostic examination. However, for the therapeutic intervention, either MRA or CTA is recommended for confirmation, and for added information on intracranial cerebral circulation and aortic arch condition for procedural planning. Over the past few decades, the focus of CAS diagnosis has also shifted from pure stenosis quantification to plaque characterization. This has led to further advancement in the existing imaging tools and development of other potential imaging tools like Optical coherence tomography (OCT), photoacoustic tomography (PAT), and infrared (IR) thermography.
Collapse
Affiliation(s)
- Ashish Saxena
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N3, Singapore, 639798, Singapore
| | - Eddie Yin Kwee Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N3, Singapore, 639798, Singapore.
| | - Soo Teik Lim
- Department of Cardiology, National Heart Center Singapore, 5 Hospital Dr, Singapore, 169609, Singapore
| |
Collapse
|
12
|
Yau O, Hétu MF, Herr JE, Adams MA, Johri AM. Development of a Carotid Vulnerable Plaque Phantom Model Evaluated by Pixel Distribution Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2768-2779. [PMID: 30154037 DOI: 10.1016/j.ultrasmedbio.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Carotid artery plaque composed of a larger percentage of lipids and/or intra-plaque hemorrhage are considered "vulnerable" or at higher risk for rupture. It is thought that such vulnerable lesions contribute to the majority of cardiovascular events. Ultrasound may facilitate the identification of plaque tissue types associated with risk for rupture. Pixel distribution analysis (PDA) is a plaque composition imaging analysis method that assigns grayscale ranges to corresponding tissue types. The aim of this study was to develop an in vitro vulnerable carotid plaque mimic (phantom) using known rat tissue types (fat, muscle and bone) to establish corresponding PDA ranges. Two sets of PDA grayscale ranges were established: (i) the combined tissue set, which combined tissue subtypes into their respective categories-polyvinyl chloride (representing blood, grayscale range 0-4), muscle (84-95), fat (99-113) and bone (145-175); (ii) Individual tissue set for each tissue subtype-polyvinyl chloride (grayscale range 0-4), neck muscle (68-86), leg muscle (76-86), epididymal fat (91-100), abdomen muscle (104-108), subcutaneous fat (111-120) and bone (145-175). The grayscale pixel range overlaped between tissue types (87-90 and 109-110). These ranges were tested on five simulated polyvinyl chloride heterogeneous plaque types containing epididymal fat, leg muscle, neck muscle, abdominal muscle or bone. The individual tissue set grayscale ranges detected significantly more pixels within the correct tissue category than the combined tissue set ranges (≤10.1%, p < 0.05). This study represents a novel phantom PDA method to assess plaque heterogeneity and may be used to infer tissue type composition in clinical imaging. Additionally, this plaque phantom may serve as a platform for development and testing of novel composition analysis methods.
Collapse
Affiliation(s)
- Olivia Yau
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Cardiovascular Imaging Network at Queen's (CINQ), Kingston Health Sciences Centre (KGH site), Kingston, Ontario, Canada
| | - Marie-France Hétu
- Department of Medicine, Queen's University, Cardiovascular Imaging Network at Queen's (CINQ), Kingston Health Sciences Centre (KGH site), Kingston, Ontario, Canada
| | - Julia E Herr
- Department of Medicine, Queen's University, Cardiovascular Imaging Network at Queen's (CINQ), Kingston Health Sciences Centre (KGH site), Kingston, Ontario, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, Ontario, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Cardiovascular Imaging Network at Queen's (CINQ), Kingston Health Sciences Centre (KGH site), Kingston, Ontario, Canada.
| |
Collapse
|
13
|
Ictus criptogénico. Un no diagnóstico. Med Clin (Barc) 2018; 151:116-122. [DOI: 10.1016/j.medcli.2018.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022]
|
14
|
Rafailidis V, Sidhu PS. Vascular ultrasound, the potential of integration of multiparametric ultrasound into routine clinical practice. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2018; 26:136-144. [PMID: 30147737 DOI: 10.1177/1742271x18762250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/06/2018] [Indexed: 01/12/2023]
Abstract
Introduction Ultrasound has traditionally been regarded as the first-line imaging modality for screening, diagnostic evaluation and monitoring treatment and disease progression of vascular pathology, including both the arterial and the venous branch of the vascular system. Albeit of its well-tolerated nature, wide availability and low cost, ultrasound above all, has the advantage of providing the clinician with clinically significant information related to both intraluminal irregularities and extravascular disease. Ultrasound has the potential not only to anatomically describe tissues but also to assess physiology by evaluating blood flow characteristics in real time. Discussion The already fundamental role of ultrasound has been even more expanded with the introduction of newer techniques like contrast-enhanced ultrasound, tissue-elastography and 3D ultrasound and the incorporation of research advances into clinical practice. The purpose of this review is to present and discuss some of the latest advances in the field of vascular ultrasound in attempt to illustrate how the adoption of multiparametric ultrasound into everyday clinical practice could address the patient's needs. Pathology and applications discussed include carotid and aortic disease, portal and peripheral venous abnormalities. Conclusion Widespread availability of modern technology in ultrasound devices has made the application of contrast-enhanced ultrasound, tissue elastography and 3D ultrasound feasible options, ready to contribute to the diagnostic performance of the ultrasonographic technique.
Collapse
Affiliation(s)
- Vasileios Rafailidis
- Department of Radiology, King's College London, King's College Hospital, London, England, UK
| | - Paul S Sidhu
- Department of Radiology, King's College London, King's College Hospital, London, England, UK
| |
Collapse
|
15
|
Saba L, Yuan C, Hatsukami TS, Balu N, Qiao Y, DeMarco JK, Saam T, Moody AR, Li D, Matouk CC, Johnson MH, Jäger HR, Mossa-Basha M, Kooi ME, Fan Z, Saloner D, Wintermark M, Mikulis DJ, Wasserman BA. Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2018; 39:E9-E31. [PMID: 29326139 DOI: 10.3174/ajnr.a5488] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of carotid artery atherosclerosis is conventionally based on measurements of luminal stenosis and surface irregularities using in vivo imaging techniques including sonography, CT and MR angiography, and digital subtraction angiography. However, histopathologic studies demonstrate considerable differences between plaques with identical degrees of stenosis and indicate that certain plaque features are associated with increased risk for ischemic events. The ability to look beyond the lumen using highly developed vessel wall imaging methods to identify plaque vulnerable to disruption has prompted an active debate as to whether a paradigm shift is needed to move away from relying on measurements of luminal stenosis for gauging the risk of ischemic injury. Further evaluation in randomized clinical trials will help to better define the exact role of plaque imaging in clinical decision-making. However, current carotid vessel wall imaging techniques can be informative. The goal of this article is to present the perspective of the ASNR Vessel Wall Imaging Study Group as it relates to the current status of arterial wall imaging in carotid artery disease.
Collapse
Affiliation(s)
- L Saba
- From the Department of Medical Imaging (L.S.), University of Cagliari, Cagliari, Italy
| | - C Yuan
- Departments of Radiology (C.Y., N.B., M.M.-B.)
| | - T S Hatsukami
- Surgery (T.S.H.), University of Washington, Seattle, Washington
| | - N Balu
- Departments of Radiology (C.Y., N.B., M.M.-B.)
| | - Y Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - J K DeMarco
- Department of Radiology (J.K.D.), Walter Reed National Military Medical Center, Bethesda, Maryland
| | - T Saam
- Department of Radiology (T.S.), Ludwig-Maximilian University Hospital, Munich, Germany
| | - A R Moody
- Department of Medical Imaging (A.R.M.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - D Li
- Biomedical Imaging Research Institute (D.L., Z.F.), Cedars-Sinai Medical Center, Los Angeles, California
| | - C C Matouk
- Departments of Neurosurgery, Neurovascular and Stroke Programs (C.C.M., M.H.J.).,Radiology and Biomedical Imaging (C.C.M., M.H.J.)
| | - M H Johnson
- Departments of Neurosurgery, Neurovascular and Stroke Programs (C.C.M., M.H.J.).,Radiology and Biomedical Imaging (C.C.M., M.H.J.).,Surgery (M.H.J.), Yale University School of Medicine, New Haven, Connecticut
| | - H R Jäger
- Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, London, UK
| | | | - M E Kooi
- Department of Radiology (M.E.K.), CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Z Fan
- Biomedical Imaging Research Institute (D.L., Z.F.), Cedars-Sinai Medical Center, Los Angeles, California
| | - D Saloner
- Department of Radiology and Biomedical Imaging (D.S.), University of California, San Francisco, California
| | - M Wintermark
- Department of Radiology (M.W.), Neuroradiology Division, Stanford University, Stanford, California
| | - D J Mikulis
- Division of Neuroradiology (D.J.M.), Department of Medical Imaging, University Health Network
| | - B A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | | |
Collapse
|
16
|
Calogero E, Fabiani I, Pugliese NR, Santini V, Ghiadoni L, Di Stefano R, Galetta F, Sartucci F, Penno G, Berchiolli R, Ferrari M, Cioni D, Napoli V, De Caterina R, Di Bello V, Caramella D. Three-Dimensional Echographic Evaluation of Carotid Artery Disease. J Cardiovasc Echogr 2018; 28:218-227. [PMID: 30746325 PMCID: PMC6341847 DOI: 10.4103/jcecho.jcecho_57_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The introduction of three-dimensional echography (3D echo) in vascular field is not recent, but it still remains a seldom-used technique because of the costs of ultrasound probe and the need of dedicated laboratories. Therefore, despite significant prognostic implications, the high diagnostic accuracy in plaque definition, and the relative ease of use, 3D echo in vascular field is a niche technique. The purpose of this review is mainly clinical and intends to demonstrate the potential strength of a 3D approach, including technical aspects, in order to present to clinicians and imagers the appealing aspects of a noninvasive and radiation-free methodology with relevant diagnostic and prognostic correlates in the assessment of carotid atherosclerosis. A comprehensive literature search (since 1990s to date) using the PubMed, MEDLINE, and Cochrane libraries databases has been conducted. Articles written in English have been assessed, including reviews, clinical trials, meta-analyses, and interventional/observational studies. Manual cross-referencing was also performed, and relevant references from selected articles were reviewed. The search was limited to studies conducted in humans. Search terms, retrieved also with PubMed Advanced search and AND/OR Boolean operators (mainly in title and abstract), included three-dimensional, echo, stroke/transient ischemic attack, predictors, carotid, imaging, and biomarkers.
Collapse
Affiliation(s)
- Enrico Calogero
- Department of Medical, Surgical, Molecular and Critical Area Pathology, Pisa University, Pisa, Italy.,Department of Cardiac, Thoracic and Vascular, Pisa University, Pisa, Italy
| | - Iacopo Fabiani
- Department of Medical, Surgical, Molecular and Critical Area Pathology, Pisa University, Pisa, Italy.,Department of Cardiac, Thoracic and Vascular, Pisa University, Pisa, Italy
| | - Nicola Riccardo Pugliese
- Department of Medical, Surgical, Molecular and Critical Area Pathology, Pisa University, Pisa, Italy.,Department of Cardiac, Thoracic and Vascular, Pisa University, Pisa, Italy
| | - Veronica Santini
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Rossella Di Stefano
- Department of Medical, Surgical, Molecular and Critical Area Pathology, Pisa University, Pisa, Italy.,Department of Cardiac, Thoracic and Vascular, Pisa University, Pisa, Italy
| | - Fabio Galetta
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Ferdinando Sartucci
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Raffaella Berchiolli
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | - Mauro Ferrari
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | - Dania Cioni
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | - Vinicio Napoli
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | - Raffaele De Caterina
- Department of Medical, Surgical, Molecular and Critical Area Pathology, Pisa University, Pisa, Italy.,Department of Cardiac, Thoracic and Vascular, Pisa University, Pisa, Italy
| | - Vitantonio Di Bello
- Department of Medical, Surgical, Molecular and Critical Area Pathology, Pisa University, Pisa, Italy.,Department of Cardiac, Thoracic and Vascular, Pisa University, Pisa, Italy
| | - Davide Caramella
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| |
Collapse
|
17
|
Apostolakis IZ, Nauleau P, Papadacci C, McGarry MD, Konofagou EE. Feasibility and Validation of 4-D Pulse Wave Imaging in Phantoms and In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1305-1317. [PMID: 28792891 PMCID: PMC5823504 DOI: 10.1109/tuffc.2017.2735381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pulse wave imaging (PWI) is a noninvasive technique for tracking the propagation of the pulse wave along the arterial wall. The 3-D ultrasound imaging would aid in objectively estimating the pulse wave velocity (PWV) vector. This paper aims to introduce a novel PWV estimation method along the propagation direction, validate it in phantoms, and test its feasibility in vivo. A silicone vessel phantom consisting of a stiff and a soft segment along the longitudinal axis and a silicone vessel with a plaque were constructed. A 2-D array with a center frequency of 2.5 MHz was used. Propagation was successfully visualized in 3-D in each phantom and in vivo in six healthy subjects. In three of the healthy subjects, results were compared against conventional PWI using a linear array. PWVs were estimated in the stiff (3.42 ± 0.23 m [Formula: see text]) and soft (2.41 ± 0.07 m [Formula: see text]) phantom segments. Good agreement was found with the corresponding static testing values (stiff: 3.41 m [Formula: see text] and soft: 2.48 m [Formula: see text]). PWI-derived vessel compliance values were validated with dynamic testing. Comprehensive views of pulse propagation in the plaque phantom were generated and compared against conventional PWI acquisitions. Good agreement was found in vivo between the results of 4-D PWI (4.80 ± 1.32 m [Formula: see text]) and conventional PWI (4.28±1.20 m [Formula: see text]) ( n=3 ). PWVs derived for all of the healthy subjects ( n = 6 ) were within the physiological range. Thus, the 4-D PWI was successfully validated in phantoms and used to image the pulse wave propagation in normal human subjects in vivo.
Collapse
|
18
|
Yuan J, Graves M. Reply. AJNR Am J Neuroradiol 2017; 38:E37. [PMID: 28364012 DOI: 10.3174/ajnr.a5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- J Yuan
- Department of Radiology University of Cambridge Addenbrooke's Hospital Cambridge, UK
| | - M Graves
- Department of Radiology University of Cambridge Addenbrooke's Hospital Cambridge, UK
| |
Collapse
|
19
|
Rafailidis V, Chryssogonidis I, Tegos T, Kouskouras K, Charitanti-Kouridou A. Imaging of the ulcerated carotid atherosclerotic plaque: a review of the literature. Insights Imaging 2017; 8:213-225. [PMID: 28160261 PMCID: PMC5359146 DOI: 10.1007/s13244-017-0543-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/01/2023] Open
Abstract
Abstract Carotid atherosclerotic disease constitutes a major modern health problem whose diagnosis primarily relies on imaging. Grading of stenosis has been long used as the main factor for risk stratification and guiding of management. Nevertheless, increasing evidence has shown that additional plaque characteristics such as plaque composition and surface morphology play an important role in the occurrence of symptoms, justifying the term “vulnerable plaque”. Carotid plaque surface characteristics either in the form of surface irregularities or ulceration represent an important factor of vulnerability and are associated with the occurrence of neurologic symptoms. The delineation of the carotid plaque surface can be performed with virtually all imaging modalities including ultrasound, contrast-enhanced ultrasound, multi-detector computed tomography angiography, magnetic resonance angiography and the traditional reference method of angiography. These techniques have shown varying levels of diagnostic accuracy for the identification of ulcerated carotid plaques or plaque surface irregularities. As a consequence and given its high clinical significance, radiologists should be familiar with the various aspects of this entity, including its definition, classification, imaging findings on different imaging modalities and associations. The purpose of this review is to present the current literature regarding carotid plaque ulcerations and present illustrative images of ulcerated carotid plaques. Teaching Points • Plaque surface and ulceration represent risk factors for stroke in carotid disease. • Characterisation of the plaque surface and ulcerations can be performed with every modality. • US is the first-line modality for carotid disease and identification of ulcerations. • The administration of microbubbles increases US accuracy for diagnosis of carotid ulceration. • MDCTA and MRA are valuable for diagnosing ulceration and evaluating plaque composition.
Collapse
Affiliation(s)
- Vasileios Rafailidis
- Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Chryssogonidis
- Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Tegos
- 1st Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kouskouras
- Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi Charitanti-Kouridou
- Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Johri AM, Herr JE, Li TY, Yau O, Nambi V. Novel Ultrasound Methods to Investigate Carotid Artery Plaque Vulnerability. J Am Soc Echocardiogr 2017; 30:139-148. [DOI: 10.1016/j.echo.2016.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 11/17/2022]
|
21
|
Yuan J, Usman A, Das T, Patterson AJ, Gillard JH, Graves MJ. Imaging Carotid Atherosclerosis Plaque Ulceration: Comparison of Advanced Imaging Modalities and Recent Developments. AJNR Am J Neuroradiol 2016; 38:664-671. [PMID: 28007772 DOI: 10.3174/ajnr.a5026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Atherosclerosis remains the leading cause of long-term mortality and morbidity worldwide, despite remarkable advancement in its management. Vulnerable atherosclerotic plaques are principally responsible for thromboembolic events in various arterial territories such as carotid, coronary, and lower limb vessels. Carotid plaque ulceration is one of the key features associated with plaque vulnerability and is considered a notable indicator of previous plaque rupture and possible future cerebrovascular events. Multiple imaging modalities have been used to assess the degree of carotid plaque ulceration for diagnostic and research purposes. Early diagnosis and management of carotid artery disease could prevent further cerebrovascular events. In this review, we highlight the merits and limitations of various imaging techniques for identifying plaque ulceration.
Collapse
Affiliation(s)
- J Yuan
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK
| | - A Usman
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK
| | - T Das
- Department of Radiology (T.D., A.J.P., M.J.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - A J Patterson
- Department of Radiology (T.D., A.J.P., M.J.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - J H Gillard
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK
| | - M J Graves
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK.,Department of Radiology (T.D., A.J.P., M.J.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| |
Collapse
|
22
|
Abstract
Cardiovascular disease (CVD) primarily caused by atherosclerosis is a major cause of death and disability in developed countries. Sonographic carotid intima-media thickness (CIMT) is widely studied as a surrogate marker for detecting subclinical atherosclerosis for risk prediction and disease progress to guide medical intervention. However, there is no standardized CIMT measurement methodology in clinical studies resulting in inconsistent findings, thereby undermining the clinical value of CIMT. Increasing evidences show that CIMT alone has weak predictive value for CVD while CIMT including plaque presence consistently improves the predictive power. Quantification of plaque burden further enhances the predictive power beyond plaque presence. Sonographic carotid plaque characteristics have been found to be predictive of cerebral ischaemic events. With advances in ultrasound technology, enhanced assessment of carotid plaques is feasible to detect high-risk/vulnerable plaques, and provide risk assessment for ischemic stroke beyond measurement of luminal stenosis.
Collapse
Affiliation(s)
- Stella Sin Yee Ho
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
23
|
Huibers A, de Borst G, Wan S, Kennedy F, Giannopoulos A, Moll F, Richards T. Non-invasive Carotid Artery Imaging to Identify the Vulnerable Plaque: Current Status and Future Goals. Eur J Vasc Endovasc Surg 2015; 50:563-72. [DOI: 10.1016/j.ejvs.2015.06.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/19/2015] [Indexed: 11/28/2022]
|
24
|
Utility of 3-dimensional ultrasound imaging to evaluate carotid artery stenosis: comparison with magnetic resonance angiography. J Stroke Cerebrovasc Dis 2014; 24:148-53. [PMID: 25440325 DOI: 10.1016/j.jstrokecerebrovasdis.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We evaluated the utility of 3-dimensional (3-D) ultrasound imaging for assessment of carotid artery stenosis, as compared with similar assessment via magnetic resonance angiography (MRA). METHODS Subjects comprised 58 patients with carotid stenosis who underwent both 3-D ultrasound imaging and MRA. We studied whether abnormal findings detected by ultrasound imaging could be diagnosed using MRA. Ultrasound images were generated using Voluson 730 Expert and Voluson E8. RESULTS The degree of stenosis was mild in 17, moderate in 16, and severe in 25 patients, according to ultrasound imaging. Stenosis could not be recognized using MRA in 4 of 17 patients diagnosed with mild stenosis using ultrasound imaging. Ultrasound imaging showed ulceration in 13 patients and mobile plaque in 6 patients. When assessing these patients, MRA showed ulceration in only 2 of 13 patients and did not detect mobile plaque in any of these 6 patients. Static 3-D B mode images demonstrated distributions of plaque, ulceration, and mobile plaque, and static 3-D flow images showed flow configuration as a total structure. Real-time 3-D B mode images demonstrated plaque and vessel movement. Carotid artery stenting was not selected for patients diagnosed with ulceration or mobile plaque. CONCLUSIONS Ultrasound imaging was necessary to detect mild stenosis, ulcerated plaque, or mobile plaque in comparison with MRA, and 3-D ultrasound imaging was useful to recognize carotid stenosis and flow pattern as a total structure by static and real-time 3-D demonstration. This information may contribute to surgical planning.
Collapse
|
25
|
Naim C, Douziech M, Therasse E, Robillard P, Giroux MF, Arsenault F, Cloutier G, Soulez G. Vulnerable atherosclerotic carotid plaque evaluation by ultrasound, computed tomography angiography, and magnetic resonance imaging: an overview. Can Assoc Radiol J 2013; 65:275-86. [PMID: 24360724 DOI: 10.1016/j.carj.2013.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/31/2013] [Indexed: 01/23/2023] Open
Abstract
Ischemic syndromes associated with carotid atherosclerotic disease are often related to plaque rupture. The benefit of endarterectomy for high-grade carotid stenosis in symptomatic patients has been established. However, in asymptomatic patients, the benefit of endarterectomy remains equivocal. Current research seeks to risk stratify asymptomatic patients by characterizing vulnerable, rupture-prone atherosclerotic plaques. Plaque composition, biology, and biomechanics are studied by noninvasive imaging techniques such as magnetic resonance imaging, computed tomography, ultrasound, and ultrasound elastography. These techniques are at a developmental stage and have yet to be used in clinical practice. This review will describe noninvasive techniques in ultrasound, magnetic resonance imaging, and computed tomography imaging modalities used to characterize atherosclerotic plaque, and will discuss their potential clinical applications, benefits, and drawbacks.
Collapse
Affiliation(s)
- Cyrille Naim
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada; Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montreal, Québec, Canada
| | - Maxime Douziech
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada
| | - Eric Therasse
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada
| | - Pierre Robillard
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada
| | - Marie-France Giroux
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada
| | - Frederic Arsenault
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada
| | - Guy Cloutier
- Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montreal, Québec, Canada; Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montreal, Québec, Canada
| | - Gilles Soulez
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montreal, Québec, Canada; Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
26
|
Martinez-Sanchez P, Alexandrov AV. Ultrasonography of carotid plaque for the prevention of stroke. Expert Rev Cardiovasc Ther 2013; 11:1425-40. [PMID: 23980574 DOI: 10.1586/14779072.2013.816475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A carotid ultrasonography is a non-invasive technique that provides an accurate and reliable characterization of the broad spectrum of carotid arteriosclerosis, from the intima-media thickness to the atherosclerotic plaque. Carotid ultrasonography has become a useful tool for identifying patients at high risk of stroke and selecting those who can benefit most from revascularization therapies such as carotid endarterectomy and stenting. In addition to the degree of stenosis, plaque echomorphology has emerged in recent years as an important contributory factor to stroke risk. Changes in plaque echogenicity, as measured by the quantitative computer-assisted ultrasonography index, could be a marker of plaque instability as well as an indicator of plaque remodeling, thereby providing the means for monitoring anti-atherosclerosis drugs such as statins.
Collapse
Affiliation(s)
- Patricia Martinez-Sanchez
- Department of Neurology and Stroke Center, IdiPAZ Health Research Institute, La Paz University Hospital, Autonomous University of Madrid, Spain
| | | |
Collapse
|
27
|
Abstract
Stroke generates significant healthcare expenses and it is also a social and economic burden. The carotid artery atherosclerotic plaque instability is responsible for a third of all embolic strokes. The degree of stenosis has been deliberately used to justify carotid artery interventions in thousands of patients worldwide. However, the annual risk of stroke in asymptomatic carotid artery disease is low. Plaque morphology and its kinetics have gained ground to explain cerebrovascular and retinal embolic events. This review provides the readers with an insightful and critical analysis of the risk stratification of asymptomatic carotid artery disease in order to assist in selecting potential candidates for a carotid intervention.
Collapse
|
28
|
Furer V, Fayad ZA, Farkouh ME, Rosenbaum D, Greenberg JD. Noninvasive atherosclerosis imaging modalities and their application to investigating cardiovascular drug effects in rheumatoid arthritis. Drug Dev Res 2011. [DOI: 10.1002/ddr.20482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Three-dimensional ultrasound imaging for the evaluation of carotid atherosclerosis. Atherosclerosis 2011; 219:377-83. [DOI: 10.1016/j.atherosclerosis.2011.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 11/19/2022]
|