1
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
2
|
Horta-Lacueva QJB, Jónsson ZO, Thorholludottir DAV, Hallgrímsson B, Kapralova KH. Rapid and biased evolution of canalization during adaptive divergence revealed by dominance in gene expression variability during Arctic charr early development. Commun Biol 2023; 6:897. [PMID: 37652977 PMCID: PMC10471602 DOI: 10.1038/s42003-023-05264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Adaptive evolution may be influenced by canalization, the buffering of developmental processes from environmental and genetic perturbations, but how this occurs is poorly understood. Here, we explore how gene expression variability evolves in diverging and hybridizing populations, by focusing on the Arctic charr (Salvelinus alpinus) of Thingvallavatn, a classic case of divergence between feeding habitats. We report distinct profiles of gene expression variance for both coding RNAs and microRNAs between the offspring of two contrasting morphs (benthic/limnetic) and their hybrids reared in common conditions and sampled at two key points of cranial development. Gene expression variance in the hybrids is substantially affected by maternal effects, and many genes show biased expression variance toward the limnetic morph. This suggests that canalization, as inferred by gene expression variance, can rapidly diverge in sympatry through multiple gene pathways, which are associated with dominance patterns possibly biasing evolutionary trajectories and mitigating the effects of hybridization on adaptive evolution.
Collapse
Affiliation(s)
- Quentin Jean-Baptiste Horta-Lacueva
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Biology, Lund University, Lund, Sweden.
| | | | - Dagny A V Thorholludottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- University of Veterinary Medicine Vienna, Institute of Population Genetics, Vienna, Austria
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kalina Hristova Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
3
|
The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc Natl Acad Sci U S A 2021; 118:2100765118. [PMID: 34426494 DOI: 10.1073/pnas.2100765118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biotic conflict can create evolutionary arms races, in which innovation in one group increases selective pressure on another, such that organisms must constantly adapt to maintain the same level of fitness. In some cases, this process is driven by conflict among members of the same species. Intraspecific conflict can be an especially important selective force in high-density invasive populations, which may favor the evolution of strategies for outcompeting or eliminating conspecifics. Cannibalism is one such strategy; by killing and consuming their intraspecific competitors, cannibals enhance their own performance. Cannibalistic behaviors may therefore be favored in invasive populations. Here, we show that cane toad tadpoles (Rhinella marina) from invasive Australian populations have evolved an increased propensity to cannibalize younger conspecifics as well as a unique adaptation to cannibalism-a strong attraction to vulnerable hatchlings-that is absent in the native range. In response, vulnerable conspecifics from invasive populations have evolved both stronger constitutive defenses and greater cannibal-induced plastic responses than their native range counterparts (i.e., rapid prefeeding development and inducible developmental acceleration). These inducible defenses are costly, incurring performance reductions during the subsequent life stage, explaining why plasticity is limited in native populations where hatchlings are not targeted by cannibalistic tadpoles. These results demonstrate the importance of intraspecific conflict in driving rapid evolution, highlight how plasticity can facilitate adaptation following shifts in selective pressure, and show that evolutionary processes can produce mechanisms that regulate invasive populations.
Collapse
|
4
|
Schrader M, Jarrett BJM, Kilner RM. Larval environmental conditions influence plasticity in resource use by adults in the burying beetle, Nicrophorus vespilloides. Evolution 2021; 76:667-674. [PMID: 34463348 PMCID: PMC9293066 DOI: 10.1111/evo.14339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have shown that intraspecific patterns of phenotypic plasticity can mirror patterns of evolutionary diversification among species. This appears to be the case in Nicrophorus beetles. Within species, body size is positively correlated with the size of carrion used to provision larvae and parental performance. Likewise, among species, variation in body size influences whether species exploit smaller or larger carrion and the extent to which larvae depend on parental care. However, it is unclear whether developmental plasticity in response to carcass size, parental care, or both underlie transitions to new carcass niches. We examined this by testing whether variation in the conditions experienced by Nicrophorus vespilloides larvae influenced their ability to breed efficiently upon differently sized carcasses as adults. We found that the conditions experienced by larvae during development played a critical role in determining their ability to use large carcasses effectively as adults. Specifically, individuals that developed with parental care and on large carcasses were best able to convert the resources on a large carcass into offspring when breeding themselves. Our results suggest that parentally induced plasticity can be important in the initial stages of niche expansion.
Collapse
Affiliation(s)
- Matthew Schrader
- Department of Biology, University of the South, Sewanee, Tennessee, 37383.,Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Benjamin J M Jarrett
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,Department of Biology, Lund University, Lund, SE-22362, Sweden
| | - Rebecca M Kilner
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| |
Collapse
|
5
|
Levis NA, Fuller CG, Pfennig DW. An experimental investigation of how intraspecific competition and phenotypic plasticity can promote the evolution of novel, complex phenotypes. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Intraspecific competition has long been considered a key driver of evolutionary diversification, but whether it can also promote evolutionary innovation is less clear. Here we examined the interplay between competition and phenotypic plasticity in fuelling the origins of a novel, complex phenotype – a distinctive carnivore morph found in spadefoot toad tadpoles (genus Spea) that specializes on fairy shrimp. We specifically sought to explore the possible origins of this phenotype by providing shrimp to Scaphiopus holbrookii tadpoles (the sister genus to Spea that does not produce carnivores) while subjecting them to competition for their standard diet of detritus. Previous research had shown that this species will eat shrimp when detritus is limited, and that these shrimp-fed individuals produce features that are redolent of a rudimentary Spea carnivore. In this study, we found that: (1) behavioural and morphological plasticity enabled some individuals to expand their diet to include shrimp; (2) there was heritable variation in this plasticity; and (3) individuals received a growth and development benefit by eating shrimp. Thus, novel resource use can arise via plasticity as an adaptive response to intraspecific competition. More generally, our results show how competition and plasticity may interact to pave the way for the evolution of complex, novel phenotypes, such as the distinctive carnivore morph in present-day Spea.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - Carly G Fuller
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Martin RA, Chick LD, Yilmaz AR, Diamond SE. Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban-rural temperature cline. Evol Appl 2019; 12:1678-1687. [PMID: 31462922 PMCID: PMC6708418 DOI: 10.1111/eva.12826] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023] Open
Abstract
Although studies increasingly disentangle phenotypic plasticity from evolutionary responses to environmental change, few test for transgenerational plasticity in this context. Here, we evaluate whether phenotypic divergence of acorn ants in response to urbanization is driven by transgenerational plasticity rather than evolution. F2 generation worker ants (offspring of laboratory-born queens) exhibited similar divergence among urban and rural populations as field-born worker ants, suggesting that evolutionary divergence rather than transgenerational plasticity was primarily responsible for shifts toward higher heat tolerance and diminished cold tolerance in urban acorn ants. Hybrid offspring from matings between urban and rural populations also indicated that evolutionary divergence was likely the primary mechanism underlying population differences in thermal tolerance. Specifically, thermal tolerance traits were not inherited either maternally or paternally in the hybrid pairings as would be expected for strong parental or grandparental effects mediated through a single sex. Urban-rural hybrid offspring provided further insight into the genetic architecture of thermal adaptation. Heat tolerance of hybrids more resembled the urban-urban pure type, whereas cold tolerance of hybrids more resembled the rural-rural pure type. As a consequence, thermal tolerance traits in this system appear to be influenced by dominance rather than being purely additive traits, and heat and cold tolerance might be determined by separate genes. Though transgenerational plasticity does not appear to explain divergence of acorn ant thermal tolerance, its role in divergence of other traits and across other urbanization gradients merits further study.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of BiologyCase Western Reserve UniversityClevelandOhio
| | - Lacy D. Chick
- Department of BiologyCase Western Reserve UniversityClevelandOhio
- Present address:
The Holden ArboretumKirtlandOhio
| | - Aaron R. Yilmaz
- Department of BiologyCase Western Reserve UniversityClevelandOhio
| | - Sarah E. Diamond
- Department of BiologyCase Western Reserve UniversityClevelandOhio
| |
Collapse
|
7
|
Moore MP, Whiteman HH, Martin RA. A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett 2019; 22:1620-1628. [DOI: 10.1111/ele.13351] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Michael P. Moore
- Department of Biology Case Western Reserve University Cleveland OH44106
- Watershed Studies Institute and Department of Biological Sciences Murray State University Murray KY42071
| | - Howard H. Whiteman
- Watershed Studies Institute and Department of Biological Sciences Murray State University Murray KY42071
| | - Ryan A. Martin
- Department of Biology Case Western Reserve University Cleveland OH44106
| |
Collapse
|
8
|
Levis NA, Pfennig DW. How stabilizing selection and nongenetic inheritance combine to shape the evolution of phenotypic plasticity. J Evol Biol 2019; 32:706-716. [PMID: 30968503 DOI: 10.1111/jeb.13475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance-maternal environmental effects-jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource-use phenotypes ("resource polyphenism") with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition-dependent maternal effect and not a genetic loss of plasticity, that is "genetic assimilation," and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Kelly PW, Pfennig DW, de la Serna Buzón S, Pfennig KS. Male sexual signal predicts phenotypic plasticity in offspring: implications for the evolution of plasticity and local adaptation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180179. [PMID: 30966958 PMCID: PMC6365869 DOI: 10.1098/rstb.2018.0179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 01/18/2023] Open
Abstract
In a rapidly changing world, understanding the processes that influence a population's ability to respond to natural selection is critical for identifying how to preserve biodiversity. Two such processes are phenotypic plasticity and sexual selection. Whereas plasticity can facilitate local adaptation, sexual selection potentially impedes local adaptation, especially in rapidly changing or variable environments. Here we hypothesize that, when females preferentially choose males that sire plastic offspring, sexual selection can actually facilitate local adaptation to variable or novel environments by promoting the evolution of adaptive plasticity. We tested this hypothesis by evaluating whether male sexual signals could indicate plasticity in their offspring and, concomitantly, their offspring's ability to produce locally adapted phenotypes. Using spadefoot toads ( Spea multiplicata) as our experimental system, we show that a male sexual signal predicts plasticity in his offspring's resource-use morphology. Specifically, faster-calling males (which are preferred by females) produce more plastic offspring; such plasticity, in turn, enables these males' offspring to respond adaptively to the spadefoots' highly variable environment. The association between a preferred male signal and adaptive plasticity in his offspring suggests that female mate choice can favour the evolution and maintenance of phenotypic plasticity and thereby foster adaptation to a variable environment. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
|
10
|
Levis NA, Pfennig DW. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol 2018; 88:80-90. [PMID: 29408711 DOI: 10.1016/j.semcdb.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Kooyers NJ, James B, Blackman BK. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evolution 2017; 71:1205-1221. [PMID: 28186619 DOI: 10.1111/evo.13200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 01/31/2023]
Abstract
Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co-occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes.
Collapse
Affiliation(s)
- Nicholas J Kooyers
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.,Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720.,Department of Integrative Biology, University of South Florida, Tampa, Florida, 33620
| | - Brooke James
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.,Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720
| |
Collapse
|
12
|
Pick JL, Ebneter C, Hutter P, Tschirren B. Disentangling Genetic and Prenatal Maternal Effects on Offspring Size and Survival. Am Nat 2016; 188:628-639. [PMID: 27860503 DOI: 10.1086/688918] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organizational processes during prenatal development can have long-term effects on an individual's phenotype. Because these early developmental stages are sensitive to environmental influences, mothers are in a unique position to alter their offspring's phenotype by differentially allocating resources to their developing young. However, such prenatal maternal effects are difficult to disentangle from other forms of parental care, additive genetic effects, and/or other forms of maternal inheritance, hampering our understanding of their evolutionary consequences. Here we used divergent selection lines for high and low prenatal maternal investment and their reciprocal line crosses in a precocial bird-the Japanese quail (Coturnix japonica)-to quantify the relative importance of genes and prenatal maternal effects in shaping offspring phenotype. Maternal but not paternal origin strongly affected offspring body size and survival throughout development. Although the effects of maternal egg investment faded over time, they were large at key life stages. Additionally, there was evidence for other forms of maternal inheritance affecting offspring phenotype at later stages of development. Our study is among the first to successfully disentangle prenatal maternal effects from all other sources of confounding variation and highlights the important role of prenatal maternal provisioning in shaping offspring traits closely linked to fitness.
Collapse
|
13
|
Markov AV, Ivnitsky SB, Kornilova MB, Naimark EB, Shirokova NG, Perfilieva KS. Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster. ACTA ACUST UNITED AC 2016; 76:429-37. [DOI: 10.1134/s2079086416050054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Ehrenreich IM, Pfennig DW. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. ANNALS OF BOTANY 2016; 117:769-79. [PMID: 26359425 PMCID: PMC4845796 DOI: 10.1093/aob/mcv130] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensitivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding of how novel traits and species evolve. SCOPE This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimilation, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered. Next, the potential causes of phenotypic plasticity generally and genetic assimilation specifically are examined at the genetic, molecular and physiological levels and approaches that can improve our understanding of these mechanisms are described. The review concludes by outlining major challenges for future work. CONCLUSIONS Identifying and characterizing the proximate mechanisms involved in phenotypic plasticity and genetic assimilation promises to help advance our basic understanding of evolutionary innovation and diversification.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Pfennig KS, Pfennig DW, Porter C, Martin RA. Sexual selection's impacts on ecological specialization: an experimental test. Proc Biol Sci 2016; 282:20150217. [PMID: 25925102 DOI: 10.1098/rspb.2015.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In many species, individuals specialize on different resources, thereby reducing competition. Such ecological specialization can promote the evolution of alternative ecomorphs-distinct phenotypes adapted for particular resources. Elucidating whether and how this process is influenced by sexual selection is crucial for understanding how ecological specialization promotes the evolution of novel traits and, potentially, speciation between ecomorphs. We evaluated the population-level effects of sexual selection (as mediated by mate choice) on ecological specialization in spadefoot toad tadpoles that express alternative ecomorphs. We manipulated whether sexual selection was present or reversed by mating females to their preferred versus non-preferred males, respectively. We then exposed their tadpoles to resource competition in experimental mesocosms. The resulting distribution of ecomorphs was similar between treatments, but sexual selection generated poorer trait integration in, and lower fitness of, the more specialized carnivore morph. Moreover, disruptive and directional natural selection were weaker in the sexual selection present treatment. Nevertheless, this effect on disruptive selection was smaller than previously documented effects of ecological opportunity and competitor density. Thus, sexual selection can inhibit adaptation to resource competition and thereby hinder ecological specialization, particularly when females obtain fitness benefits from mate choice that offset the cost of producing competitively inferior offspring.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, CB#3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | - David W Pfennig
- Department of Biology, University of North Carolina, CB#3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | - Cody Porter
- Department of Biology, University of North Carolina, CB#3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Eizadshenass S, Singh RS. Maternal effect and speciation: maternal effect contributes to the evolution of hybrid inviability between Drosophila simulans and Drosophila mauritiana. Genome 2015; 58:405-13. [PMID: 26436586 DOI: 10.1139/gen-2015-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Haldane's rule has been the basis of speciation research during the last 30 years. Most studies have focused on the nature of incompatibilities in the hybrid male, but not much attention has been given to the genetic basis of fertility and inviability in hybrid females. Hybridizations between Drosophila simulans and Drosophila mauritiana produce fertile females and sterile males. Here, we re-examined the level of fertility in reciprocal F1 females of these two species and looked for the presence of maternal effects. Our results show that the reciprocal F1 females of D. simulans and D. mauritiana hybridizations are fully fertile and in fact show a significant level of heterosis in the rate of oviposition but display reduced egg hatching in one direction. Reduced egg hatching was observed in the progenies of F1 hybrid females with D. mauritiana as mother, the same cross that showed a stronger negative effect on F1 male fertility. A review of the literature on the hybridizations in Lepidoptera also showed a maternal effect on inviability when reciprocal crosses produced asymmetric results. Our findings point to the importance of maternal effects in the evolution of embryo inviability and thus enhancing the process of speciation through the evolution of hybrid inviability.
Collapse
Affiliation(s)
- Sogol Eizadshenass
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Rama S Singh
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
17
|
Kilner RM, Boncoraglio G, Henshaw JM, Jarrett BJM, De Gasperin O, Attisano A, Kokko H. Parental effects alter the adaptive value of an adult behavioural trait. eLife 2015; 4:e07340. [PMID: 26393686 PMCID: PMC4613925 DOI: 10.7554/elife.07340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/14/2015] [Indexed: 01/15/2023] Open
Abstract
The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet, virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early-life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods and suffered greater mortality as a result: they were low-quality parents. Furthermore, (2) high-quality males that raised offspring with low-quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects. DOI:http://dx.doi.org/10.7554/eLife.07340.001 The burying beetle is an unusual insect in that both the father and the mother take care of their young larvae. They do this by providing food in the form of a small dead animal, such as a mouse, from which they diligently remove any fur or feathers, and by defending both the food and the larvae from rivals. These actions reduce the fitness of the parents, which can be estimated by measuring by how long they survive after caring for their brood. They also increase the health of the larvae, as measured by how large the larvae are when they move away from the carcass to pupate. Kilner et al. wanted to know how the parenting received by larvae affects their behaviour when they grow up and have their own offspring. Larvae were given varying amounts of care, ranging from none at all to five days (which is the typical length of the larval stage for burying beetles). Larvae that received little or no care grew up to become low-quality parents, whereas those that received lots of care became high-quality parents. A low-quality parent is, by definition, a parent that becomes less fit as a result of rearing offspring; a high-quality parent providing the same amount of care would not suffer such a large reduction in its fitness. Each of the female beetles from this first experiment was then mated with a high-quality male and together they took care of their offspring. Kilner et al. observed that the fathers lived longer when they were paired with high-quality mothers than they did when they were paired with lower quality mothers. This happened because the lower quality mothers effectively exploited the fathers, forcing them to do more of the parenting. Although the males gained by raising healthy larvae, they paid a price by dying at a younger age. Results from these insect experiments are not directly linked to human behaviour, but they might tell us why animals of other species are generally so careful to choose a mate that matches them in quality. In this way, they can avoid being exploited when the pair work together to raise young. In future, Kilner et al. will investigate how beetles adjust their parenting effort in response to the effort put in by their partner: can they estimate parental quality directly, or do they simply observe how much care the other partner is providing? DOI:http://dx.doi.org/10.7554/eLife.07340.002
Collapse
Affiliation(s)
- Rebecca M Kilner
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jonathan M Henshaw
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Ornela De Gasperin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Alfredo Attisano
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Kokko
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Moore MP, Landberg T, Whiteman HH. Maternal investment mediates offspring life history variation with context-dependent fitness consequences. Ecology 2015; 96:2499-509. [DOI: 10.1890/14-1602.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Levis NA, de la Serna Buzón S, Pfennig DW. An inducible offense: carnivore morph tadpoles induced by tadpole carnivory. Ecol Evol 2015; 5:1405-11. [PMID: 25897380 PMCID: PMC4395170 DOI: 10.1002/ece3.1448] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 02/08/2015] [Indexed: 01/11/2023] Open
Abstract
Phenotypic plasticity is commonplace, and plasticity theory predicts that organisms should often evolve mechanisms to detect and respond to environmental cues that accurately predict future environmental conditions. Here, we test this prediction in tadpoles of spadefoot toads, Spea multiplicata. These tadpoles develop into either an omnivore ecomorph, which is a dietary generalist, or a carnivore ecomorph, which specializes on anostracan shrimp and other tadpoles. We investigated a novel proximate cue - ingestion of Scaphiopus tadpoles - and its propensity to produce carnivores by rearing tadpoles on different diets. We found that diets containing tadpoles from the genus Scaphiopus produced more carnivores than diets without Scaphiopus tadpoles. We discuss why Scaphiopus tadpoles are an excellent food source and why it is therefore advantageous for S. multiplicata tadpoles to produce an inducible offense that allows them to better utilize this resource. In general, such inducible offenses provide an excellent setting for investigating the proximate and evolutionary basis of phenotypic plasticity.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina CB#3280, Chapel Hill, NC, 27599
| | | | - David W Pfennig
- Department of Biology, University of North Carolina CB#3280, Chapel Hill, NC, 27599
| |
Collapse
|
20
|
Johnson JC, Miles LS, Trubl PJ, Hagenmaier A. Maternal effects on egg investment and offspring performance in black widow spiders. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Davis K, Marshall DJ. Offspring size in a resident species affects community assembly. J Anim Ecol 2014; 83:322-31. [PMID: 26046291 DOI: 10.1111/1365-2656.12136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/09/2013] [Indexed: 11/26/2022]
Abstract
Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur.
Collapse
Affiliation(s)
- Kurt Davis
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Dustin J Marshall
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, 4072, Australia.,School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
22
|
Factors Influencing Premetamorphic Body Mass of Two Polymorphic Spadefoot Species in Cropland and Grassland Playas. J HERPETOL 2013. [DOI: 10.1670/11-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Arrighi JM, Lencer ES, Jukar A, Park D, Phillips PC, Kaplan RH. Daily temperature fluctuations unpredictably influence developmental rate and morphology at a critical early larval stage in a frog. BMC Ecol 2013; 13:18. [PMID: 23641898 PMCID: PMC3653820 DOI: 10.1186/1472-6785-13-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Environmental temperature has profound consequences for early amphibian development and many field and laboratory studies have examined this. Most laboratory studies that have characterized the influence of temperature on development in amphibians have failed to incorporate the realities of diel temperature fluctuations (DTF), which can be considerable for pond-breeding amphibians. Results We evaluated the effects of different ecologically relevant ranges of DTF compared with effects of constant temperatures on development of embryos and larvae of the Korean fire-bellied toad (Bombina orientalis). We constructed thermal reaction norms for developmental stage, snout- vent length, and tail length by fitting a Gompertz-Gaussian function to measurements taken from embryos after 66 hours of development in 12 different constant temperature environments between 14°C and 36°C. We used these reaction norms as null models to test the hypothesis that developmental effects of DTF are more than the sum of average constant temperature effects over the distribution of temperatures experienced. We predicted from these models that growth and differentiation would be positively correlated with average temperature at low levels of DTF but not at higher levels of DTF. We tested our prediction in the laboratory by rearing B. orientalis embryos at three average temperatures (20°C, 24°C, and 28°C) and four levels of thermal variation (0°C, 6°C, 13°C, and 20°C). Several of the observed responses to DTF were significantly different from both predictions of the model and from responses in constant temperature treatments at the same average temperatures. At an average temperature of 24°C, only the highest level of DTF affected differentiation and growth rates, but at both cooler and warmer average temperatures, moderate DTF was enough to slow developmental and tail growth rates. Conclusions These results demonstrate that both the magnitude of DTF range and thermal averages need to be considered simultaneously when parsing the effects of changing thermal environments on complex developmental responses, particularly when they have potential functional and adaptive significance.
Collapse
|
24
|
Van Allen BG, Rudolf VHW. Ghosts of habitats past: environmental carry-over effects drive population dynamics in novel habitat. Am Nat 2013; 181:596-608. [PMID: 23594544 DOI: 10.1086/670127] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The phenotype of adults can be strongly influenced by the environmental conditions experienced during development. Consequently, variation in habitat quality across space and through time also leads to differences in the phenotypes of adults. This could create carry-over effects where differences in the natal habitat quality of colonizers influence population dynamics in new habitats. We tested this hypothesis experimentally by simulating dispersal of Tribolium castaneum from low- or high-quality natal habitat into new patches of low- or high-quality habitat. Differences in the natal habitat quality of colonizers altered population growth trajectories and led to carrying capacities that differed by up to 63% within a habitat type, indicating that patch dynamics are determined by the interaction of past and current habitat quality. Interestingly, even after multiple generations, the natal habitat of colonizers determined differences in adult traits that were related to density-dependent population regulation. These changes in adult phenotype could at least partially explain why carry-over effects continued to alter population dynamics for multiple generations until the end of the experiment. These results highlight the importance of variable habitat quality and carry-over effects for population dynamics.
Collapse
Affiliation(s)
- Benjamin G Van Allen
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA.
| | | |
Collapse
|
25
|
Marshall DJ, Monro K. INTERSPECIFIC COMPETITION ALTERS NONLINEAR SELECTION ON OFFSPRING SIZE IN THE FIELD. Evolution 2012; 67:328-37. [DOI: 10.1111/j.1558-5646.2012.01749.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Burns JH, Strauss SY. Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits. Ecology 2012. [DOI: 10.1890/11-0401.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Svanbäck R, Schluter D. Niche Specialization Influences Adaptive Phenotypic Plasticity in the Threespine Stickleback. Am Nat 2012; 180:50-9. [DOI: 10.1086/666000] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Abstract
Character displacement occurs when competition for either resources or successful reproduction imposes divergent selection on interacting species, causing divergence in traits associated with resource use or reproduction. Here, we describe how character displacement can be mediated either by genetically canalized changes (i.e., changes that reflect allelic or genotype frequency changes) or by phenotypic plasticity. We also discuss how these two mechanisms influence the tempo of character displacement. Specifically, we suggest that, under some conditions, character displacement mediated by phenotypic plasticity might occur more rapidly than that mediated by genetically canalized changes. Finally, we describe how these two mechanisms may act together and determine character displacement's mode, such that it proceeds through an initial phase in which trait divergence is environmentally induced to a later phase in which divergence becomes genetically canalized. This plasticity-first hypothesis predicts that character displacement should be generally mediated by ancestral plasticity and that it will arise similarly in multiple, independently evolving populations. We conclude by highlighting future directions for research that would test these predictions.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
29
|
|
30
|
Uller T, Helanterä H. When are genes ‘leaders’ or ‘followers’ in evolution? Trends Ecol Evol 2011; 26:435-6; author reply 436-7. [DOI: 10.1016/j.tree.2011.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 11/16/2022]
|
31
|
Ledón-Rettig CC, Pfennig DW. Emerging model systems in eco-evo-devo: the environmentally responsive spadefoot toad. Evol Dev 2011; 13:391-400. [DOI: 10.1111/j.1525-142x.2011.00494.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Abstract
Ecological character displacement occurs when competition imposes divergent selection on interacting species, causing divergence in traits associated with resource use. Generally, divergence is assumed to occur when selection acts on the same, continuously varying trait in both species. However, selection might target multiple traits, and even closely related heterospecifics involved in character displacement might differ in selective targets. We investigated the targets of selection in a species of spadefoot toad, Spea multiplicata, during experimentally imposed competition with a congener, S. bombifrons. When examining traits separately, we found significant selection acting on multiple resource-acquisition traits. Yet, controlling for the independent effects of these traits in a multiple regression revealed that direct selection on a single trait might have contributed toward indirect selection on other correlated traits. Moreover, although we found evidence for plasticity in most traits, competition with S. bombifrons imposed selection on morphology and not on plasticity. Additional experiments suggest that the selective targets during character displacement might differ between the two species involved in this one instance of character displacement. Identifying the targets of competitively mediated selection is crucial, because whether and how character displacement ultimately unfolds depends on the nature of these targets and correlations among them.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
33
|
Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol 2011; 11:138. [PMID: 21609448 PMCID: PMC3121626 DOI: 10.1186/1471-2148-11-138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022] Open
Abstract
Background Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). Results We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry. Conclusions Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
34
|
Abstract
In The Origin of Species, Darwin proposed his principle of divergence of character (a process now termed "character displacement") to explain how new species arise and why they differ from each other phenotypically. Darwin maintained that the origin of species and the evolution of differences between them is ultimately caused by divergent selection acting to minimize competitive interactions between initially similar individuals, populations, and species. Here, we examine the empirical support for the various claims that constitute Darwin's principle, specifically that (1) competition promotes divergent trait evolution, (2) the strength of competitively mediated divergent selection increases with increasing phenotypic similarity between competitors, (3) divergence can occur within species, and (4) competitively mediated divergence can trigger speciation. We also explore aspects that Darwin failed to consider. In particular, we describe how (1) divergence can arise from selection acting to lessen reproductive interactions, (2) divergence is fueled by the intersection of character displacement and sexual selection, and (3) phenotypic plasticity may play a key role in promoting character displacement. Generally, character displacement is well supported empirically, and it remains a vital explanation for how new species arise and diversify.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
35
|
Ledón-Rettig CC, Pfennig DW, Crespi EJ. Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proc Biol Sci 2010; 277:3569-78. [PMID: 20573627 DOI: 10.1098/rspb.2010.0877] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When experiencing resource competition or abrupt environmental change, animals often must transition rapidly from an ancestral diet to a novel, derived diet. Yet, little is known about the proximate mechanisms that mediate such rapid evolutionary transitions. Here, we investigated the role of diet-induced, cryptic genetic variation in facilitating the evolution of novel resource-use traits that are associated with a new feeding strategy--carnivory--in tadpoles of spadefoot toads (genus Spea). We specifically asked whether such variation in trophic morphology and fitness is present in Scaphiopus couchii, a species that serves as a proxy for ancestral Spea. We also asked whether corticosterone, a vertebrate hormone produced in response to environmental signals, mediates the expression of this variation. Specifically, we compared broad-sense heritabilities of tadpoles fed different diets or treated with exogenous corticosterone, and found that novel diets can expose cryptic genetic variation to selection, and that diet-induced hormones may play a role in revealing this variation. Our results therefore suggest that cryptic genetic variation may have enabled the evolutionary transition to carnivory in Spea tadpoles, and that such variation might generally facilitate rapid evolutionary transitions to novel diets.
Collapse
Affiliation(s)
- Cris C Ledón-Rettig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
36
|
Serbezov D, Bernatchez L, Olsen EM, Vøllestad LA. Quantitative genetic parameters for wild stream-living brown trout: heritability and parental effects. J Evol Biol 2010; 23:1631-41. [PMID: 20524953 DOI: 10.1111/j.1420-9101.2010.02028.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adaptability depends on the presence of additive genetic variance for important traits. Yet few estimates of additive genetic variance and heritability are available for wild populations, particularly so for fishes. Here, we estimate heritability of length-at-age for wild-living brown trout (Salmo trutta), based on long-term mark-recapture data and pedigree reconstruction based on large-scale genotyping at 15 microsatellite loci. We also tested for the presence of maternal and paternal effects using a Bayesian version of the Animal model. Heritability varied between 0.16 and 0.31, with reasonable narrow confidence bands, and the total phenotypic variance increased with age. When introducing dam as an additional random effect (accounting for c. 7% of total phenotypic variance), the level of additive genetic variance and heritability decreased (0.12-0.21). Parental size (both for sires and for dams) positively influenced length-at-age for juvenile trout--either through direct parental effects or through genotype-environment correlations. Length-at-age is a complex trait reflecting the effects of a number of physiological, behavioural and ecological processes. Our data show that fitness-related traits such as length-at-age can retain high levels of additive genetic variance even when total phenotypic variance is high.
Collapse
Affiliation(s)
- D Serbezov
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
37
|
Pfennig DW, Martin RA. Evolution of character displacement in spadefoot toads: different proximate mechanisms in different species. Evolution 2010; 64:2331-41. [PMID: 20394671 DOI: 10.1111/j.1558-5646.2010.01005.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Character displacement occurs when two species compete, and those individuals most dissimilar from the average resource-use phenotypes of the other species are selectively favored. Few studies have explored the sequence of events by which such divergence comes about. We addressed this issue by studying two species of spadefoot toads that have undergone ecological character displacement with each other. Previous research revealed that phenotypic shifts between sympatric and allopatric populations of one species, Spea multiplicata, reflect a condition-dependent maternal effect. Here, we show that analogous shifts in the other species, S. bombifrons, cannot similarly be explained by such a maternal effect, and that these shifts instead appear to be underlain by allelic differences. We hypothesize that these two species have evolved different mechanisms of character displacement because they differ in duration in sympatry. Specifically, because they occur at the edge of a range expansion, populations of S. bombifrons have been exposed to S. multiplicata for a longer period. Consequently, S. bombifrons have likely had more time to accumulate genetic changes that promote character displacement. Generally, character displacement may often progress through an initial phase in which trait differences are environmentally induced to one in which they are constitutively expressed.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
38
|
Pfennig DW, McGee M. Resource polyphenism increases species richness: a test of the hypothesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:577-91. [PMID: 20083634 DOI: 10.1098/rstb.2009.0244] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A major goal of evolutionary biology is to identify the causes of diversification and to ascertain why some evolutionary lineages are especially diverse. Evolutionary biologists have long speculated that polyphenism--where a single genome produces alternative phenotypes in response to different environmental stimuli--facilitates speciation, especially when these alternative phenotypes differ in resource or habitat use, i.e. resource polyphenism. Here, we present a series of replicated sister-group comparisons showing that fishes and amphibian clades in which resource polyphenism has evolved are more species rich, and have broader geographical ranges, than closely related clades lacking resource polyphenism. Resource polyphenism may promote diversification by facilitating each of the different stages of the speciation process (isolation, divergence, reproductive isolation) and/or by reducing a lineage's risk of extinction. Generally, resource polyphenism may play a key role in fostering diversity, and species in which resource polyphenism has evolved may be predisposed to diversify.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, , Chapel Hill, NC 27517, USA.
| | | |
Collapse
|
39
|
Martin RA, Pfennig DW. Maternal investment influences expression of resource polymorphism in amphibians: implications for the evolution of novel resource-use phenotypes. PLoS One 2010; 5:e9117. [PMID: 20161745 PMCID: PMC2817737 DOI: 10.1371/journal.pone.0009117] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/21/2010] [Indexed: 11/18/2022] Open
Abstract
Maternal effects--where an individual's phenotype is influenced by the phenotype or environment of its mother--are taxonomically and ecologically widespread. Yet, their role in the origin of novel, complex traits remains unclear. Here we investigate the role of maternal effects in influencing the induction of a novel resource-use phenotype. Spadefoot toad tadpoles, Spea multiplicata, often deviate from their normal development and produce a morphologically distinctive carnivore-morph phenotype, which specializes on anostracan fairy shrimp. We evaluated whether maternal investment influences expression of this novel phenotype. We found that larger females invested in larger eggs, which, in turn, produced larger tadpoles. Such larger tadpoles are better able to capture the shrimp that induce carnivores. By influencing the expression of novel resource-use phenotypes, maternal effects may play a largely underappreciated role in the origins of novelty.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America.
| | | |
Collapse
|
40
|
Pfennig KS, Pfennig DW. Character Displacement: Ecological And Reproductive Responses To A Common Evolutionary Problem. QUARTERLY REVIEW OF BIOLOGY 2009; 84:253-76. [PMID: 19764283 DOI: 10.1086/605079] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
41
|
Affiliation(s)
- Alan R. Templeton
- Department of Biology, Washington University
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa
| |
Collapse
|