1
|
Urošević A, Vukov T, Cvijanović M, Janković S, Nikolić D, Ajduković M, Anđelković M, Ljubisavljević K, Kolarov NT. Does mercury affect morphology, developmental stability and canalization of the skull in the Common wall lizard (Podarcis muralis)? CHEMOSPHERE 2025; 375:144219. [PMID: 40020445 DOI: 10.1016/j.chemosphere.2025.144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Environmental pollution by metals and metalloids can have a detrimental effect on the fitness and development of organisms. Studies on the influence of metals and metalloids as environmental stressors on developmentally and functionally complex morphological structures of reptiles are important, as this group of vertebrates is highly threatened and is an important component of food webs. To assess the effects of chronic mercury exposure on cranium morphology and post-natal development in a model species of lizards, we analysed the concentration of this metal in liver tissues in the population of the Common wall lizard (Podarcis muralis) from the mercury mine tailings and the control population, and possible differences in skull size, shape, developmental stability and canalization between the two groups. Patterns of variation and asymmetry of the cranium shape were analysed using geometric morphometrics. The mercury concentration was significantly higher in the population from the polluted locality, but had very little to no effect on the cranial morphology. Juveniles and females from both sites had the same size and shape of the dorsal and ventral cranium, while males showed small differences in ventral cranium shape, reflected in slightly longer maxillae and wider crania at the polluted site. The pattern of sexual dimorphism remained constant at both localities. Both static and ontogenetic allometry were significant in both groups, and allometric trajectories did not differ between the two sites. The differences in fluctuating asymmetry (FA) between localities were not statistically significant for the dorsal and ventral cranium. The results do not support the idea that FA can be used as an early indicator mercury exposure at the population level.
Collapse
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| | - Milena Cvijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| | - Saša Janković
- Department for Residue Examination, Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040, Belgrade, Serbia
| | - Dragica Nikolić
- Department for Residue Examination, Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040, Belgrade, Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| | - Marko Anđelković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| | - Katarina Ljubisavljević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
2
|
Fernandes DS, Régis CB. Ontogenetic trajectories and sexual dimorphism of a neotropical ground snake genus Erythrolamprus (Serpentes: Dipsadidae). ZOOLOGY 2025; 169:126248. [PMID: 39955847 DOI: 10.1016/j.zool.2025.126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Allometry and sexual dimorphism are potential sources of intraspecific morphological variation. Advances in the methodological framework of geometric morphometrics allow in-depth analysis of these issues, enabling the descriptions and comparisons between groups of multivariate phenotypic attributes and the visualization of allometric trajectories. In the present study, we evaluated the presence of secondary sexual dimorphism in Erythrolamprus miliaris merremi, a semi-aquatic snake occurring in the Atlantic Forest of southeastern Brazil. We assessed linear body measurements and digitized landmarks in the dorsal view of the head of 107 specimens grouped into four categories combining ontogenetic stages and sex. We performed linear models and principal component analyses to estimate and visualize head shape variation and the allometric trajectories of these categories. Adults from both sexes and immature females showed significant static allometry, while immature males showed isometric growth. Although we recovered no sexual dimorphism for head shape, ontogenetic trajectories of both sexes are distinct, with females showing head shape variation throughout ontogenetic development, while males exhibited more conspicuous changes only after sexual maturity. Comparisons with literature data suggest a high degree of variation in ontogenetic allometry of snakes, depending on the phylogenetic group or structure (head/skull) analyzed, while the results for static allometry are more similar between the studied taxa. Only the collection of data on distinct groups of snakes will provide more clues as to whether there is any allometric pattern to these structures, and which factors (evolutionary, ecological or both) are prevalent over it, especially for ontogenetic allometry.
Collapse
Affiliation(s)
- Daniel Silva Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório TaxoN, Rio de Janeiro 21941-599, Brazil; Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados. Quinta da Boa Vista, Rio de Janeiro 20940-040, Brazil.
| | - Cristiane Barros Régis
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório TaxoN, Rio de Janeiro 21941-599, Brazil; Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados. Quinta da Boa Vista, Rio de Janeiro 20940-040, Brazil
| |
Collapse
|
3
|
Boisseau RP, Bradler S, Emlen DJ. Divergence time and environmental similarity predict the strength of morphological convergence in stick and leaf insects. Proc Natl Acad Sci U S A 2025; 122:e2319485121. [PMID: 39715436 PMCID: PMC11725862 DOI: 10.1073/pnas.2319485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Independent evolution of similar traits in lineages inhabiting similar environments (convergent or repeated evolution) is often taken as evidence for adaptation by natural selection, and used to illustrate the predictability of evolution. Yet convergence is rarely perfect for two reasons. First, environments may not be as similar as they appear. Second, responses to selection are contingent upon available genetic variation and independent lineages may differ in the alleles, genetic backgrounds, and even the developmental mechanisms responsible for the phenotypes in question. Both impediments to convergence are predicted to increase as the length of time separating two lineages increases, making it difficult to discern their relative importance. We quantified environmental similarity and the extent of convergence to show how habitat and divergence time each contribute to observed patterns of morphological evolution in 212 species of stick and leaf insects (order Phasmatodea). Dozens of phasmid lineages independently colonized similar habitats, repeatedly evolving in parallel directions on a 23-trait morphospace, though the magnitude and direction of these shifts varied. Lineages converging toward more similar environments ended up closer on the morphospace, as did closely related lineages, and closely related lineages followed more parallel evolutionary trajectories to arrive there than more distantly related ones. Remarkably, after accounting for habitat similarity, we show that divergence time reduced the extent of convergence at a constant rate across more than 100 My of separation, suggesting even the magnitude of contingency can be predictable, given sufficient spans of time.
Collapse
Affiliation(s)
- Romain P. Boisseau
- Division of Biological Sciences, University of Montana, Missoula, MT59812
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, GöttingenD-37073, Germany
| | - Douglas J. Emlen
- Division of Biological Sciences, University of Montana, Missoula, MT59812
| |
Collapse
|
4
|
Soltanighias T, Umar A, Abdullahi M, Abdallah MAE, Orsini L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125133. [PMID: 39419463 DOI: 10.1016/j.envpol.2024.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Persistent chemicals from industrial processes, particularly perfluoroalkyl substances (PFAS), have become pervasive in the environment due to their persistence, long half-lives, and bioaccumulative properties. Used globally for their thermal resistance and repellence to water and oil, PFAS have led to widespread environmental contamination. These compounds pose significant health risks with exposure through food, water, and dermal contact. Aquatic wildlife is particularly vulnerable as water bodies act as major transport and transformation mediums for PFAS. Their co-occurrence with microplastics may intensify the impact on aquatic species by influencing PFAS sorption and transport. Despite progress in understanding the occurrence and fate of PFAS and microplastics in aquatic ecosystems, the toxicity of PFAS mixtures and their co-occurrence with other high-concern compounds remains poorly understood, especially over organisms' life cycles. Our study investigates the chronic toxicity of PFAS and microplastics on the sentinel species Daphnia, a species central to aquatic foodwebs and an ecotoxicology model. We examined the effects of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and polyethylene terephthalate microplastics (PET) both individually and in mixtures on Daphnia ecological endpoints. Unlike conventional studies, we used two Daphnia genotypes with distinct histories of chemical exposure. This approach revealed that PFAS and microplastics cause developmental failures, delayed sexual maturity and reduced somatic growth, with historical exposure to environmental pollution reducing tolerance to these persistent chemicals due to cumulative fitness costs. We also observed that the combined effect of the persistent chemicals analysed was 59% additive and 41% synergistic, whereas no antagonistic interactions were observed. The genotype-specific responses observed highlight the complex interplay between genetic background and pollutant exposure, emphasizing the importance of incorporating multiple genotypes in environmental risk assessments to more accurately predict the ecological impact of chemical pollutants.
Collapse
Affiliation(s)
- Tayebeh Soltanighias
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; College of Engineering and Physical Sciences Department of Civil Engineering, Aston University, Birmingham, B4 7ET, UK
| | - Abubakar Umar
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Muhammad Abdullahi
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Luisa Orsini
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK; Robust Nature Excellence Initiative, Max-von-Laue-Straße 13, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
5
|
Gigl F, Abdullahi M, Barnard M, Hollert H, Orsini L. Interactions between phenanthrene exposure and historical chemical stress: Implications for fitness and ecological resilience of the sentinel species Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174963. [PMID: 39069192 DOI: 10.1016/j.scitotenv.2024.174963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) arise from incomplete combustion of oil, coal, and gasoline, with lipophilic properties facilitating their widespread distribution and persistence. Due to their biochemical attributes, PAHs can accumulate in animal tissues, potentially causing mutagenic and carcinogenic effects. Since the industrial revolution, PAH concentrations in the environment have risen, with lakes showing levels from 0.159 to 33,090 μg/kg sediment. Despite acute toxicity studies showing adverse effects on freshwater organisms, the long-term impacts and synergistic interactions with other pollutants remain largely unexplored. This study investigates the impact of phenanthrene (PHE), a prominent PAH found in aquatic environments, on Daphnia magna, a species of significant ecological importance in freshwater ecosystems globally, being both a sentinel species for chemical pollution and a keystone organism in freshwater aquatic ecosystems. Leveraging the dormancy of D. magna, which spans decades or even centuries, we exposed strains with diverse histories of chemical contaminant exposure to environmentally relevant concentrations of PHE. Initially, acute exposure experiments were conducted in accordance with OECD guidelines across 16 Daphnia strains, revealing substantial variation in acute toxic responses, with strains naïve to chemical pollutants showing the lowest toxicity. Utilizing the median effect concentration EC10 derived from acute exposures, we assessed the impacts of chronic PHE exposure on life history traits and ecological endpoints of the 16 strains. To elucidate how historical exposure to other environmental stressors may modulate the toxicity of PHE, temporal populations of D. magna resurrected from a lake with a well-documented century-spanning history of environmental impact were utilized. Our findings demonstrate that PHE exposure induces developmental failure, delays sexual maturation, and reduces adult size in Daphnia. Populations of Daphnia historically exposed to chemical stress exhibited significantly greater fitness impacts compared to naïve populations. This study provides crucial insights into the augmented effects of PAHs interacting with other environmental stressors.
Collapse
Affiliation(s)
- Florian Gigl
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Muhammad Abdullahi
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marianne Barnard
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luisa Orsini
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
6
|
Martinez CM, Corn KA, Williamson S, Satterfield D, Roberts-Hugghis AS, Barley A, Borstein SR, McGee MD, Wainwright PC. Replicated Functional Evolution in Cichlid Adaptive Radiations. Am Nat 2024; 204:242-257. [PMID: 39179237 DOI: 10.1086/731477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractAdaptive radiations highlight the mechanisms by which species and traits diversify and the extent to which these patterns are predictable. We used 1,110 high-speed videos of suction feeding to study functional and morphological diversification in 300 cichlid species from three African Great Lake radiations of varying ages (Victoria, Malawi, and Tanganyika) and an older, spatially dispersed continental radiation in the Neotropics. Among African radiations, standing diversity was reflective of time. Morphological and functional variance in Lake Victoria, the youngest radiation, was a subset of that within Lake Malawi, which itself was nested within the older Tanganyikan radiation. However, functional diversity in Neotropical cichlids was often lower than that in Lake Tanganyika, despite being much older. These two radiations broadly overlapped, but each diversified into novel trait spaces not found in the youngest lake radiations. Evolutionary rates across radiations were inversely related to age, suggesting extremely rapid trait evolution at early stages, particularly in lake radiations. Despite this support for early bursts, other patterns of trait diversity were inconsistent with expectations of adaptive radiations. This work suggests that cichlid functional evolution has played out in strikingly similar fashion in different radiations, with contingencies eventually resulting in lineage-specific novelties.
Collapse
|
7
|
Esteban JM, Martín-Serra A, Pérez-Ramos A, Rybczynski N, Jones K, Figueirido B. The influence of the land-to-sea macroevolutionary transition on vertebral column disparification in Pinnipedia. Proc Biol Sci 2024; 291:20232752. [PMID: 38593849 PMCID: PMC11003777 DOI: 10.1098/rspb.2023.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
The repeated returns of vertebrates to the marine ecosystems since the Triassic serve as an evolutionary model to understand macroevolutionary change. Here we investigate the effects of the land-to-sea transition on disparity and constraint of the vertebral column in aquatic carnivorans (Carnivora; Pinnipedia) to assess how their functional diversity and evolutionary innovations influenced major radiations of crown pinnipeds. We use three-dimensional geometric morphometrics and multivariate analysis for high-dimensional data under a phylogenetic framework to quantify vertebral size and shape in living and extinct pinnipeds. Our analysis demonstrates an important shift in vertebral column evolution by 10-12 million years ago, from an unconstrained to a constrained evolutionary scenario, a point of time that coincides with the major radiation of crown pinnipeds. Moreover, we also demonstrate that the axial skeleton of phocids and otariids followed a different path of morphological evolution that was probably driven by their specialized locomotor strategies. Despite this, we found a significant effect of habitat preference (coastal versus pelagic) on vertebral morphology of crown taxa regardless of the family they belong. In summary, our analysis provides insights into how the land-to-sea transition influenced the complex evolutionary history of pinniped vertebral morphology.
Collapse
Affiliation(s)
- Juan Miguel Esteban
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Natalia Rybczynski
- Department of Palaeobiology, Canadian Museum of Nature, Ottawa, ON, Canada K1P 6P4
- Department of Earth Sciences & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Katrina Jones
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
8
|
Mitchell DR, Potter S, Eldridge MDB, Martin M, Weisbecker V. Functionally mediated cranial allometry evidenced in a genus of rock-wallabies. Biol Lett 2024; 20:20240045. [PMID: 38531413 PMCID: PMC10965333 DOI: 10.1098/rsbl.2024.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
In assessments of skeletal variation, allometry (disproportionate change of shape with size) is often corrected to examine size-independent variation for hypotheses relating to function. However, size-related trade-offs in functional demands may themselves be an underestimated driver of mammalian cranial diversity. Here, we use geometric morphometrics alongside dental measurements to assess craniodental allometry in the rock-wallaby genus Petrogale (all 17 species, 370 individuals). We identified functional aspects of evolutionary allometry that can be both extensions of, and correlated negatively with, static or ontogenetic allometric patterns. Regarding constraints, larger species tended to have relatively smaller braincases and more posterior orbits, the former of which might represent a constraint on jaw muscle anatomy. However, they also tended to have more anterior dentition and smaller posterior zygomatic arches, both of which support the hypothesis of relaxed bite force demands and accommodation of different selective pressures that favour facial elongation. By contrast, two dwarf species had stouter crania with divergent dental adaptations that together suggest increased relative bite force capacity. This likely allows them to feed on forage that is mechanically similar to that consumed by larger relatives. Our results highlight a need for nuanced considerations of allometric patterns in future research of mammalian cranial diversity.
Collapse
Affiliation(s)
- D. Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales 2522, Australia
| | - Sally Potter
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Australian Museum Research Institute, Sydney, New South Wales 2010, Australia
| | - Mark D. B. Eldridge
- Australian Museum Research Institute, Sydney, New South Wales 2010, Australia
| | - Meg Martin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
9
|
Franco-Belussi L, de Oliveira Júnior JG, Goldberg J, De Oliveira C, Fernandes CE, Provete DB. Multiple morphophysiological responses of a tropical frog to urbanization conform to the pace-of-life syndrome. CONSERVATION PHYSIOLOGY 2024; 12:coad106. [PMID: 38293639 PMCID: PMC10823355 DOI: 10.1093/conphys/coad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
The Pace-of-Life syndrome proposes that behavioural, physiological and immune characteristics vary along a slow-fast gradient. Urbanization poses several physiological challenges to organisms. However, little is known about how the health status of frogs is affected by urbanization in the Tropics, which have a faster and more recent urbanization than the northern hemisphere. Here, we analysed a suite of physiological variables that reflect whole organism health, reproduction, metabolic and circulatory physiology and leukocyte responses in Leptodactylus podicipinus. Specifically, we tested how leukocyte profile, erythrocyte morphometrics and germ cell density, as well as somatic indices and erythrocyte nuclear abnormalities differ throughout the adult life span between urban and rural populations. We used Phenotypic Trajectory Analysis to test the effect of age and site on each of the multivariate data sets; and a Generalised Linear Model to test the effect of site and age on nuclear abnormalities. Somatic indices, erythrocyte nuclear abnormalities, erythrocyte morphometrics and leukocyte profile differed between populations, but less so for germ cell density. We found a large effect of site on nuclear abnormalities, with urban frogs having twice as many abnormalities as rural frogs. Our results suggest that urban frogs have a faster pace of life, but the response of phenotypic compartments is not fully concerted.
Collapse
Affiliation(s)
- Lilian Franco-Belussi
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, São Paulo, 15054-000, Brazil
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
| | - José Gonçalves de Oliveira Júnior
- Graduate Program in Animal Biology, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Javier Goldberg
- Instituto de Diversidad y Ecología Animal - CONICET; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Classius De Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos E Fernandes
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
| | - Diogo B Provete
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
- Gothenburg Global Biodiversity Centre, Göteborg, Box 100, S 405 30, Sweden
| |
Collapse
|
10
|
Härer A, Rennison DJ. The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. mSphere 2023; 8:e0044223. [PMID: 38038446 PMCID: PMC10732045 DOI: 10.1128/msphere.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE What are the roles of determinism and contingency in evolution? The paleontologist and evolutionary biologist Stephen J. Gould raised this question in his famous thought experiment of "replaying life's tape." Settings where independent lineages have repeatedly adapted to similar ecological niches (i.e., parallel evolution) are well suited to address this question. Here, we quantified whether repeated ecological shifts across 53 mammalian and 50 avian host species are associated with parallel gut microbiota changes. Our results indicate that parallel shifts in host diet are associated with greater gut microbiota parallelism (i.e., more deterministic). While further research will be necessary to obtain a comprehensive picture of the circumstances under which deterministic gut microbiota changes might be expected, our study can be instrumental in motivating the use of more quantitative methods in microbiota research. This, in turn, can help us better understand microbiota dynamics during adaptive evolution of their hosts.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| | - Diana J. Rennison
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Wos G, Požárová D, Kolář F. Role of phenotypic and transcriptomic plasticity in alpine adaptation of Arabidopsis arenosa. Mol Ecol 2023; 32:5771-5784. [PMID: 37728172 DOI: 10.1111/mec.17144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Plasticity is an important component of the response of organism to environmental changes, but whether plasticity facilitates adaptation is still largely debated. Using transcriptomic and phenotypic data, we explored the evolution of ancestral plasticity during alpine colonization in Arabidopsis arenosa. We leveraged naturally replicated adaptation in four distinct mountain regions in Central Europe. We sampled seeds from ancestral foothill and independently formed alpine populations in each region and raised them in growth chambers under conditions approximating their natural environments. We gathered RNA-seq and genetic data of 48 and 63 plants and scored vegetative and flowering traits in 203 and 272 plants respectively. Then, we compared gene expression and trait values over two treatments differing in temperature and irradiance and elevations of origin and quantified the extent of ancestral and derived plasticity. At the transcriptomic level, initial plastic changes tended to be more reinforced than reversed in adapted alpine populations. Genes showing reinforcement were involved in the stress response, developmental processes and morphogenesis and those undergoing reversion were related to the stress response (light and biotic stress). At the phenotypic level, initial plastic changes in all but one trait were also reinforced supporting a facilitating role of phenotypic plasticity during colonization of an alpine environment. Our results contrasted with previous studies that showed generally higher reversion than reinforcement and supported the idea that ancestral plasticity tends to be reinforced in the context of alpine adaptation. However, plasticity may also be the source of potential maladaptation, especially at the transcriptomic level.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, Krakow, Poland
- Department of Botany, Charles University of Prague, Prague, Czech Republic
| | - Doubravka Požárová
- Department of Botany, Charles University of Prague, Prague, Czech Republic
| | - Filip Kolář
- Department of Botany, Charles University of Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Fu T, Gifford DR, Knight CG, Brockhurst MA. Eco-evolutionary dynamics of experimental Pseudomonas aeruginosa populations under oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001396. [PMID: 37943284 PMCID: PMC10710836 DOI: 10.1099/mic.0.001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human immune system to confront invading bacteria. In this study, we show that strains of the opportunistic pathogenic bacterium Pseudomonas aeruginosa vary in their eco-evolutionary responses to hydrogen peroxide stress. By quantifying their 24 h growth kinetics across hydrogen peroxide gradients we show that a transmissible epidemic strain isolated from a chronic airway infection of a cystic fibrosis patient, LESB58, is much more susceptible to hydrogen peroxide than either of the reference strains, PA14 or PAO1, with PAO1 showing the lowest susceptibility. Using a 12 day serial passaging experiment combined with a mathematical model, we then show that short-term susceptibility controls the longer-term survival of populations exposed to subinhibitory levels of hydrogen peroxide, but that phenotypic evolutionary responses can delay population extinction. Our model further suggests that hydrogen peroxide driven extinctions are more likely with higher rates of population turnover. Together, these findings suggest that hydrogen peroxide is likely to be an effective defence in host niches where there is high population turnover, which may explain the counter-intuitively high susceptibility of a strain isolated from chronic lung infection, where such ecological dynamics may be slower.
Collapse
Affiliation(s)
- Taoran Fu
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Danna R. Gifford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PT, UK
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
13
|
Ebadi M, Bafort Q, Mizrachi E, Audenaert P, Simoens P, Van Montagu M, Bonte D, Van de Peer Y. The duplication of genomes and genetic networks and its potential for evolutionary adaptation and survival during environmental turmoil. Proc Natl Acad Sci U S A 2023; 120:e2307289120. [PMID: 37788315 PMCID: PMC10576144 DOI: 10.1073/pnas.2307289120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
The importance of whole-genome duplication (WGD) for evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary dead end, there is growing evidence that polyploidization can help overcome environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete or outlive nonpolyploids at times of environmental upheaval remain elusive, especially for autopolyploids, in which heterosis effects are limited. On the longer term, WGD might increase both mutational and environmental robustness due to redundancy and increased genetic variation, but on the short-or even immediate-term, selective advantages of WGDs are harder to explain. Here, by duplicating artificially generated Gene Regulatory Networks (GRNs), we show that duplicated GRNs-and thus duplicated genomes-show higher signal output variation than nonduplicated GRNs. This increased variation leads to niche expansion and can provide polyploid populations with substantial advantages to survive environmental turmoil. In contrast, under stable environments, GRNs might be maladaptive to changes, a phenomenon that is exacerbated in duplicated GRNs. We believe that these results provide insights into how genome duplication and (auto)polyploidy might help organisms to adapt quickly to novel conditions and to survive ecological uproar or even cataclysmic events.
Collapse
Affiliation(s)
- Mehrshad Ebadi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
| | - Pieter Audenaert
- Department of Information Technology–IDLab, Ghent University-IMEC, Gent9052, Belgium
| | - Pieter Simoens
- Department of Information Technology–IDLab, Ghent University-IMEC, Gent9052, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Ghent9000, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
14
|
Cerca J. Understanding natural selection and similarity: Convergent, parallel and repeated evolution. Mol Ecol 2023; 32:5451-5462. [PMID: 37724599 DOI: 10.1111/mec.17132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Parallel and convergent evolution offer some of the most compelling evidence for the significance of natural selection in evolution, as the emergence of similar adaptive solutions is unlikely to occur by random chance alone. However, these terms are often employed inconsistently, leading to misinterpretation and confusion, and recently proposed definitions have unintentionally diminished the emphasis on the evolution of similar adaptive solutions. Here, I examine various conceptual frameworks and definitions related to parallel and convergent evolution and propose a consolidated framework that enhances our comprehension of these evolutionary patterns. The primary aim of this framework is to harmonize the concepts of parallel and convergent evolution together with natural selection and the idea of similarity. Both concepts involve the evolution of similar adaptive solutions as a result of environmental challenges. The distinction lies in ancestral phenotypes. Parallel evolution takes place when the ancestral phenotypes (before selection) of the lineages are similar. Convergent evolution happens when the lineages have distinct ancestral phenotypes (before selection). Because an ancestral-based distinction will inevitably lead to cases where uncertainty in the distinction may arise, the framework includes a general term, repeated evolution, which can be used as a term applying to the evolution of similar phenotypes and genotypes as well as similar responses to environmental pressures. Based on the argument that genetic similarity may frequently arise without selection, the framework posits that the similarity of genetic sequences is not of great interest unless linked to the actions of natural selection or to the origins (mutation, standing genetic variation, gene flow) and locations of the similar sequences.
Collapse
Affiliation(s)
- José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Palomar G, Wos G, Stoks R, Sniegula S. Latitude-specific urbanization effects on life history traits in the damselfly Ischnura elegans. Evol Appl 2023; 16:1503-1515. [PMID: 37622092 PMCID: PMC10445092 DOI: 10.1111/eva.13583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
- Department of Genetics, Physiology, and MicrobiologyComplutense University of MadridMadridSpain
| | - Guillaume Wos
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and EcotoxicologyKU LeuvenLeuvenBelgium
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| |
Collapse
|
16
|
Thurman TJ, Palmer TM, Kolbe JJ, Askary AM, Gotanda KM, Lapiedra O, Kartzinel TR, Man In't Veld N, Revell LJ, Wegener JE, Schoener TW, Spiller DA, Losos JB, Pringle RM, Barrett RDH. The Difficulty of Predicting Evolutionary Change in Response to Novel Ecological Interactions: A Field Experiment with Anolis Lizards. Am Nat 2023; 201:537-556. [PMID: 36958004 DOI: 10.1086/723209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractDetermining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pressures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictability of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme-associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and habitat use, whereas genetic change was unpredictable and not measurably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.
Collapse
|
17
|
Sacchi R, Mangiacotti M, Scali S, Storniolo F, Zuffi MAL. Species-Specific Spatial Patterns of Variation in Sexual Dimorphism by Two Lizards Settled in the Same Geographic Context. Animals (Basel) 2023; 13:ani13040736. [PMID: 36830523 PMCID: PMC9952635 DOI: 10.3390/ani13040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The evolution of sexual dimorphism (SD) results from intricate interactions between sexual and natural selections. Sexually selected traits are expected to depend on individual condition, while natural selected traits should not be. Islands offer an ideal context to test how these drivers interact with one another, as the size is a reliable proxy for resource availability. Here, we analysed SD in body size (snout-vent length) and head shape (assessed by geometric morphometric) in two species of lizards (Podarcis muralis and P. siculus) inhabiting the Tuscan archipelago (Central Italy). We found a strong SD variation among islands in both species. Furthermore, in P. muralis emerged some significant correlations between SD and island size, supporting the occurrence of possible effects of individual condition on SD. By contrast, SD in P. siculus followed opposite trajectories than in P. muralis, suggesting that in this species, natural selection could play a major role as a driver of SD. Our findings show that natural and sexual selection can interact in complex ways, and the responses are species-specific. Therefore, spatial patterns of variation in SD may strongly differ among species, even when they settle in the same geographic contest.
Collapse
Affiliation(s)
- Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy
- Correspondence:
| | - Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy
| | - Stefano Scali
- Museo di Storia Naturale, Comune di Milano, I-20121 Milano, Italy
| | - Federico Storniolo
- Department of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy
| | | |
Collapse
|
18
|
Size and shape variation of Hypsipyla grandella Zeller (Lepidoptera: Pyralidae) in two hosts: A morphometric approach. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Neaux D, Harbers H, Blanc B, Ortiz K, Locatelli Y, Herrel A, Debat V, Cucchi T. The effect of captivity on craniomandibular and calcaneal ontogenetic trajectories in wild boar. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:575-585. [PMID: 35286754 DOI: 10.1002/jez.b.23130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Deciphering the plastic (i.e., nonheritable) changes induced by human control over wild animals in the archeological record is challenging. Previous studies detected morphological markers associated with captivity in the cranium, mandible, and calcaneus of adult wild boar (Sus scrofa) but the developmental trajectories leading up to these changes during ontogeny remain unknown. To assess the impact of growth in a captive environment on morphological structures during postnatal ontogeny, we used an experimental approach focusing on the same three structures and taxon. We investigated the form and size differences of captive-reared and wild-caught wild boar during growth using three-dimensional landmark-based geometric morphometrics. Our results provide evidence of an influence of captivity on the morphology of craniomandibular structures, as wild specimens are smaller than captive individuals at similar ages. The food resources inherent to anthropogenic environments may explain some of the observed differences between captive-reared and wild specimens. The calcaneus presents a different contrasted pattern of plasticity as captive and wild individuals differ in terms of form but not in terms of size. The physically more constrained nature of the calcaneus and the direct influence of mobility reduction on this bone may explain these discrepancies. These results provide new methodological perspectives for bioarchaeological approaches as they imply that the plastic mark of captivity can be observed in juvenile specimens in the same way it has been previously described in adults.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie, UMR 7262, Université de Poitiers CNRS, Poitiers, France
| | - Hugo Harbers
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle CNRS UPMC EPHE, UA, Paris, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
- Physiologie de la Reproduction et des Comportements, UMR 7247, INRAE CNRS Université de Tours IFCE, Nouzilly, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle CNRS UPMC EPHE, UA, Paris, France
| | - Thomas Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
| |
Collapse
|
20
|
Härer A, Rennison DJ. Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis. Ecol Evol 2022; 12:e9674. [PMID: 36590339 PMCID: PMC9797641 DOI: 10.1002/ece3.9674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Parallel evolution of phenotypic traits is regarded as strong evidence for natural selection and has been studied extensively in a variety of taxa. However, we have limited knowledge of whether parallel evolution of host organisms is accompanied by parallel changes of their associated microbial communities (i.e., microbiotas), which are crucial for their hosts' ecology and evolution. Determining the extent of microbiota parallelism in nature can improve our ability to identify the factors that are associated with (putatively adaptive) shifts in microbial communities. While it has been emphasized that (non)parallel evolution is better considered as a quantitative continuum rather than a binary phenomenon, quantitative approaches have rarely been used to study microbiota parallelism. We advocate using multivariate vector analysis (i.e., phenotypic change vector analysis) to quantify direction and magnitude of microbiota changes and discuss the applicability of this approach for studying parallelism, and we compiled an R package for multivariate vector analysis of microbial communities ('multivarvector'). We exemplify its use by reanalyzing gut microbiota data from multiple fish species that exhibit parallel shifts in trophic ecology. We found that multivariate vector analysis results were largely consistent with other statistical methods, parallelism estimates were not affected by the taxonomic level at which the microbiota is studied, and parallelism might be stronger for gut microbiota function compared to taxonomic composition. This approach provides an analytical framework for quantitative comparisons across host lineages, thereby providing the potential to advance our capacity to predict microbiota changes. Hence, we emphasize that the development and application of quantitative measures, such as multivariate vector analysis, should be further explored in microbiota research in order to better understand the role of microbiota dynamics during their hosts' adaptive evolution, particularly in settings of parallel evolution.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
21
|
Balentine CM, Bolnick DA. Parallel evolution in human populations: A biocultural perspective. Evol Anthropol 2022; 31:302-316. [PMID: 36059181 DOI: 10.1002/evan.21956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 07/30/2022] [Indexed: 12/27/2022]
Abstract
Parallel evolution-where different populations evolve similar traits in response to similar environments-has been a topic of growing interest to biologists and biological anthropologists for decades. Parallel evolution occurs in human populations thanks to myriad biological and cultural mechanisms that permit humans to survive and thrive in diverse environments worldwide. Because humans shape and are shaped by their environments, biocultural approaches that emphasize the interconnections between biology and culture are key to understanding parallel evolution in human populations as well as the nuances of human biological variation and adaptation. In this review, we discuss how biocultural theory has been and can be applied to studies of parallel evolution and adaptation more broadly. We illustrate this through four examples of parallel evolution in humans: malaria resistance, lactase persistence, cold tolerance, and high-altitude adaptation.
Collapse
Affiliation(s)
- Christina M Balentine
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.,Department of Anthropology, University of Connecticut, Storrs, Connecticut, USA
| | - Deborah A Bolnick
- Department of Anthropology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
22
|
The Predictable Complexity of Evolutionary Allometry. Evol Biol 2022. [DOI: 10.1007/s11692-022-09581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Dubied M, Montuire S, Navarro N. Functional constraints channel mandible shape ontogenies in rodents. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220352. [PMID: 36300135 PMCID: PMC9579770 DOI: 10.1098/rsos.220352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In mammals, postnatal growth plays an essential role in the acquisition of the adult shape. During this period, the mandible undergoes many changing functional constraints, leading to spatialization of bone formation and remodelling to accommodate various dietary and behavioural changes. The interactions between the bone, muscles and teeth drive this developmental plasticity, which, in turn, could lead to convergences in the developmental processes constraining the directionality of ontogenies, their evolution and thus the adult shape variation. To test the importance of the interactions between tissues in shaping the ontogenetic trajectories, we compared the mandible shape at five postnatal stages on three rodents: the house mouse, the Mongolian gerbil and the golden hamster, using geometric morphometrics. After an early shape differentiation, by both longer gestation and allometric scaling in gerbils or early divergence of postnatal ontogeny in hamsters in comparison with the mouse, the ontogenetic trajectories appear more similar around weaning. The changes in muscle load associated with new food processing and new behaviours at weaning seem to impose similar physical constraints on the mandible, driving the convergences of the ontogeny at that stage despite an early anatomical differentiation. Nonetheless, mice present a rather different timing compared with gerbils or hamsters.
Collapse
Affiliation(s)
- Morgane Dubied
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
| | - Sophie Montuire
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
- EPHE, PSL University, 75014 Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
- EPHE, PSL University, 75014 Paris, France
| |
Collapse
|
24
|
Carrión PL, Raeymaekers JAM, De León LF, Chaves JA, Sharpe DMT, Huber SK, Herrel A, Vanhooydonck B, Gotanda KM, Koop JAH, Knutie SA, Clayton DH, Podos J, Hendry AP. The terroir of the finch: How spatial and temporal variation shapes phenotypic traits in DARWIN'S finches. Ecol Evol 2022; 12:e9399. [PMID: 36225827 PMCID: PMC9534727 DOI: 10.1002/ece3.9399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.
Collapse
Affiliation(s)
- Paola L. Carrión
- Redpath Museum, Department of BiologyMcGill UniversityMontréalQuébecCanada
| | | | - Luis Fernando De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
- Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT‐AIP)PanamáRepública de Panamá
- Smithsonian Tropical Research InstitutePanamáRepública de Panamá
| | - Jaime A. Chaves
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
| | - Diana M. T. Sharpe
- Smithsonian Tropical Research InstitutePanamáRepública de Panamá
- Worcester State UniversityWorcesterMassachusettsUSA
| | - Sarah K. Huber
- Virginia Institute of Marine ScienceCollege of William & MaryGloucester PointVirginiaUSA
| | - Anthony Herrel
- Muséum National d'Histoire NaturelleDépartement Adaptations du VivantBâtiment d'Anatomie ComparéeParisFrance
| | | | - Kiyoko M. Gotanda
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
- Departement de BiologieUniversite de SherbrookeQuebecCanada
| | - Jennifer A. H. Koop
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinoisUSA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Jeffrey Podos
- Department of BiologyUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Andrew P. Hendry
- Redpath Museum, Department of BiologyMcGill UniversityMontréalQuébecCanada
| |
Collapse
|
25
|
Conaway MA, Adams DC. An effect size for comparing the strength of morphological integration across studies. Evolution 2022; 76:2244-2259. [PMID: 35971251 DOI: 10.1111/evo.14595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/16/2022] [Indexed: 01/22/2023]
Abstract
Understanding how and why phenotypic traits covary is a major interest in evolutionary biology. Biologists have long sought to characterize the extent of morphological integration in organisms, but comparing levels of integration for a set of traits across taxa has been hampered by the lack of a reliable summary measure and testing procedure. Here, we propose a standardized effect size for this purpose, calculated from the relative eigenvalue variance,V r e l $V_{rel}$ . First, we evaluate several eigenvalue dispersion indices under various conditions, and show that onlyV r e l $V_{rel}$ remains stable across samples size and the number of variables. We then demonstrate thatV r e l $V_{rel}$ accurately characterizes input patterns of covariation, so long as redundant dimensions are excluded from the calculations. However, we also show that the variance of the sampling distribution ofV r e l $V_{rel}$ depends on input levels of trait covariation, makingV r e l $V_{rel}$ unsuitable for direct comparisons. As a solution, we propose transformingV r e l $V_{rel}$ to a standardized effect size (Z-score) for representing the magnitude of integration for a set of traits. We also propose a two-sample test for comparing the strength of integration between taxa, and show that this test displays appropriate statistical properties. We provide software for implementing the procedure, and an empirical example illustrates its use.
Collapse
Affiliation(s)
- Mark A Conaway
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
26
|
Collar DC, Tremaine S, Harrington RC, Beckett HT, Friedman M. Mosaic adaptive peak shifts underlie body shape diversification in pelagiarian fishes (Acanthomorpha: Percomorpha). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Extreme body elongation in fishes is a major evolutionary transformation that extends the boundaries of morphological diversity and alters aspects of function, behaviour and ecology. Prior studies have identified features of the cranial and axial skeleton that characterize elongate fishes, but a lack of detailed reconstructions of anatomical evolution has limited inferences about factors that underlie major shifts in body shape. In this study, we fitted multi-peak adaptive (Ornstein–Uhlenbeck) evolutionary models to species body shape and anatomical dimensions in Pelagiaria, a radiation of open-ocean fishes whose species span a continuum from deep bodied to highly elongate. We inferred an ancestral fusiform adaptive peak that is retained by several major pelagiarian lineages (e.g. Scombridae) and found robust support for multiple transitions to deep-bodied optima (in the families Stromateidae, Bramidae and Caristiidae) and elongate-bodied optima (within Trichiuroidei), including two instances of sequential shifts towards increasingly elongate optima that followed distinct paths of anatomical evolution. Within Trichiuridae, initial increases in head length and the number of vertebrae were followed by changes in head and vertebral shape. Within an elongate-bodied subclade of taxa traditionally identified as ‘gempylids’, changes in head and vertebral shape and in the number of precaudal vertebrae preceded an increase in the number of caudal vertebrae. Altogether, this mosaic of anatomical peak shifts suggests that body shape transformations were associated with differing selective demands and developmental changes.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University , Newport News, VA , USA
| | - Samantha Tremaine
- Department of Organismal and Environmental Biology, Christopher Newport University , Newport News, VA , USA
| | - Richard C Harrington
- Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA
| | - Hermione T Beckett
- Department of Earth Sciences, University of Oxford , Oxford , UK
- Department of Biology, King’s High School for Girls , Warwick , UK
| | - Matt Friedman
- Museum of Paleontology, University of Michigan , Ann Arbor, MI , USA
- Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
27
|
Whiting JR, Paris JR, van der Zee MJ, Fraser BA. AF‐vapeR
: A multivariate genome scan for detecting parallel evolution using allele frequency change vectors. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James R. Whiting
- Department of Biosciences University of Exeter Exeter UK
- Department of Biological Sciences University of Calgary Calgary Alberta Canada
| | - Josephine R. Paris
- Department of Biosciences University of Exeter Exeter UK
- Department of Health, Life and Environmental Sciences University of L'Aquila L'Aquila Italy
| | | | | |
Collapse
|
28
|
Camillo CS, Valenzuela N, Johnson SA. Effects of semi-constant temperature on embryonic and hatchling phenotypes of six-tubercled Amazon River turtles, Podocnemis sextuberculata. J Therm Biol 2022; 108:103292. [DOI: 10.1016/j.jtherbio.2022.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
|
29
|
York RA, Brezovec LE, Coughlan J, Herbst S, Krieger A, Lee SY, Pratt B, Smart AD, Song E, Suvorov A, Matute DR, Tuthill JC, Clandinin TR. The evolutionary trajectory of drosophilid walking. Curr Biol 2022; 32:3005-3015.e6. [PMID: 35671756 PMCID: PMC9329251 DOI: 10.1016/j.cub.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/03/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Neural circuits must both execute the behavioral repertoire of individuals and account for behavioral variation across species. Understanding how this variation emerges over evolutionary time requires large-scale phylogenetic comparisons of behavioral repertoires. Here, we describe the evolution of walking in fruit flies by capturing high-resolution, unconstrained movement from 13 species and 15 strains of drosophilids. We find that walking can be captured in a universal behavior space, the structure of which is evolutionarily conserved. However, the occurrence of and transitions between specific movements have evolved rapidly, resulting in repeated convergent evolution in the temporal structure of locomotion. Moreover, a meta-analysis demonstrates that many behaviors evolve more rapidly than other traits. Thus, the architecture and physiology of locomotor circuits can execute precise individual movements in one species and simultaneously support rapid evolutionary changes in the temporal ordering of these modular elements across clades.
Collapse
Affiliation(s)
- Ryan A York
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Luke E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Jenn Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven Herbst
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Avery Krieger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Su-Yee Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Ashley D Smart
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Eugene Song
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Anton Suvorov
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Brachmann MK, Parsons K, Skúlason S, Gaggiotti O, Ferguson M. Variation in the genomic basis of parallel phenotypic and ecological divergence in benthic and pelagic morphs of Icelandic Arctic charr (Salvelinus alpinus). Mol Ecol 2022; 31:4688-4706. [PMID: 35861579 DOI: 10.1111/mec.16625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Sympatric adaptive phenotypic divergence should be underlain by genomic differentiation between sub-populations. When divergence drives similar patterns of phenotypic and ecological variation within species we expect evolution to draw on common allelic variation. We investigated divergence histories and genomic signatures of adaptive divergence between benthic and pelagic morphs of Icelandic Arctic charr. Divergence histories for each of four populations were reconstructed using coalescent modelling and 14,187 single nucleotide polymorphisms. Sympatric divergence with continuous gene flow was supported in two populations while allopatric divergence with secondary contact was supported in one population; we could not differentiate between demographic models in the fourth population. We detected parallel patterns of phenotypic divergence along benthic-pelagic evolutionary trajectories among populations. Patterns of genomic differentiation between benthic and pelagic morphs were characterized by outlier loci in many narrow peaks of differentiation throughout the genome, which may reflect the eroding effects of gene flow on nearby neutral loci. We then used genome-wide association analyses to relate both phenotypic (body shape and size) and ecological (carbon and nitrogen stable isotopes) variation to patterns of genomic differentiation. Many peaks of genomic differentiation were associated with phenotypic and ecological variation in the three highly divergent populations, suggesting a genomic basis for adaptive divergence. We detected little evidence for a parallel genomic basis of differentiation as most regions and outlier loci were not shared among populations. Our results show that adaptive divergence can have varied genomic consequences in populations with relatively recent common origins, similar divergence histories, and parallel phenotypic divergence.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative Medicine, School of Life Science, University of Glasgow, Glasgow, UK
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, Saudárkrókur, Iceland.,Icelandic Museum of Natural History, Reykjavik, Iceland
| | - Oscar Gaggiotti
- School of biology, Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Moira Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
31
|
Mitchell N, Luu H, Owens GL, Rieseberg LH, Whitney KD. Hybrid evolution repeats itself across environmental contexts in Texas sunflowers (Helianthus). Evolution 2022; 76:1512-1528. [PMID: 35665925 PMCID: PMC9544064 DOI: 10.1111/evo.14536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023]
Abstract
To what extent is evolution repeatable? Little is known about whether the evolution of hybrids is more (or less) repeatable than that of nonhybrids. We used field experimental evolution in annual sunflowers (Helianthus) in Texas to ask the extent to which hybrid evolution is repeatable across environments compared to nonhybrid controls. We created hybrids between Helianthus annuus (L.) and H. debilis (Nutt.) and grew plots of both hybrids and nonhybrid controls through eight generations at three sites in Texas. We collected seeds from each generation and grew each generation × treatment × home site combination at two final common gardens. We estimated the strength and direction of evolution in terms of fitness and 24 traits, tested for repeated versus nonrepeated evolution, and assessed overall phenotypic evolution across lineages and in relation to a locally adapted phenotype. Hybrids consistently evolved higher fitness over time, while controls did not, although trait evolution varied in strength across home sites. Repeated evolution was more evident in hybrids versus nonhybrid controls, and hybrid evolution was often in the direction of the locally adapted phenotype. Our findings have implications for both the nature of repeatability in evolution and the contribution of hybridization to evolution across environmental contexts.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA,Department of BiologyUniversity of Wisconsin – Eau ClaireEau ClaireWisconsinUSA
| | - Hoang Luu
- Department of Environmental and Plant BiologyOhio UniversityAthensOhioUSA
| | - Gregory L. Owens
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British ColumbiaBritish ColumbiaCanada
| | | |
Collapse
|
32
|
Abdullahi M, Zhou J, Dandhapani V, Chaturvedi A, Orsini L. Historical exposure to chemicals reduces tolerance to novel chemical stress in Daphnia (waterflea). Mol Ecol 2022; 31:3098-3111. [PMID: 35377519 PMCID: PMC9321109 DOI: 10.1111/mec.16451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022]
Abstract
Until the last few decades, anthropogenic chemicals used in most production processes have not been comprehensively assessed for their risk and impact on wildlife and humans. They are transported globally and usually end up in the environment as unintentional pollutants, causing long‐term adverse effects. Modern toxicology practices typically use acute toxicity tests of unrealistic concentrations of chemicals to determine their safe use, missing pathological effects arising from long‐term exposures to environmentally relevant concentrations. Here, we study the transgenerational effect of environmentally relevant concentrations of five chemicals on the priority list of international regulatory frameworks on the keystone species Daphnia magna. We expose Daphnia genotypes resurrected from the sedimentary archive of a lake with a known history of chemical pollution to the five chemicals to understand how historical exposure to chemicals influences adaptive responses to novel chemical stress. We measure within‐ and transgenerational plasticity in fitness‐linked life history traits following exposure of “experienced” and “naive” genotypes to novel chemical stress. As the revived Daphnia originate from the same genetic pool sampled at different times in the past, we are able to quantify the long‐term evolutionary impact of chemical pollution by studying genome‐wide diversity and identifying functional pathways affected by historical chemical stress. Our results suggest that historical exposure to chemical stress causes reduced genome‐wide diversity, leading to lower cross‐generational tolerance to novel chemical stress. Lower tolerance is underpinned by reduced gene diversity at detoxification, catabolism and endocrine genes in experienced genotypes. We show that these genes sit within pathways that are conserved and potential chemical targets in other species, including humans.
Collapse
Affiliation(s)
- Muhammad Abdullahi
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Vignesh Dandhapani
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Anurag Chaturvedi
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK.,The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK
| |
Collapse
|
33
|
Scholtes SJ, Arntzen JW, Ajduković M, Ivanović A. Variation in vertebrae shape across small-bodied newts reveals functional and developmental constraints acting upon the trunk region. J Anat 2022; 240:639-646. [PMID: 34761388 PMCID: PMC8930814 DOI: 10.1111/joa.13591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
The salamander vertebral column is largely undifferentiated with a series of more or less uniform rib-bearing presacral vertebrae traditionally designated as the trunk region. We explored regionalization of the salamander trunk in seven species and two subspecies of the salamander genus Lissotriton by the combination of microcomputed tomography scanning and geometric morphometrics. The detailed information on trunk vertebral shape was subjected to a multidimensional cluster analysis and a phenotypic trajectory analysis. With these complementary approaches, we observed a clear morphological regionalization. Clustering analysis showed that the anterior trunk vertebrae (T1 and T2) have distinct morphologies that are shared by all taxa, whereas the subsequent, more posterior vertebrae show significant disparity between species. The phenotypic trajectory analysis revealed that all taxa share a common pattern and amount of shape change along the trunk region. Altogether, our results support the hypothesis of a conserved anterior-posterior developmental patterning which can be associated with different functional demands, reflecting (sub)species' and, possibly, regional ecological divergences within species.
Collapse
Affiliation(s)
| | | | - Maja Ajduković
- Department of Evolutionary BiologyInstitute for Biological Research “Siniša Stanković”National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Ana Ivanović
- Faculty of BiologyUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
34
|
Aulsebrook LC, Wong BBM, Hall MD. Warmer temperatures limit the effects of antidepressant pollution on life-history traits. Proc Biol Sci 2022; 289:20212701. [PMID: 35135347 PMCID: PMC8825998 DOI: 10.1098/rspb.2021.2701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pharmaceutical pollutants pose a threat to aquatic ecosystems worldwide. Yet, few studies have considered the interaction between pharmaceuticals and other chronic stressors contemporaneously, even though the environmental challenges confronting animals in the wild seldom, if ever, occur in isolation. Thermal stress is one such environmental challenge that may modify the threat of pharmaceutical pollutants. Accordingly, we investigated how fluoxetine (Prozac), a common psychotherapeutic and widespread pollutant, interacts with temperature to affect life-history traits in the water flea, Daphnia magna. We chronically exposed two genotypes of Daphnia to two ecological relevant concentrations of fluoxetine (30 ng l-1 and 300 ng l-1) and a concentration representing levels used in acute toxicity tests (3000 ng l-1) and quantified the change in phenotypic trajectories at two temperatures (20°C and 25°C). Across multiple life-history traits, we found that fluoxetine exposure impacted the fecundity, body size and intrinsic growth rate of Daphnia in a non-monotonic manner at 20°C, and often in genotypic-specific ways. At 25°C, however, the life-history phenotypes of individuals converged under the widely varying levels of fluoxetine, irrespective of genotype. Our study underscores the importance of considering the complexity of interactions that can occur in the wild when assessing the effects of chemical pollutants on life-history traits.
Collapse
Affiliation(s)
- Lucinda C Aulsebrook
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
35
|
Watanabe J. Detecting (non)parallel evolution in multidimensional spaces: angles, correlations and eigenanalysis. Biol Lett 2022; 18:20210638. [PMID: 35168376 PMCID: PMC8847891 DOI: 10.1098/rsbl.2021.0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Parallelism between evolutionary trajectories in a trait space is often seen as evidence for repeatability of phenotypic evolution, and angles between trajectories play a pivotal role in the analysis of parallelism. However, properties of angles in multidimensional spaces have not been widely appreciated by biologists. To remedy this situation, this study provides a brief overview on geometric and statistical aspects of angles in multidimensional spaces. Under the null hypothesis that trajectory vectors have no preferred directions (i.e. uniform distribution on hypersphere), the angle between two independent vectors is concentrated around the right angle, with a more pronounced peak in a higher-dimensional space. This probability distribution is closely related to t- and beta distributions, which can be used for testing the null hypothesis concerning a pair of trajectories. A recently proposed method with eigenanalysis of a vector correlation matrix can be connected to the test of no correlation or concentration of multiple vectors, for which simple test procedures are available in the statistical literature. Concentration of vectors can also be examined by tools of directional statistics such as the Rayleigh test. These frameworks provide biologists with baselines to make statistically justified inferences for (non)parallel evolution.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| |
Collapse
|
36
|
Sturbois A, Cucherousset J, De Cáceres M, Desroy N, Riera P, Carpentier A, Quillien N, Grall J, Espinasse B, Cherel Y, Schaal G. Stable Isotope Trajectory Analysis (
SITA
): A new approach to quantify and visualize dynamics in stable isotope studies. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. Sturbois
- Vivarmor Nature, 18 C rue du Sabot Ploufragan France
- Réserve naturelle nationale de la Baie de Saint‐Brieuc, site de l'étoile, 22120 Hillion France
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc Dinard France
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| | - J. Cucherousset
- UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), CNRS, Université Paul Sabatier, IRD, 118 route de Narbonne Toulouse France
| | | | - N. Desroy
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc Dinard France
| | - P. Riera
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Place Georges Teissier CS90074, 29688, Roscoff Cedex France
| | - A. Carpentier
- Université de Rennes 1, BOREA, Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Campus de Beaulieu Rennes France
| | - N. Quillien
- France Energies Marines, 525 Avenue Alexis de Rochon Plouzané France
| | - J. Grall
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| | - B. Espinasse
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Y. Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - G. Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| |
Collapse
|
37
|
Enriquez‐Urzelai U, Nicieza AG, Montori A, Llorente GA, Urrutia MB. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. OIKOS 2021. [DOI: 10.1111/oik.08566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alfredo G. Nicieza
- Biodiversity Research Inst. (IMIB), Univ. of Oviedo‐Principality of Asturias‐CSIC Oviedo Spain
- Ecology Unit, Dept of Biology of Organisms and Systems, Univ. of Oviedo Oviedo Spain
| | - Albert Montori
- CREAC, Centre de Recerca i Educació Ambiental de Calafell, Calafell Barcelona Spain
| | - Gustavo A. Llorente
- Dept of Evolutionary Biology, Ecology and Environmental Sciences and Inst. de Recerca de la Biodiversitat (IRBIO), Faculty of Biology, Univ. of Barcelona Barcelona Spain
| | - Miren Bego Urrutia
- Depto de Genética, Antropología Física y Fisiología Animal, Univ. del País Vasco/Euskal Herriko Unibertsitatea Bilbao Spain
| |
Collapse
|
38
|
de Aranzamendi MC, Martínez JJ, Held C, Sahade R. Parallel shape divergence between ecotypes of the limpet Nacella concinna along the Antarctic Peninsula: a new model species for parallel evolution? ZOOLOGY 2021; 150:125983. [PMID: 34915245 DOI: 10.1016/j.zool.2021.125983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Parallel phenotypic divergence is the independent differentiation between phenotypes of the same lineage or species occupying ecologically similar environments in different populations. We tested in the Antarctic limpet Nacella concinna the extent of parallel morphological divergence in littoral and sublittoral ecotypes throughout its distribution range. These ecotypes differ in morphological, behavioural and physiological characteristics. We studied the lateral and dorsal outlines of shells and the genetic variation of the mitochondrial gene Cytochrome Oxidase subunit I from both ecotypes in 17 sample sites along more than 2,000 km. The genetic data indicate that both ecotypes belong to a single evolutionary lineage. The magnitude and direction of phenotypic variation differ between ecotypes across sample sites; completely parallel ecotype-pairs (i.e., they diverge in the same magnitude and in the same direction) were detected in 84.85% of lateral and 65.15% in dorsal view comparisons. Besides, specific traits (relative shell height, position of shell apex, and elliptical/pear-shape outline variation) showed high parallelism. We observed weak morphological covariation between the two shape shell views, indicating that distinct evolutionary forces and environmental pressures could be acting on this limpet shell shape. Our results demonstrate there is a strong parallel morphological divergence pattern in N. concinna along its distribution, making this Antarctic species a suitable model for the study of different evolutionary forces shaping the shell evolution of this limpet.
Collapse
Affiliation(s)
- María Carla de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos y Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| | - Juan José Martínez
- Laboratorio de Ecología Evolutiva y Biogeografía, Instituto de Ecorregiones Andinas (INECOA), CONICET and Universidad Nacional de Jujuy, C. Gorriti 237, San Salvador de Jujuy, 4600, Argentina.
| | - Christoph Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Ricardo Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos y Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| |
Collapse
|
39
|
Oliver JD, Jones KE, Pierce SE, Hautier L. Size and shape regional differentiation during the development of the spine in the nine-banded armadillo (Dasypus novemcinctus). Evol Dev 2021; 23:496-512. [PMID: 34813149 DOI: 10.1111/ede.12393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Xenarthrans (armadillos, anteaters, sloths, and their extinct relatives) are unique among mammals in displaying a distinctive specialization of the posterior trunk vertebrae-supernumerary vertebral xenarthrous articulations. This study seeks to understand how xenarthry develops through ontogeny and if it may be constrained to appear within pre-existing vertebral regions. Using three-dimensional geometric morphometrics on the neural arches of vertebrae, we explore phenotypic, allometric, and disparity patterns of the different axial morphotypes during the ontogeny of nine-banded armadillos. Shape-based regionalization analyses showed that the adult thoracolumbar column is divided into three regions according to the presence or absence of ribs and the presence or absence of xenarthrous articulations. A three-region division was retrieved in almost all specimens through development, although younger stages (e.g., fetuses, neonates) have more region boundary variability. In size-based regionalization analyses, thoracolumbar vertebrae are separated into two regions: a prediaphragmatic, prexenarthrous region, and a postdiaphragmatic xenarthrous region. We show that posterior thoracic vertebrae grow at a slower rate, while anterior thoracics and lumbars grow at a faster rate relatively, with rates decreasing anteroposteriorly in the former and increasing anteroposteriorly in the latter. We propose that different proportions between vertebrae and vertebral regions might result from differences in growth pattern and timing of ossification.
Collapse
Affiliation(s)
- Jillian D Oliver
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Katrina E Jones
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Stephanie E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Lionel Hautier
- Institut des Sciences de l'Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
40
|
Weber AAT, Rajkov J, Smailus K, Egger B, Salzburger W. Speciation dynamics and extent of parallel evolution along a lake-stream environmental contrast in African cichlid fishes. SCIENCE ADVANCES 2021; 7:eabg5391. [PMID: 34731007 PMCID: PMC8565912 DOI: 10.1126/sciadv.abg5391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the dynamics of speciation is a central topic in evolutionary biology. Here, we investigated how morphological and genomic differentiation accumulated along the speciation continuum in the African cichlid fish Astatotilapia burtoni. While morphological differentiation was continuously distributed across different lake-stream population pairs, we found that there were two categories with respect to genomic differentiation, suggesting a “gray zone” of speciation at ~0.1% net nucleotide divergence. Genomic differentiation was increased in the presence of divergent selection and drift compared to drift alone. The quantification of phenotypic and genetic parallelism in four cichlid species occurring along a lake-stream environmental contrast revealed parallel and antiparallel components in rapid adaptive divergence, and morphological convergence in species replicates inhabiting the same environments. Furthermore, we show that the extent of parallelism was higher when ancestral populations were more similar. Our study highlights the complementary roles of divergent selection and drift on speciation and parallel evolution.
Collapse
|
41
|
James ME, Wilkinson MJ, Bernal DM, Liu H, North HL, Engelstädter J, Ortiz-Barrientos D. Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution 2021; 75:3115-3131. [PMID: 34687472 PMCID: PMC9299460 DOI: 10.1111/evo.14387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune‐Headland coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait‐environment association in the system, with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of the most striking cases of phenotypic parallel evolution in nature.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Diana M Bernal
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Biousos Neotropicales S.A.S, Bogotá, Colombia
| | - Huanle Liu
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Henry L North
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
42
|
Friedman ST, Collyer ML, Price SA, Wainwright PC. Divergent processes drive parallel evolution in marine and freshwater fishes. Syst Biol 2021; 71:1319-1330. [PMID: 34605882 DOI: 10.1093/sysbio/syab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/20/2023] Open
Abstract
Evolutionary comparisons between major environmental divides, such as between marine and freshwater systems, can reveal the fundamental processes governing diversification dynamics. Although processes may differ due to the different scales of their biogeographic barriers, freshwater and marine environments nevertheless offer similar opportunities for diversification in benthic, demersal, and pelagic habitats. Here, we compare the evolutionary patterns and processes shaping teleost diversity both in each of these three habitats and between marine and freshwater systems. Using specimens from the National Museum of Natural History, we developed a dataset of linear measurements capturing body shape in 2,266 freshwater and 3,344 marine teleost species. With a novel comparative approach, we contrast the primary axis of morphological diversification in each habitat with the major axis defined by phylogenetic signal. By comparing angles between these axes, we find that fish in corresponding habitats have more similar primary axes of morphological diversity than would be expected by chance, but that different historical processes underlie these parallel patterns in freshwater and marine environments. Marine diversification is more strongly aligned with phylogenetic signal and shows a trend toward lineages occupying separate regions of morphospace. In contrast, ecological signal appears to be a strong driver of diversification in freshwater lineages through repeated morphological evolution in densely packed regions of morphospace. In spite of these divergent histories, our findings reveal that habitat has driven convergent patterns of evolutionary diversification on a global scale.
Collapse
Affiliation(s)
- S T Friedman
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - M L Collyer
- Department of Science, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - P C Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
43
|
She H, Jiang Z, Song G, Ericson PGP, Luo X, Shao S, Lei F, Qu Y. Quantifying adaptive divergence of the snowfinches in a common landscape. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Huishang She
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Zhiyong Jiang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Per G. P. Ericson
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Xu Luo
- Faculty of Biodiversity and Conservation Southwest Forestry University Kunming China
| | - Shimiao Shao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
44
|
Durão AF, Muñoz-Muñoz F, Ventura J. Postnatal ontogeny of the femur in fossorial and semiaquatic water voles in the 3D-shape space. Anat Rec (Hoboken) 2021; 305:1073-1086. [PMID: 34515418 DOI: 10.1002/ar.24765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
Water voles of the genus Arvicola constitute an excellent subject to investigate to which extent function affects postnatal developmental growth of limb structures in phylogenetically close species. We performed a comparative analysis of postweaning femur form changes between Arvicola sapidus (semiaquatic) and Arvicola scherman (fossorial) using three-dimensional landmark-based geometric morphometrics. In both species, we observed greater femur robustness in juvenile individuals than in adult ones, probably due to the accommodation of high loads on the bone during initial locomotor efforts. Significant interspecific differences were also found in the femur size and shape of adult specimens, as well as in the postnatal allometric and phenotypic trajectories. In terms of phenotypic variation, fossorial water voles show relatively wider third and lesser trochanters, and greater femur robustness than A. sapidus, characters associated to the digging activity. In contrast, A. sapidus displays a slight increase of the greater trochanter in comparison with A. scherman, which is seemingly an adaptive response for enhancing propulsion through the water. Results evidence that certain morphological traits and differences between A. sapidus and A. scherman in the allometric and phenotypic trajectories of the femur are associated with their different locomotor mode.
Collapse
Affiliation(s)
- Ana Filipa Durão
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain.,Àrea de recerca en petits mamífers, Museu de Ciències Naturals de Granollers "La Tela", Barcelona, Spain
| |
Collapse
|
45
|
Rohner PT, Linz DM, Moczek AP. Doublesex mediates species-, sex-, environment- and trait-specific exaggeration of size and shape. Proc Biol Sci 2021; 288:20210241. [PMID: 34157867 DOI: 10.1098/rspb.2021.0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Context-dependent trait exaggeration is a major contributor to phenotypic diversity. However, the genetic modifiers instructing development across multiple contexts remain largely unknown. We use the arthropod tibia, a hotspot for segmental differentiation, as a paradigm to assess the developmental mechanisms underlying the context-dependent structural exaggeration of size and shape through nutritional plasticity, sexual dimorphism and segmental differentiation. Using an RNAseq approach in the sexually dimorphic and male-polyphenic dung beetle Digitonthophagus gazella, we find that only a small portion (3.7%) of all transcripts covary positively in expression level with trait size across contexts. However, RNAi-mediated knockdown of the conserved sex-determination gene doublesex suggests that it functions as a context-dependent master mediator of trait exaggeration in D. gazella as well as the closely related dung beetle Onthophagus taurus. Taken together, our findings suggest (i) that the gene networks associated with trait exaggeration are highly dependent on the precise developmental context, (ii) that doublesex differentially shapes morphological exaggeration depending on developmental contexts and (iii) that this context-specificity of dsx-mediated trait exaggeration may diversify rapidly. This mechanism may contribute to the resolution of conflict arising from environment-dependent antagonistic selection among sexes and divergent developmental contexts in a wide range of animals.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University, 915 East Third Street, 102 Myers Hall, Bloomington, IN 47405, USA
| | - David M Linz
- Department of Biology, Indiana University, 915 East Third Street, 102 Myers Hall, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, 915 East Third Street, 102 Myers Hall, Bloomington, IN 47405, USA
| |
Collapse
|
46
|
Hector TE, Sgrò CM, Hall MD. Temperature and pathogen exposure act independently to drive host phenotypic trajectories. Biol Lett 2021; 17:20210072. [PMID: 34129797 PMCID: PMC8205525 DOI: 10.1098/rsbl.2021.0072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Natural populations are experiencing an increase in the occurrence of both thermal stress and disease outbreaks. How these two common stressors interact to determine host phenotypic shifts will be important for population persistence, yet a myriad of different traits and pathways are a target of both stressors, making generalizable predictions difficult to obtain. Here, using the host Daphnia magna and its bacterial pathogen Pasteuria ramosa, we tested how temperature and pathogen exposure interact to drive shifts in multivariate host phenotypes. We found that these two stressors acted mostly independently to shape host phenotypic trajectories, with temperature driving a faster pace of life by favouring early development and increased intrinsic population growth rates, while pathogen exposure impacted reproductive potential through reductions in lifetime fecundity. Studies focussed on extreme thermal stress are increasingly showing how pathogen exposure can severely hamper the thermal tolerance of a host. However, our results suggest that under milder thermal stress, and in terms of life-history traits, increases in temperature might not exacerbate the impact of pathogen exposure on host performance, and vice versa.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.,Centre for Geometric Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
47
|
Jewlal E, Barr K, Laird DW, Willmore KE. Connexin 43 contributes to phenotypic robustness of the mouse skull. Dev Dyn 2021; 250:1810-1827. [PMID: 34091987 DOI: 10.1002/dvdy.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND We compared skull shape and variation among genetically modified mice that exhibit different levels of connexin43 (Cx43) channel function, to determine whether Cx43 contributes to craniofacial phenotypic robustness. Specifically, we used two heterozygous mutant mouse models (G60S/+ and I130T/+) that, when compared to their wildtype counterparts, have an ~80% and ~50% reduction in Cx43 function, respectively. RESULTS Both mutant strains showed significant differences in skull shape compared to wildtype littermates and while these differences were more severe in the G60S/+ mouse, shape differences were localized to similar regions of the skull in both mutants. However, increased skull shape variation was observed in G60S/+ mutants only. Additionally, covariation of skull structures was disrupted in the G60S/+ mutants only, indicating that while a 50% reduction in Cx43 function is sufficient to cause a shift in mean skull shape, the threshold for Cx43 function for disrupting craniofacial phenotypic robustness is lower. CONCLUSIONS Collectively, our results indicate Cx43 can contribute to phenotypic robustness of the skull through a nonlinear relationship between Cx43 gap junctional function and phenotypic outcomes.
Collapse
Affiliation(s)
- Elizabeth Jewlal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Kevin Barr
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Katherine E Willmore
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
48
|
Draghici D, Barr K, Hardy DB, Allman BL, Willmore KE. Effects of advanced maternal age and acute prenatal alcohol exposure on mouse offspring growth and craniofacial phenotype. Alcohol Clin Exp Res 2021; 45:1383-1397. [PMID: 33960427 DOI: 10.1111/acer.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in developmental defects that include growth restriction, craniofacial anomalies, and cognitive behavioral deficits, though the presence and severity of these adverse outcomes can vary dramatically among exposed individuals. Preclinical animal models have demonstrated that the dose and timing of PAE account for much, but not all, of this phenotypic variation, suggesting that additional factors mitigate the effects of PAE. Here, we used a mouse model to investigate whether maternal age modulates the effects of PAE on the severity and variation in offspring growth and craniofacial outcomes. METHODS Nulliparous C57BL/6N dams received either an intraperitoneal injection of ethanol (EtOH) or vehicle solution on gestational day 7.5. Dams were divided into four groups: (1) EtOH-treated young dams (6 to 10 weeks); (2) control young dams; (3) EtOH-treated old dams (6 to 7 months); and (4) old control dams. Neonate offspring growth restriction was measured through body mass and organ-to-body mass ratios, while skeletal craniofacial features were imaged using micro-CT and analyzed for size, shape, and variation. RESULTS PAE and advanced maternal age each increased the risk of low birthweight and growth restriction in offspring, but these factors in combination changed the nature of the growth restriction. Similarly, both PAE and advanced maternal age individually caused changes to craniofacial morphology such as smaller skull size, dysmorphic skull shape, and greater skull shape variation and asymmetry. Interestingly, while the combination of PAE and advanced maternal age did not affect mean skull shape or size, it significantly increased the variation and asymmetry of those measures. CONCLUSION Our results indicate that maternal age modulates the effects of PAE, but that the effects of this combination on offspring outcomes are more complex than simply scaling the effects of either factor.
Collapse
Affiliation(s)
- Diana Draghici
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Kevin Barr
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Katherine E Willmore
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| |
Collapse
|
49
|
Collar DC, DiPaolo ECC, Mai SL, Mehta RS. Body shape transformations by alternate anatomical adaptive peak shifts in blenniiform fishes. Evolution 2021; 75:1552-1566. [PMID: 33890296 DOI: 10.1111/evo.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Extreme body elongation has occurred repeatedly in the evolutionary history of ray-finned fishes. Lengthening of the anterior-posterior body axis relative to depth and width can involve changes in the cranial skeleton and vertebral column, but to what extent is anatomical evolution determined by selective factors and intrinsic constraints that are shared broadly among closely related lineages? In this study, we fit adaptive (Ornstein-Uhlenbeck) evolutionary models to body shape and its anatomical determinants and identified two instances of extreme elongation by divergent anatomical peak shifts in the Blenniiformes, a radiation of small-bodied substrate-associated marine teleost fishes. Species in the genus Xiphasia (hairtail blennies) evolved toward a peak defined by a highly elongated caudal vertebral region but ancestral cranial and precaudal vertebral morphology. In contrast, a clade that includes the genera Chaenopsis and Lucayablennius (pike and arrow blennies) evolved toward a peak with a long slender skull but ancestral axial skeletal anatomy. Neither set of anatomical peak shifts aligns closely with the major axis of anatomical diversification in other blenniiform fishes. These results provide little evidence that ancestral constraints have affected body shape transformation, and instead suggest that extreme elongation arose with distinct shifts in selective factors and development.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Emma C C DiPaolo
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Sienna L Mai
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060
| |
Collapse
|
50
|
Paccard A, Hanson D, Stuart YE, von Hippel FA, Kalbe M, Klepaker T, Skúlason S, Kristjánsson BK, Bolnick DI, Hendry AP, Barrett RDH. Repeatability of Adaptive Radiation Depends on Spatial Scale: Regional Versus Global Replicates of Stickleback in Lake Versus Stream Habitats. J Hered 2021; 111:43-56. [PMID: 31690947 DOI: 10.1093/jhered/esz056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
The repeatability of adaptive radiation is expected to be scale-dependent, with determinism decreasing as greater spatial separation among "replicates" leads to their increased genetic and ecological independence. Threespine stickleback (Gasterosteus aculeatus) provide an opportunity to test whether this expectation holds for the early stages of adaptive radiation-their diversification in freshwater ecosystems has been replicated many times. To better understand the repeatability of that adaptive radiation, we examined the influence of geographic scale on levels of parallel evolution by quantifying phenotypic and genetic divergence between lake and stream stickleback pairs sampled at regional (Vancouver Island) and global (North America and Europe) scales. We measured phenotypes known to show lake-stream divergence and used reduced representation genome-wide sequencing to estimate genetic divergence. We assessed the scale dependence of parallel evolution by comparing effect sizes from multivariate models and also the direction and magnitude of lake-stream divergence vectors. At the phenotypic level, parallelism was greater at the regional than the global scale. At the genetic level, putative selected loci showed greater lake-stream parallelism at the regional than the global scale. Generally, the level of parallel evolution was low at both scales, except for some key univariate traits. Divergence vectors were often orthogonal, highlighting possible ecological and genetic constraints on parallel evolution at both scales. Overall, our results confirm that the repeatability of adaptive radiation decreases at increasing spatial scales. We suggest that greater environmental heterogeneity at larger scales imposes different selection regimes, thus generating lower repeatability of adaptive radiation at larger spatial scales.
Collapse
Affiliation(s)
- Antoine Paccard
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| | - Dieta Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Frank A von Hippel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tom Klepaker
- University of Bergen, Department of Biology, Bergen, Norway
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Sauðárkrókur, Iceland
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University College, Sauðárkrókur, Iceland
| | - Daniel I Bolnick
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|