1
|
Huang K, Ostevik KL, Jahani M, Todesco M, Bercovich N, Andrew RL, Owens GL, Rieseberg LH. Inversions contribute disproportionately to parallel genomic divergence in dune sunflowers. Nat Ecol Evol 2025; 9:325-335. [PMID: 39633041 PMCID: PMC11807836 DOI: 10.1038/s41559-024-02593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The probability of parallel genetic evolution is a function of the strength of selection and constraints imposed by genetic architecture. Inversions capture locally adapted alleles and suppress recombination between them, which limits the range of adaptive responses. In addition, the combined phenotypic effect of alleles within inversions is likely to be greater than that of individual alleles; this should further increase the contributions of inversions to parallel evolution. We tested the hypothesis that inversions contribute disproportionately to parallel genetic evolution in independent dune ecotypes of Helianthus petiolaris. We analysed habitat data and identified variables underlying parallel habitat shifts. Genotype-environment association analyses of these variables indicated parallel responses of inversions to shared selective pressures. We also confirmed larger seed size across the dunes and performed quantitative trait locus mapping with multiple crosses. Quantitative trait loci shared between locations fell into inversions more than expected by chance. We used whole-genome sequencing data to identify selective sweeps in the dune ecotypes and found that the majority of shared swept regions were found within inversions. Phylogenetic analyses of shared regions indicated that within inversions, the same allele typically was found in the dune habitat at both sites. These results confirm predictions that inversions drive parallel divergence in the dune ecotypes.
Collapse
Affiliation(s)
- Kaichi Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, China.
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Ferreira EA, Moore CC, Ogereau D, Suwalski A, Prigent SR, Rogers RL, Yassin A. Genomic Islands of Divergence Between Drosophila yakuba Subspecies are Predominantly Driven by Chromosomal Inversions and the Recombination Landscape. Mol Ecol 2025; 34:e17627. [PMID: 39690859 PMCID: PMC11757039 DOI: 10.1111/mec.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
During the early stages of local adaptation and speciation, genetic differences tend to accumulate at certain regions of the genome leading to the formation of genomic islands of divergence (GIDs). This pattern may be due to selection and/or difference in the rate of recombination. Here, we investigate the possible causes of GIDs in Drosophila yakuba mayottensis, and reconfirm using field collection its association with toxic noni (Morinda citrifolia) fruits on the Mayotte island. Population genomics revealed lack of genetic structure on the island and identified 23 GIDs distinguishing D. y. mayottensis from generalist mainland populations of D. y. yakuba. The GIDs were enriched with gene families involved in the metabolism of lipids, sugars, peptides and xenobiotics, suggesting a role in host shift. We assembled a new genome for D. y. mayottensis and identified five novel chromosomal inversions. Twenty one GIDs (~99% of outlier windows) fell in low recombining regions or subspecies-specific inversions. However, only two GIDs were in collinear, normally recombining regions suggesting a signal of hard selective sweeps. Unlike D. y. mayottensis, D. sechellia, the only other noni-specialist, is known to be homosequential with its generalist relatives. Thus, whereas structural variation may disproportionally shape GIDs in some species, striking parallel adaptations can occur between species despite distinct genomic architectures.
Collapse
Affiliation(s)
- Erina A. Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Cathy C. Moore
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte NC, USA
| | - David Ogereau
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
| | - Arnaud Suwalski
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Stéphane R. Prigent
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Rebekah L. Rogers
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte NC, USA
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
3
|
Steward RA, Ortega Giménez J, Choudhary S, Moss O, Su Y, Van Aken O, Runemark A. Evolved and Plastic Gene Expression in Adaptation of a Specialist Fly to a Novel Niche. Mol Ecol 2025; 34:e17653. [PMID: 39783891 PMCID: PMC11789552 DOI: 10.1111/mec.17653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
How gene expression evolves to enable divergent ecological adaptation and how changes in gene expression relate to genomic architecture are pressing questions for understanding the mechanisms enabling adaptation and ecological speciation. Furthermore, how plasticity in gene expression can both contribute to and be affected by the process of ecological adaptation is crucial to understanding gene expression evolution, colonisation of novel niches and response to rapid environmental change. Here, we investigate the role of constitutive and plastic gene expression differences between host races, or host-specific ecotypes, of the peacock fly Tephritis conura, a thistle bud specialist. By cross-fostering larvae to new buds of their natal host plant or the alternative, novel host plant, we uncover extensive constitutive differences in gene expression between the host races, especially genes associated with processing of host plant chemicals. However, evidence for expression plasticity was minimal and limited to the ancestral host race. Genes with host race-specific expression are found more often than expected within a large inversion in the T. conura genome, adding to evidence that inversions are important for enabling diversification in the face of gene flow and underscores that altered gene expression may be key to understanding the evolutionary consequences of inversions.
Collapse
Affiliation(s)
| | - Jesús Ortega Giménez
- Department of BiologyLund UniversityLundSweden
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversidad de ValenciaPaternaSpain
| | - Shruti Choudhary
- Department of BiologyLund UniversityLundSweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences UmeåUmeåSweden
| | - Oliver Moss
- Department of BiologyLund UniversityLundSweden
- Department of Plant BreedingSwedish University of Agricultural Sciences AlnarpLommaSweden
| | - Yi Su
- Department of BiologyLund UniversityLundSweden
| | | | | |
Collapse
|
4
|
Benowitz KM, Allan CW, Jaworski CC, Sanderson MJ, Diaz F, Chen X, Matzkin LM. Fundamental Patterns of Structural Evolution Revealed by Chromosome-Length Genomes of Cactophilic Drosophila. Genome Biol Evol 2024; 16:evae191. [PMID: 39228294 PMCID: PMC11411373 DOI: 10.1093/gbe/evae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments. We generated chromosome-level genome assemblies and complete annotations for seven populations across Drosophila mojavensis, Drosophila arizonae, and Drosophila navojoa. We use these data first to establish the most robust phylogeny for this clade to date, and to assess patterns of molecular evolution across the phylogeny, showing concordance with a priori hypotheses regarding adaptive genes in this system. We then show that structural evolution occurs at constant rate across the phylogeny, varies by chromosome, and is correlated with molecular evolution. These results advance the understanding of the D. mojavensis clade by demonstrating core evolutionary genetic patterns and integrating those patterns to generate new gene-level hypotheses regarding adaptation. Our data are presented in a new public database (cactusflybase.arizona.edu), providing one of the most in-depth resources for the analysis of inter- and intraspecific evolutionary genomic data. Furthermore, we anticipate that the patterns of structural evolution identified here will serve as a baseline for future comparative studies to identify the factors that influence the evolution of genome structure across taxa.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xingsen Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. Coupling of Barriers to Gene Exchange: Causes and Consequences. Cold Spring Harb Perspect Biol 2024; 16:a041432. [PMID: 38191516 PMCID: PMC11293547 DOI: 10.1101/cshperspect.a041432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects. We compare and contrast these views, show the diverse processes involved and the complexity of the relationships among recombination, linkage disequilibrium, and reproductive isolation, and, finally, we emphasize how each perspective can guide new directions in speciation research. Although the importance of coupling for evolutionary divergence and speciation is well established, many theoretical and empirical questions remain unanswered.
Collapse
Affiliation(s)
- Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
- Department of Marine Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Carole M Smadja
- Institut des Sciences de l'Evolution de Montpellier ISEM, Universite de Montpellier, CNRS, IRD, Montpellier 34095, France
| |
Collapse
|
6
|
Mackintosh C, Scott MF, Reuter M, Pomiankowski A. Locally adaptive inversions in structured populations. Genetics 2024; 227:iyae073. [PMID: 38709495 PMCID: PMC11979745 DOI: 10.1093/genetics/iyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted alleles at different loci. Prior work addressing this question theoretically has considered the spread of inversions in "continent-island" scenarios in which there is a unidirectional flow of maladapted migrants into the island population. In this setting, inversions capturing locally adaptive haplotypes are most likely to invade when selection is weak, because stronger local selection (i) more effectively purges maladaptive alleles and (ii) generates linkage disequilibrium between adaptive alleles, thus lessening the advantage of inversions. We show this finding only holds under limited conditions by studying the establishment of inversions in a more general two-deme model, which explicitly considers the dynamics of allele frequencies in both populations linked by bidirectional migration. In this model, the level of symmetry between demes can be varied from complete asymmetry (continent-island) to complete symmetry. For symmetric selection and migration, strong selection increases the allele frequency divergence between demes thereby increasing the frequency of maladaptive alleles in migrants, favoring inversions-the opposite of the pattern seen in the asymmetric continent-island scenario. We also account for the likelihood that a new inversion captures an adaptive haplotype in the first instance. When considering the combined process of capture and invasion in "continent island" and symmetric scenarios, relatively strong selection increases inversion establishment probability. Migration must also be low enough that the inversion is likely to capture an adaptive allele combination, but not so low as to eliminate the inversion's advantage. Overall, our analysis suggests that inversions are likely to harbor larger effect alleles that experience relatively strong selection.
Collapse
Affiliation(s)
- Carl Mackintosh
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff 29680, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff 29680, France
| | - Michael F Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Max Reuter
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
9
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
10
|
Long Q, Yan K, Wang C, Wen Y, Qi F, Wang H, Shi P, Liu X, Chan WY, Lu X, Zhao H. Modification of maternally defined H3K4me3 regulates the inviability of interspecific Xenopus hybrids. SCIENCE ADVANCES 2023; 9:eadd8343. [PMID: 37027476 PMCID: PMC10081845 DOI: 10.1126/sciadv.add8343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Increasing evidence suggests that interspecific hybridization is crucial to speciation. However, chromatin incompatibility during interspecific hybridization often renders this process. Genomic imbalances such as chromosomal DNA loss and rearrangements leading to infertility have been commonly noted in hybrids. The mechanism underlying reproductive isolation of interspecific hybridization remains elusive. Here, we identified that modification of maternally defined H3K4me3 in Xenopus laevis and Xenopus tropicalis hybrids determines the different fates of the two types of hybrids as te×ls with developmental arrest and viable le×ts. Transcriptomics highlighted that the P53 pathway was overactivated, and the Wnt signaling pathway was suppressed in te×ls hybrids. Moreover, the lack of maternal H3K4me3 in te×ls disturbed the balance of gene expression between the L and S subgenomes in this hybrid. Attenuation of p53 can postpone the arrested development of te×ls. Our study suggests an additional model of reproductive isolation based on modifications of maternally defined H3K4me3.
Collapse
Affiliation(s)
- Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Guangzhou Institutes of Biomedicine and Health, The Chinese Academy of Sciences, Guangzhou 511436, China
| | - Kai Yan
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Chendong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
| | - Yanling Wen
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
| | - Furong Qi
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Xingguo Liu
- Guangzhou Institutes of Biomedicine and Health, The Chinese Academy of Sciences, Guangzhou 511436, China
| | - Wai-Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
11
|
Kosuthova K, Solc R. Inversions on human chromosomes. Am J Med Genet A 2023; 191:672-683. [PMID: 36495134 DOI: 10.1002/ajmg.a.63063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Human chromosome inversions are types of balanced structural variations, making them difficult to analyze. Thanks to PEM (paired-end sequencing and mapping), there has been tremendous progress in studying inversions. Inversions play an important role as an evolutionary factor, contributing to the formation of gonosomes, speciation of chimpanzees and humans, and inv17q21.3 or inv8p23.1 exhibit the features of natural selection. Both inversions have been related to pathogenic phenotype by directly affecting a gene structure (e.g., inv5p15.1q14.1), regulating gene expression (e.g., inv7q21.3q35) and by predisposing to other secondary arrangements (e.g., inv7q11.23). A polymorphism of human inversions is documented by the InvFEST database (a database that stores information about clinical predictions, validations, frequency of inversions, etc.), but only a small fraction of these inversions is validated, and a detailed analysis is complicated by the frequent location of breakpoints within regions of repetitive sequences.
Collapse
Affiliation(s)
- Klara Kosuthova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roman Solc
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Zhang L, Chaturvedi S, Nice CC, Lucas LK, Gompert Z. Population genomic evidence of selection on structural variants in a natural hybrid zone. Mol Ecol 2023; 32:1497-1514. [PMID: 35398939 DOI: 10.1111/mec.16469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long-read (Oxford nanopore) whole-genome sequencing and a hybrid zone between two Lycaeides butterfly taxa (L. melissa and Jackson Hole Lycaeides) to comprehensively evaluate genome-wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry-informative SVs exhibiting genomic clines that deviated from null expectations based on genome-average ancestry. Overall, hybrids exhibited a directional shift towards Jackson Hole Lycaeides ancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average than SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess ancestry from Jackson Hole Lycaeides. Excess Jackson Hole Lycaeides ancestry in hybrids was also especially pronounced for Z-linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might disproportionately affect hybrid fitness and thus contribute to reproductive isolation.
Collapse
Affiliation(s)
- Linyi Zhang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, Utah State University, Logan, Utah, USA
| | - Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Chris C Nice
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, Utah, USA
| | | |
Collapse
|
13
|
Hollenbeck CM, Portnoy DS, Garcia de la Serrana D, Magnesen T, Matejusova I, Johnston IA. Temperature-associated selection linked to putative chromosomal inversions in king scallop ( Pecten maximus). Proc Biol Sci 2022; 289:20221573. [PMID: 36196545 PMCID: PMC9532988 DOI: 10.1098/rspb.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The genomic landscape of divergence—the distribution of differences among populations or species across the genome—is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12–22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.,Texas A&M AgriLife Research, College Station, TX, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Thormøhlensgt 53B, Bergen, Norway
| | - Iveta Matejusova
- Marine Science Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Xelect Ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, UK
| |
Collapse
|
14
|
Schaal SM, Haller BC, Lotterhos KE. Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210200. [PMID: 35694752 PMCID: PMC9189506 DOI: 10.1098/rstb.2021.0200] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Across many species where inversions have been implicated in local adaptation, genomes often evolve to contain multiple, large inversions that arise early in divergence. Why this occurs has yet to be resolved. To address this gap, we built forward-time simulations in which inversions have flexible characteristics and can invade a metapopulation undergoing spatially divergent selection for a highly polygenic trait. In our simulations, inversions typically arose early in divergence, captured standing genetic variation upon mutation, and then accumulated many small-effect loci over time. Under special conditions, inversions could also arise late in adaptation and capture locally adapted alleles. Polygenic inversions behaved similarly to a single supergene of large effect and were detectable by genome scans. Our results show that characteristics of adaptive inversions found in empirical studies (e.g. multiple large, old inversions that are FST outliers, sometimes overlapping with other inversions) are consistent with a highly polygenic architecture, and inversions do not need to contain any large-effect genes to play an important role in local adaptation. By combining a population and quantitative genetic framework, our results give a deeper understanding of the specific conditions needed for inversions to be involved in adaptation when the genetic architecture is polygenic. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Sara M. Schaal
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Benjamin C. Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| |
Collapse
|
15
|
Haas M, Kono T, Macchietto M, Millas R, McGilp L, Shao M, Duquette J, Qiu Y, Hirsch CN, Kimball J. Whole-genome assembly and annotation of northern wild rice, Zizania palustris L., supports a whole-genome duplication in the Zizania genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1802-1818. [PMID: 34310794 DOI: 10.1111/tpj.15419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Zizania palustris L. (northern wild rice, NWR) is an aquatic grass native to North America that is notable for its nutritious grain. This is an important species with ecological, cultural and agricultural significance, specifically in the Great Lakes region of the USA. Using flow cytometry, we first estimated the NWR genome size to be 1.8 Gb. Using long- and short-range sequencing, Hi-C scaffolding and RNA-seq data from eight tissues, we generated an annotated whole-genome de novo assembly of NWR. The assembly was 1.29 Gb in length, highly repetitive (approx. 76.0%) and contained 46 421 putative protein-coding genes. The expansion of retrotransposons within the genome and a whole-genome duplication (WGD) after the Zizania-Oryza speciation event have both led to an increase in the genome size of NWR in comparison with Oryza sativa L. and Zizania latifolia. Both events depict a genome rapidly undergoing change over a short evolutionary time. Comparative analyses revealed the conservation of large syntenic blocks between NWR and O. sativa, which were used to identify putative seed-shattering genes. Estimates of divergence times revealed that the Zizania genus diverged from Oryza approximately 26-30 million years ago (26-30 MYA), whereas NWR and Z. latifolia diverged from one another approximately 6-8 MYA. Comparative genomics confirmed evidence of a WGD in the Zizania genus and provided support that the event occurred prior to the NWR-Z. latifolia speciation event. This genome assembly and annotation provides a valuable resource for comparative genomics in the Oryzeae tribe and provides an important resource for future conservation and breeding efforts of NWR.
Collapse
Affiliation(s)
- Matthew Haas
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Thomas Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reneth Millas
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lillian McGilp
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mingqin Shao
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jacques Duquette
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN, 55744, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jennifer Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
16
|
How Important Are Structural Variants for Speciation? Genes (Basel) 2021; 12:genes12071084. [PMID: 34356100 PMCID: PMC8305853 DOI: 10.3390/genes12071084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species—and the underlying mechanism by which structural variants most often contribute to speciation—remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.
Collapse
|
17
|
Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol Lett 2021; 5:196-213. [PMID: 34136269 PMCID: PMC8190449 DOI: 10.1002/evl3.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Hernán E Morales
- Evolutionary Genetics Section Globe Institute University of Copenhagen Copenhagen Denmark.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Jenny Larsson
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Anja M Westram
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,IST Austria Klosterneuburg Austria
| | - Rui Faria
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida FL 32306-4120
| | - E Moriarty Lemmon
- Department of Biological Science Florida State University Tallahassee Florida FL 32306-4295
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Roger K Butlin
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| |
Collapse
|
18
|
Rafajlović M, Rambla J, Feder JL, Navarro A, Faria R. Inversions and genomic differentiation after secondary contact: When drift contributes to maintenance, not loss, of differentiation. Evolution 2021; 75:1288-1303. [PMID: 33844299 DOI: 10.1111/evo.14223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Due to their effects on reducing recombination, chromosomal inversions may play an important role in speciation by establishing and/or maintaining linked blocks of genes causing reproductive isolation (RI) between populations. This view fits empirical data indicating that inversions typically harbor loci involved in RI. However, previous computer simulations of infinite populations with two to four loci involved in RI implied that, even with gene flux as low as 10-8 per gamete, per generation between alternative arrangements, inversions may not have large, qualitative advantages over collinear regions in maintaining population differentiation after secondary contact. Here, we report that finite population sizes can help counteract the homogenizing consequences of gene flux, especially when several fitness-related loci reside within the inversion. In these cases, the persistence time of differentiation after secondary contact can be similar to when gene flux is absent and notably longer than the persistence time without inversions. Thus, despite gene flux, population differentiation may be maintained for up to 100,000 generations, during which time new incompatibilities and/or local adaptations might accumulate and facilitate progress toward speciation. How often these conditions are met in nature remains to be determined.
Collapse
Affiliation(s)
- Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE-40530, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Jordi Rambla
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra. PRBB, Barcelona, 08003, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra. PRBB, Barcelona, 08003, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona, 08003, Spain.,BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, 08005, Spain
| | - Rui Faria
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra. PRBB, Barcelona, 08003, Spain.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO, Laboratório Associado, Universidade do Porto, Vairão, 4480-661, Portugal
| |
Collapse
|
19
|
Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol 2020; 29:2535-2549. [PMID: 32246540 DOI: 10.1111/mec.15428] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time-consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome-environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described "islands of differentiation," and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Rose L Andrew
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, Duke University, Durham, NC, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Quilodrán CS, Ruegg K, Sendell‐Price AT, Anderson EC, Coulson T, Clegg SM. The multiple population genetic and demographic routes to islands of genomic divergence. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kristen Ruegg
- Department of Zoology University of Oxford Oxford UK
- Center for Tropical Research Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA USA
- Department of Biology Colorado State University Fort Collins CO USA
| | | | - Eric C. Anderson
- Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries ServiceNOAA Santa Cruz CA USA
| | - Tim Coulson
- Department of Zoology University of Oxford Oxford UK
| | | |
Collapse
|
21
|
Bakovic V, Schuler H, Schebeck M, Feder JL, Stauffer C, Ragland GJ. Host plant-related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi. Mol Ecol 2019; 28:4648-4666. [PMID: 31495015 PMCID: PMC6899720 DOI: 10.1111/mec.15239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Elucidating the mechanisms and conditions facilitating the formation of biodiversity are central topics in evolutionary biology. A growing number of studies imply that divergent ecological selection may often play a critical role in speciation by counteracting the homogenising effects of gene flow. Several examples involve phytophagous insects, where divergent selection pressures associated with host plant shifts may generate reproductive isolation, promoting speciation. Here, we use ddRADseq to assess the population structure and to test for host‐related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi (L., 1758) (Diptera: Tephritidae). This tephritid is distributed throughout Europe and western Asia, and has adapted to two different genera of host plants, Prunus spp. (cherries) and Lonicera spp. (honeysuckle). Our data imply that geographic distance and geomorphic barriers serve as the primary factors shaping genetic population structure across the species range. Locally, however, flies genetically cluster according to host plant, with consistent allele frequency differences displayed by a subset of loci between Prunus and Lonicera flies across four sites surveyed in Germany and Norway. These 17 loci display significantly higher FST values between host plants than others. They also showed high levels of linkage disequilibrium within and between Prunus and Lonicera flies, supporting host‐related selection and reduced gene flow. Our findings support the existence of sympatric host races in R. cerasi embedded within broader patterns of geographic variation in the fly, similar to the related apple maggot, Rhagoletis pomonella, in North America.
Collapse
Affiliation(s)
- Vid Bakovic
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Department of Biology, IFM, University of Linköping, Linköping, Sweden
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Martin Schebeck
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Christian Stauffer
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO, USA
| |
Collapse
|
22
|
Weinstein SY, Thrower FP, Nichols KM, Hale MC. A large-scale chromosomal inversion is not associated with life history development in rainbow trout from Southeast Alaska. PLoS One 2019; 14:e0223018. [PMID: 31539414 PMCID: PMC6754156 DOI: 10.1371/journal.pone.0223018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
In studying the causative mechanisms behind migration and life history, the salmonids-salmon, trout, and charr-are an exemplary taxonomic group, as life history development is known to have a strong genetic component. A double inversion located on chromosome 5 in rainbow trout (Oncorhynchus mykiss) is associated with life history development in multiple populations, but the importance of this inversion has not been thoroughly tested in conjunction with other polymorphisms in the genome. To that end, we used a high-density SNP chip to genotype 192 F1 migratory and resident rainbow trout and focused our analyses to determine whether this inversion is important in life history development in a well-studied population of rainbow trout from Southeast Alaska. We identified 4,994 and 436 SNPs-predominantly outside of the inversion region-associated with life history development in the migrant and resident familial lines, respectively. Although F1 samples showed genomic patterns consistent with the double inversion on chromosome 5 (reduced observed and expected heterozygosity and an increase in linkage disequilibrium), we found no statistical association between the inversion and life history development. Progeny produced by crossing resident trout and progeny produced by crossing migrant trout both consisted of a mix of migrant and resident individuals, irrespective of the individuals' inversion haplotype on chromosome 5. This suggests that although the inversion is present at a low frequency, it is not strongly associated with migration as it is in populations of Oncorhynchus mykiss from lower latitudes.
Collapse
Affiliation(s)
- Spencer Y. Weinstein
- Department of Biology, Texas Christian University, Fort Worth, United States of America
| | - Frank P. Thrower
- Ted Stevens Marine Research Institute, Alaska Fisheries Center, NOAA, Juneau, AK, United States of America
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, Seattle, WA, United States of America
| | - Matthew C. Hale
- Department of Biology, Texas Christian University, Fort Worth, United States of America
| |
Collapse
|
23
|
Hora KH, Marec F, Roessingh P, Menken SBJ. Limited intrinsic postzygotic reproductive isolation despite chromosomal rearrangements between closely related sympatric species of small ermine moths (Lepidoptera: Yponomeutidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
In evolutionarily young species and sympatric host races of phytophagous insects, postzygotic incompatibility is often not yet fully developed, but reduced fitness of hybrids is thought to facilitate further divergence. However, empirical evidence supporting this hypothesis is limited. To assess the role of reduced hybrid fitness, we studied meiosis and fertility in hybrids of two closely related small ermine moths, Yponomeuta padella and Yponomeuta cagnagella, and determined the extent of intrinsic postzygotic reproductive isolation. We found extensive rearrangements between the karyotypes of the two species and irregularities in meiotic chromosome pairing in their hybrids. The fertility of reciprocal F1 and, surprisingly, also of backcrosses with both parental species was not significantly decreased compared with intraspecific offspring. The results indicate that intrinsic postzygotic reproductive isolation between these closely related species is limited. We conclude that the observed chromosomal rearrangements are probably not the result of an accumulation of postzygotic incompatibilities preventing hybridization. Alternative explanations, such as adaptation to new host plants, are discussed.
Collapse
Affiliation(s)
- Katerina H Hora
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Peter Roessingh
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Steph B J Menken
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Shields GF, Hokit DG. Do Cytotypes of Black Flies of the Simulium arcticum Complex (Diptera: Simuliidae) Arise from Sibling Species? WEST N AM NATURALIST 2019; 79:148-158. [DOI: 10.3398/064.079.0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gerald F. Shields
- Department of Life and Environmental Sciences, Carroll College, Helena, MT 59625
| | - D. Grant Hokit
- Department of Life and Environmental Sciences, Carroll College, Helena, MT 59625
| |
Collapse
|
25
|
Richards EJ, Servedio MR, Martin CH. Searching for Sympatric Speciation in the Genomic Era. Bioessays 2019; 41:e1900047. [PMID: 31245871 PMCID: PMC8175013 DOI: 10.1002/bies.201900047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Indexed: 12/25/2022]
Abstract
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Maria R. Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
26
|
Shields GF, Procunier WS. Sympatric speciation in the Simulium arcticum s. l. complex (Diptera: Simuliidae): The Rothfels model updated. Ecol Evol 2019; 9:8265-8278. [PMID: 31380088 PMCID: PMC6662398 DOI: 10.1002/ece3.5402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022] Open
Abstract
ABSTRACT We tested the Rothfels sympatric speciation model for black flies by comparing all available data for sex-chromosome diversity with the geographic locations of larval collection sites within the Simulium arcticum complex of black flies (Diptera: Simuliidae). Five separate data sets equaling about 20,000 larvae were included from throughout the geographic range of this complex. We record a total of 31 taxa having unique sex chromosomes, all of which demonstrate linkage disequilibrium with most taxa sharing autosomal polymorphisms. All siblings share portions of their distributions with S. negativum, the presumed oldest member of the complex. Twenty-one of 22 cytotypes have distributions within the ranges of siblings thus supporting the sympatric speciation model of Rothfels. Chromosomally diverse sites may require analysis of as many as 200 larvae to be properly described. There is no effect of any inversions influencing the occurrence of other inversions. Finally, we report a new cytotype, Simulium arcticum IIL-6, which we originally discovered in Alaska. Aspects of future genomic research are discussed as they relate to the main chromosomal structural/functional tenants of the model. OPEN RESEARCH BADGE This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data are available at https://doi.org/10.6084/m9.figshare.7719398.
Collapse
Affiliation(s)
- Gerald F. Shields
- Department of Life and Environmental SciencesCarroll CollegeHelenaMontana
| | | |
Collapse
|
27
|
Nneji LM, Adeola AC, Yan F, Okeyoyin AO, Oladipo OC, Saidu Y, Samuel D, Nneji IC, Adeyi AO, Onadeko AB, Olagunju TE, Omotoso O, Oladipo SO, Iyiola OA, Usongo JY, Auta T, Usman AD, Abdullahi H, Ikhimiukor OO, Zhou WW, Jin JQ, Ugwumba OA, Ugwumba AAA, Peng MS, Murphy RW, Che J. Genetic variation and cryptic lineage diversity of the Nigerian red-headed rock agama Agama agama associate with eco-geographic zones. Curr Zool 2019; 65:713-724. [PMID: 31857818 PMCID: PMC6911843 DOI: 10.1093/cz/zoz002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/28/2019] [Indexed: 11/14/2022] Open
Abstract
Nigeria is an Afrotropical region with considerable ecological heterogeneity and levels of biotic endemism. Among its vertebrate fauna, reptiles have broad distributions, thus, they constitute a compelling system for assessing the impact of ecological variation and geographic isolation on species diversification. The red-headed rock agama, Agama agama, lives in a wide range of habitats and, thus, it may show genetic structuring and diversification. Herein, we tested the hypothesis that ecology affects its genetic structure and population divergence. Bayesian inference phylogenetic analysis of a mitochondrial DNA (mtDNA) gene recovered four well-supported matrilines with strong evidence of genetic structuring consistent with eco-geographic regions. Genetic differences among populations based on the mtDNA also correlated with geographic distance. The ecological niche model for the matrilines had a good fit and robust performance. Population divergence along the environmental axes was associated with climatic conditions, and temperature ranked highest among all environmental variables for forest specialists, while precipitation ranked highest for the forest/derived savanna, and savanna specialists. Our results cannot reject the hypothesis that niche conservatism promotes geographic isolation of the western populations of Nigerian A. agama. Thus, ecological gradients and geographic isolation impact the genetic structure and population divergence of the lizards. This species might be facing threats due to recent habitat fragmentation, especially in western Nigeria. Conservation actions appear necessary.
Collapse
Affiliation(s)
- Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Fang Yan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Agboola O Okeyoyin
- National Park Service Headquarters, Federal Capital Territory, Abuja, Nigeria
| | | | - Yohanna Saidu
- Gashaka Gumti National Park, Serti, Taraba State, Nigeria
| | - Dinatu Samuel
- Gashaka Gumti National Park, Serti, Taraba State, Nigeria
| | - Ifeanyi C Nneji
- Department of Biological Sciences, University of Abuja, FCT, Abuja, Nigeria
| | - Akindele O Adeyi
- Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | | | - Olatunde Omotoso
- Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Segun O Oladipo
- Department of Biosciences and Biotechnology, Kwara State University, Malete, Kwara State, Nigeria
| | - Oluyinka A Iyiola
- Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - John Y Usongo
- Department of Zoology, Modibbo Adama University of Technology, Yola, Nigeria
| | - Timothy Auta
- Department of Biological Sciences, Federal University Dutsin-Ma, Katsina State, Nigeria
| | - Abbas D Usman
- Department of Biology, Kashim Ibrahim College of Education, Maiduguri, Borno State, Nigeria
| | - Halima Abdullahi
- Department of Biology, Kashim Ibrahim College of Education, Maiduguri, Borno State, Nigeria
| | - Odion O Ikhimiukor
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Obih A Ugwumba
- Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
28
|
Doellman MM, Feder JL. Genomic transitions during host race and species formation. CURRENT OPINION IN INSECT SCIENCE 2019; 31:84-92. [PMID: 31109679 DOI: 10.1016/j.cois.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Darwin recognized species as discontinuous, yet considered them to be formed by an incremental process of natural selection. Recent theoretical work on 'genome-wide congealing' is bridging this gap between the gradualism of divergent selection and rapid genome-wide divergence, particularly during ecological speciation-with-gene-flow. Host races and species of phytophagous insects, displaying a spectrum of divergence and gene flow among member taxa, provide model systems for testing predicted non-linear transitions from 'genic' divergence at a few uncoupled loci to 'genomic' divergence with genome-wide coupling of selected loci and strong reproductive isolation. Integrating across natural history, genomics, and evolutionary theory, emerging research suggests a tipping point from 'genic' to 'genomic' divergence between host races and species, during both sympatric speciation and secondary contact.
Collapse
Affiliation(s)
- Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Sánchez-Vendizú P, Pacheco V, Vivas-Ruiz D. An Introduction to the Systematics of Small-BodiedNeacomys(Rodentia: Cricetidae) from Peru with Descriptions of Two New Species. AMERICAN MUSEUM NOVITATES 2018. [DOI: 10.1206/3913.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Pamela Sánchez-Vendizú
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Asociación Grupo RANA, Lima, Peru
| | - Víctor Pacheco
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dan Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
30
|
Korunes KL, Noor MAF. Pervasive gene conversion in chromosomal inversion heterozygotes. Mol Ecol 2018; 28:1302-1315. [PMID: 30387889 DOI: 10.1111/mec.14921] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Chromosomal inversions shape recombination landscapes, and species differing by inversions may exhibit reduced gene flow in these regions of the genome. Though single crossovers within inversions are not usually recovered from inversion heterozygotes, the recombination barrier imposed by inversions is nuanced by noncrossover gene conversion. Here, we provide a genomewide empirical analysis of gene conversion rates both within species and in species hybrids. We estimate that gene conversion occurs at a rate of 1 × 10-5 to 2.5 × 10-5 converted sites per bp per generation in experimental crosses within Drosophila pseudoobscura and between D. pseudoobscura and its naturally hybridizing sister species D. persimilis. This analysis is the first direct empirical assessment of gene conversion rates within inversions of a species hybrid. Our data show that gene conversion rates in interspecies hybrids are at least as high as within-species estimates of gene conversion rates, and gene conversion occurs regularly within and around inverted regions of species hybrids, even near inversion breakpoints. We also found that several gene conversion events appeared to be mitotic rather than meiotic in origin. Finally, we observed that gene conversion rates are higher in regions of lower local sequence divergence, yet our observed gene conversion rates in more divergent inverted regions were at least as high as in less divergent collinear regions. Given our observed high rates of gene conversion despite the sequence differentiation between species, especially in inverted regions, gene conversion has the potential to reduce the efficacy of inversions as barriers to recombination over evolutionary time.
Collapse
|
31
|
Zuellig MP, Sweigart AL. A two-locus hybrid incompatibility is widespread, polymorphic, and active in natural populations of Mimulus. Evolution 2018; 72:2394-2405. [PMID: 30194757 DOI: 10.1111/evo.13596] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Reproductive isolation, which is essential for the maintenance of species in sympatry, is often incomplete between closely related species. In these taxa, reproductive barriers must evolve within species, without being degraded by ongoing gene flow. To better understand this dynamic, we investigated the frequency and geographic distribution of alleles underlying a two-locus, hybrid lethality system between naturally hybridizing species of monkeyflower (Mimulus guttatus and M. nasutus). We found that M. guttatus typically carries hybrid lethality alleles at one locus (hl13) and M. nasutus typically carries hybrid lethality alleles at the other locus (hl14). As a result, natural hybrids carry incompatible alleles at both loci, and express hybrid lethality in later generations. We also discovered considerable polymorphism at both hl13 and hl14 within both species. For M. guttatus, polymorphism at both loci occurs within populations, meaning that incompatible allele pairings likely arise through intraspecific gene flow. Genetic variation at markers linked to hl13 and hl14 suggest that introgression from M. nasutus is the primary driver of this polymorphism within M. guttatus. Additionally, patterns of introgression at the two hybrid lethality loci suggest that natural selection eliminates incompatible allele pairings, suggesting that even weak reproductive barriers might promote genomic divergence between species.
Collapse
Affiliation(s)
- Matthew P Zuellig
- Department of Genetics, University of Georgia, Athens, Georgia.,Current Address: Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
32
|
Coughlan JM, Willis JH. Dissecting the role of a large chromosomal inversion in life history divergence throughout the Mimulus guttatus species complex. Mol Ecol 2018; 28:1343-1357. [PMID: 30028906 DOI: 10.1111/mec.14804] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less-fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co-occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre-date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.
Collapse
Affiliation(s)
| | - John H Willis
- Biology Department, Duke University, Durham, North Carolina
| |
Collapse
|
33
|
Fuller ZL, Leonard CJ, Young RE, Schaeffer SW, Phadnis N. Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genet 2018; 14:e1007526. [PMID: 30059505 PMCID: PMC6085072 DOI: 10.1371/journal.pgen.1007526] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/09/2018] [Accepted: 06/29/2018] [Indexed: 01/28/2023] Open
Abstract
Understanding the role of chromosomal inversions in speciation is a fundamental problem in evolutionary genetics. Here, we perform a comprehensive reconstruction of the evolutionary histories of the chromosomal inversions in Drosophila persimilis and D. pseudoobscura. We provide a solution to the puzzling origins of the selfish Sex-Ratio arrangement in D. persimilis and uncover surprising patterns of phylogenetic discordance on this chromosome. These patterns show that, contrary to widely held views, all fixed chromosomal inversions between D. persimilis and D. pseudoobscura were already present in their ancestral population long before the species split. Our results suggest that patterns of higher genomic divergence and an association of reproductive isolation genes with chromosomal inversions may be a direct consequence of incomplete lineage sorting of ancestral polymorphisms. These findings force a reconsideration of the role of chromosomal inversions in speciation, not as protectors of existing hybrid incompatibilities, but as fertile grounds for their formation.
Collapse
Affiliation(s)
- Zachary L. Fuller
- Department of Biology, Erwin W. Mueller Laboratories, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Randee E. Young
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| | - Stephen W. Schaeffer
- Department of Biology, Erwin W. Mueller Laboratories, The Pennsylvania State University, University Park, PA, United States of America
| | - Nitin Phadnis
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
34
|
Roesti M. Varied Genomic Responses to Maladaptive Gene Flow and Their Evidence. Genes (Basel) 2018; 9:E298. [PMID: 29899287 PMCID: PMC6027369 DOI: 10.3390/genes9060298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/02/2022] Open
Abstract
Adaptation to a local environment often occurs in the face of maladaptive gene flow. In this perspective, I discuss several ideas on how a genome may respond to maladaptive gene flow during adaptation. On the one hand, selection can build clusters of locally adaptive alleles at fortuitously co-localized loci within a genome, thereby facilitating local adaptation with gene flow ('allele-only clustering'). On the other hand, the selective pressure to link adaptive alleles may drive co-localization of the actual loci relevant for local adaptation within a genome through structural genome changes or an evolving intra-genomic crossover rate ('locus clustering'). While the expected outcome is, in both cases, a higher frequency of locally adaptive alleles in some genome regions than others, the molecular units evolving in response to gene flow differ (i.e., alleles versus loci). I argue that, although making this distinction is important, we commonly lack the critical empirical evidence to do so. This is mainly because many current approaches are biased towards detecting local adaptation in genome regions with low crossover rates. The importance of low-crossover genome regions for adaptation with gene flow, such as in co-localizing relevant loci within a genome, thus remains unclear. Future empirical investigations should address these questions by making use of comparative genomics, where multiple de novo genome assemblies from species evolved under different degrees of genetic exchange are compared. This research promises to advance our understanding of how a genome adapts to maladaptive gene flow, thereby promoting adaptive divergence and reproductive isolation.
Collapse
Affiliation(s)
- Marius Roesti
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
Campbell CR, Poelstra JW, Yoder AD. What is Speciation Genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly063] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - J W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
36
|
Schilling MP, Mullen SP, Kronforst M, Safran RJ, Nosil P, Feder JL, Gompert Z, Flaxman SM. Transitions from Single- to Multi-Locus Processes during Speciation with Gene Flow. Genes (Basel) 2018; 9:E274. [PMID: 29795050 PMCID: PMC6027428 DOI: 10.3390/genes9060274] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
During speciation-with-gene-flow, a transition from single-locus to multi-locus processes can occur, as strong coupling of multiple loci creates a barrier to gene flow. Testing predictions about such transitions with empirical data requires building upon past theoretical work and the continued development of quantitative approaches. We simulated genomes under several evolutionary scenarios of gene flow and divergent selection, extending previous work with the additions of neutral sites and coupling statistics. We used these simulations to investigate, in a preliminary way, if and how selected and neutral sites differ in the conditions they require for transitions during speciation. For the parameter combinations we explored, as the per-locus strength of selection grew and/or migration decreased, it became easier for selected sites to show divergence-and thus to rise in linkage disequilibrium (LD) with each other as a statistical consequence-farther in advance of the conditions under which neutral sites could diverge. Indeed, even very low rates of effective gene flow were sufficient to prevent differentiation at neutral sites. However, once strong enough, coupling among selected sites eventually reduced gene flow at neutral sites as well. To explore whether similar transitions might be detectable in empirical data, we used published genome resequencing data from three taxa of Heliconius butterflies. We found that fixation index ( F S T ) outliers and allele-frequency outliers exhibited stronger patterns of within-deme LD than the genomic background, as expected. The statistical characteristics of within-deme LD-likely indicative of the strength of coupling of barrier loci-varied between chromosomes and taxonomic comparisons. Qualitatively, the patterns we observed in the empirical data and in our simulations suggest that selection drives rapid genome-wide transitions to multi-locus coupling, illustrating how divergence and gene flow interact along the speciation continuum.
Collapse
Affiliation(s)
- Martin P Schilling
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Sean P Mullen
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Marcus Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA.
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Patrik Nosil
- Department of Biology & Ecology Center, Utah State University, Logan, UT 84322, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
| | - Zachariah Gompert
- Department of Biology & Ecology Center, Utah State University, Logan, UT 84322, USA.
| | - Samuel M Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
37
|
Jozefkowicz C, Frare R, Fox R, Odorizzi A, Arolfo V, Pagano E, Basigalup D, Ayub N, Soto G. Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1111-1123. [PMID: 29397404 DOI: 10.1007/s00122-018-3062-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
A novel process for the production of transgenic alfalfa varieties. Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética "Ewald Favret" (INTA), Buenos Aires, Argentina
| | - Romina Frare
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética "Ewald Favret" (INTA), Buenos Aires, Argentina
| | - Romina Fox
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética "Ewald Favret" (INTA), Buenos Aires, Argentina
| | - Ariel Odorizzi
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Valeria Arolfo
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Elba Pagano
- Instituto de Genética "Ewald Favret" (INTA), Buenos Aires, Argentina
| | - Daniel Basigalup
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Nicolas Ayub
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Genética "Ewald Favret" (INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Genética "Ewald Favret" (INTA), Buenos Aires, Argentina.
| |
Collapse
|
38
|
Servedio MR, Bürger R. The Effects on Parapatric Divergence of Linkage between Preference and Trait Loci versus Pleiotropy. Genes (Basel) 2018; 9:E217. [PMID: 29673216 PMCID: PMC5924559 DOI: 10.3390/genes9040217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
Attempts to uncover the genetic basis of female mating preferences and male signals involved in reproductive isolation have discovered intriguing cases in which loci contributing to these traits co-localize in their chromosomal positions. Such discoveries raise the question of whether alleles at certain loci contribute pleiotropically to male and female components of premating reproductive isolation, versus whether these loci are merely tightly linked. Here we use population genetic models to assess the degree to which these alternatives affect both short term and equilibrium patterns of trait (signal) and preference divergence. We take advantage of the fact that in the case of secondary contact between populations exchanging migrants, patterns of divergence across the range of preference strengths differ markedly when preferences and traits are controlled by the same locus (the case of phenotype matching) versus when they are on separate chromosomes. We find that tight linkage between preference and trait loci can mimic the pleiotropic pattern for many generations (roughly the reciprocal of the recombination rate), but that any recombination ultimately results in equilibrium patterns of divergence far more similar to those found when preferences and traits are on separate chromosomes. In general, our finding that pleiotropy results in quite different long-term patterns from tight linkage highlights the importance of distinguishing between these possibilities in empirical systems.
Collapse
Affiliation(s)
- Maria R Servedio
- Department of Biology, University of North Carolina, CB#3280, Coker Hall, Chapel Hill, NC 27599, USA.
| | - Reinhard Bürger
- Department of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
| |
Collapse
|
39
|
Reeve J, Ortiz-Barrientos D, Engelstädter J. The evolution of recombination rates in finite populations during ecological speciation. Proc Biol Sci 2017; 283:rspb.2016.1243. [PMID: 27798297 DOI: 10.1098/rspb.2016.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/04/2016] [Indexed: 11/12/2022] Open
Abstract
Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations.
Collapse
Affiliation(s)
- James Reeve
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
40
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
41
|
Berner D, Roesti M. Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate. Mol Ecol 2017; 26:6351-6369. [PMID: 28994152 DOI: 10.1111/mec.14373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.
Collapse
Affiliation(s)
- Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Matsumoto T, Yoshida K, Kitano J. Contribution of gene flow to the evolution of recombination suppression in sex chromosomes. J Theor Biol 2017; 431:25-31. [PMID: 28782550 DOI: 10.1016/j.jtbi.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Polymorphism of alleles that benefit one sex but harm the other (sexually antagonistic alleles) generates selective pressures for reduced recombination between themselves and sex-determination loci. Such polymorphism can be maintained within a population when selection coefficients are sufficiently balanced between males and females. However, if regulatory mutations restrict gene expression only to one sex, these alleles become neutral in the other sex and easily fixed within a population, removing the selective pressures for recombination suppression in sex chromosomes. When there is spatial variation in selection regimes, however, alleles that are deleterious in one sex and neutral in the other can be maintained in other neighboring populations and gene flow may continuously supply deleterious alleles. We hypothesized that this maintenance of genetic variation may promote the establishment of recombination suppression in sex chromosomes even in cases where selection is limited to one sex. Using individual-based simulations, we show that spatial variation in male-limited selection and gene flow can promote the establishment of Y-autosome fusions, a special case of recombination suppression in sex chromosomes. This can be explained by the fact that fused Y-chromosomes that capture alleles that are beneficial for local males have a higher mean fitness compared to unfused Y chromosomes in the presence of deleterious gene flow. We also simulated the case of sex-concordant selection and found that gene flow of alleles that are deleterious in both sexes did not substantially increase the establishment rates of Y-autosome fusions across the parameter space examined. This can be accounted for by the fact that foreign alleles that are deleterious in both sexes can be efficiently removed from the population compared to alleles that are neutral in females. These results indicate that how gene flow affects the establishment rates of Y-autosome fusions depends largely on selection regimes. Spatial variation in sex-specific selection and gene flow should be appreciated as a factor affecting sex chromosome evolution.
Collapse
Affiliation(s)
- Tomotaka Matsumoto
- Division of Evolutionary Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kohta Yoshida
- Division of Ecological Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Division of Ecological Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
43
|
Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, McMillan WO, Merrill RM, Jiggins CD. No evidence for maintenance of a sympatric Heliconius species barrier by chromosomal inversions. Evol Lett 2017; 1:138-154. [PMID: 30283645 PMCID: PMC6122123 DOI: 10.1002/evl3.12] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanisms that suppress recombination are known to help maintain species barriers by preventing the breakup of coadapted gene combinations. The sympatric butterfly species Heliconius melpomene and Heliconius cydno are separated by many strong barriers, but the species still hybridize infrequently in the wild, and around 40% of the genome is influenced by introgression. We tested the hypothesis that genetic barriers between the species are maintained by inversions or other mechanisms that reduce between-species recombination rate. We constructed fine-scale recombination maps for Panamanian populations of both species and their hybrids to directly measure recombination rate within and between species, and generated long sequence reads to detect inversions. We find no evidence for a systematic reduction in recombination rates in F1 hybrids, and also no evidence for inversions longer than 50 kb that might be involved in generating or maintaining species barriers. This suggests that mechanisms leading to global or local reduction in recombination do not play a significant role in the maintenance of species barriers between H. melpomene and H. cydno.
Collapse
Affiliation(s)
- John W. Davey
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Sarah L. Barker
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Pasi M. Rastas
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Ana Pinharanda
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Simon H. Martin
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger InstituteCambridgeCB10 1SAUnited Kingdom
| | | | - Richard M. Merrill
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
44
|
Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, Jakobsen KS, Johannesson K, Jorde PE, Knutsen H, Moksnes PO, Star B, Stenseth NC, Svedäng H, Jentoft S, André C. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol 2017. [DOI: 10.1111/mec.14207] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Julia M. I. Barth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Paul R. Berg
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Faculty of Medicine; Centre for Molecular Medicine Norway (NCMM); University of Oslo; Oslo Norway
| | - Per R. Jonsson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Sara Bonanomi
- Section for Marine Living Resources; National Institute of Aquatic Resources; Technical University of Denmark; Silkeborg Denmark
- National Research Council (CNR); Fisheries Section; Institute of Marine Sciences (ISMAR); Ancona Italy
| | - Hanna Corell
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Jakob Hemmer-Hansen
- Section for Marine Living Resources; National Institute of Aquatic Resources; Technical University of Denmark; Silkeborg Denmark
| | - Kjetill S. Jakobsen
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Kerstin Johannesson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Per Erik Jorde
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Halvor Knutsen
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Institute of Marine Research; Flødevigen; His Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Per-Olav Moksnes
- Department of Marine Sciences; University of Gothenburg; Gothenburg Sweden
| | - Bastiaan Star
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Nils Chr. Stenseth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Henrik Svedäng
- Swedish Institute for the Marine Environment (SIME); Gothenburg Sweden
| | - Sissel Jentoft
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| |
Collapse
|
45
|
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. A combination of sexual and ecological divergence contributes to rearrangement spread during initial stages of speciation. Mol Ecol 2017. [DOI: 10.111/mwc.1403610.1111/mec.14036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Genevieve M. Kozak
- Department of Biology Tufts University 200 Boston Ave. Ste. 4700 Medford MA 02155 USA
| | - Crista B. Wadsworth
- Department of Biology Tufts University 200 Boston Ave. Ste. 4700 Medford MA 02155 USA
- Harvard TH Chan School of Public Health 677 Huntington Ave. Boston MA 02115 USA
| | - Shoshanna C. Kahne
- Department of Biology Tufts University 200 Boston Ave. Ste. 4700 Medford MA 02155 USA
| | - Steven M. Bogdanowicz
- Department of Ecology and Evolutionary Biology Cornell University 215 Tower Road Ithaca NY 14853 USA
| | - Richard G. Harrison
- Department of Ecology and Evolutionary Biology Cornell University 215 Tower Road Ithaca NY 14853 USA
| | - Brad S. Coates
- Corn Insects and Crop Genetics Research Unit USDA‐ARS Iowa State University 103 Genetics Laboratory Ames IA 50011 USA
| | - Erik B. Dopman
- Department of Biology Tufts University 200 Boston Ave. Ste. 4700 Medford MA 02155 USA
| |
Collapse
|
46
|
Höllinger I, Hermisson J. Bounds to parapatric speciation: A Dobzhansky-Muller incompatibility model involving autosomes, X chromosomes, and mitochondria. Evolution 2017; 71:1366-1380. [PMID: 28272742 DOI: 10.1111/evo.13223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
We investigate the conditions for the origin and maintenance of postzygotic isolation barriers, so called (Bateson-)Dobzhansky-Muller incompatibilities or DMIs, among populations that are connected by gene flow. Specifically, we compare the relative stability of pairwise DMIs among autosomes, X chromosomes, and mitochondrial genes. In an analytical approach based on a continent-island framework, we determine how the maximum permissible migration rates depend on the genomic architecture of the DMI, on sex bias in migration rates, and on sex-dependence of allelic and epistatic effects, such as dosage compensation. Our results show that X-linkage of DMIs can enlarge the migration bounds relative to autosomal DMIs or autosome-mitochondrial DMIs, in particular in the presence of dosage compensation. The effect is further strengthened with male-biased migration. This mechanism might contribute to a higher density of DMIs on the X chromosome (large X-effect) that has been observed in several species clades. Furthermore, our results agree with empirical findings of higher introgression rates of autosomal compared to X-linked loci.
Collapse
Affiliation(s)
- Ilse Höllinger
- Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Joachim Hermisson
- Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. A combination of sexual and ecological divergence contributes to rearrangement spread during initial stages of speciation. Mol Ecol 2017; 26:2331-2347. [PMID: 28141898 DOI: 10.1111/mec.14036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 01/04/2023]
Abstract
Chromosomal rearrangements between sympatric species often contain multiple loci contributing to assortative mating, local adaptation and hybrid sterility. When and how these associations arise during the process of speciation remains a subject of debate. Here, we address the relative roles of local adaptation and assortative mating on the dynamics of rearrangement evolution by studying how a rearrangement covaries with sexual and ecological trait divergence within a species. Previously, a chromosomal rearrangement that suppresses recombination on the Z (sex) chromosome was identified in European corn borer moths (Ostrinia nubilalis). We further characterize this recombination suppressor and explore its association with variation in sex pheromone communication and seasonal ecological adaptation in pairs of populations that are divergent in one or both of these characteristics. Direct estimates of recombination suppression in pedigree mapping families indicated that more than 39% of the Z chromosome (encompassing up to ~10 megabases and ~300 genes) resides within a nonrecombining unit, including pheromone olfactory receptor genes and a major quantitative trait locus that contributes to ecotype differences (Pdd). Combining direct and indirect estimates of recombination suppression, we found that the rearrangement was occasionally present between sexually isolated strains (E vs. Z) and between divergent ecotypes (univoltine vs. bivoltine). However, it was only consistently present when populations differed in both sexual and ecological traits. Our results suggest that independent of the forces that drove the initial establishment of the rearrangement, a combination of sexual and ecological divergence is required for rearrangement spread during speciation.
Collapse
Affiliation(s)
- Genevieve M Kozak
- Department of Biology, Tufts University, 200 Boston Ave. Ste. 4700, Medford, MA, 02155, USA
| | - Crista B Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave. Ste. 4700, Medford, MA, 02155, USA.,Harvard TH Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
| | - Shoshanna C Kahne
- Department of Biology, Tufts University, 200 Boston Ave. Ste. 4700, Medford, MA, 02155, USA
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY, 14853, USA
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY, 14853, USA
| | - Brad S Coates
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Iowa State University, 103 Genetics Laboratory, Ames, IA, 50011, USA
| | - Erik B Dopman
- Department of Biology, Tufts University, 200 Boston Ave. Ste. 4700, Medford, MA, 02155, USA
| |
Collapse
|
48
|
Potter S, Bragg JG, Blom MPK, Deakin JE, Kirkpatrick M, Eldridge MDB, Moritz C. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies. Front Genet 2017; 8:10. [PMID: 28265284 PMCID: PMC5301020 DOI: 10.3389/fgene.2017.00010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.
Collapse
Affiliation(s)
- Sally Potter
- Research School of Biology, Australian National University, ActonACT, Australia
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Jason G. Bragg
- National Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, SydneyNSW, Australia
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural HistoryStockholm, Sweden
| | - Janine E. Deakin
- Institute for Applied Ecology, University of Canberra, BruceACT, Australia
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, AustinTX, USA
| | - Mark D. B. Eldridge
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Craig Moritz
- Research School of Biology, Australian National University, ActonACT, Australia
| |
Collapse
|
49
|
Lackey ACR, Boughman JW. Evolution of reproductive isolation in stickleback fish. Evolution 2016; 71:357-372. [PMID: 27901265 DOI: 10.1111/evo.13114] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
To understand how new species form and what causes their collapse, we examined how reproductive isolation evolves during the speciation process, considering species pairs with little to extensive divergence, including a recently collapsed pair. We estimated many reproductive barriers in each of five sets of stickleback fish species pairs using our own data and decades of previous work. We found that the types of barriers important early in the speciation process differ from those important late. Two premating barriers-habitat and sexual isolation-evolve early in divergence and remain two of the strongest barriers throughout speciation. Premating isolation evolves before postmating isolation, and extrinsic isolation is far stronger than intrinsic. Completing speciation, however, may require postmating intrinsic incompatibilities. Reverse speciation in one species pair was characterized by significant loss of sexual isolation. We present estimates of barrier strengths before and after collapse of a species pair; such detail regarding the loss of isolation has never before been documented. Additionally, despite significant asymmetries in individual barriers, which can limit speciation, total isolation was essentially symmetric between species. Our study provides important insight into the order of barrier evolution and the relative importance of isolating barriers during speciation and tests fundamental predictions of ecological speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan.,Department of Biological Sciences, Watershed Studies Institute, Murray State University, 2112 Biology Building, Murray, State University, Murray, Kentucky, 42071
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| |
Collapse
|
50
|
Korunes KL, Noor MAF. Gene conversion and linkage: effects on genome evolution and speciation. Mol Ecol 2016; 26:351-364. [DOI: 10.1111/mec.13736] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
|