1
|
Jarvis WMC, Careau V, Rundle HD. Divergence in genetic (co)variances and the alignment of gmax with phenotypic divergence. Evolution 2025; 79:597-610. [PMID: 39841166 DOI: 10.1093/evolut/qpaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
To better understand the sources of biological diversity in nature, we need information on the mechanisms underlying population divergence. Biological systems with patterns of naturally occurring adaptive variation among populations can provide insight into the genetic architecture of diverging traits and the influence of genetic constraints on responses to selection. Using a system of reproductive character displacement in the North American mushroom-feeding fly Drosophila subquinaria, we assessed patterns of genetic (co)variance among a suite of chemical signaling traits and divergence in this pattern among populations. D. subquinaria exhibits stronger reproductive isolation against the closely related Drosophila recens in sympatry, where both female mating preferences and male chemical signaling traits have diverged from the ancestral allopatric populations. We collected 3 wild populations from each region and, in the lab, characterized the phenotypic divergence in these traits, as well as the additive genetic (co)variance structure (G-matrix), via replicate breeding designs. We found divergence between allopatric and sympatric D. subquinaria in the shape and size of the G-matrix, and that the leading axis of genetic variance (gmax) had changed in sympatry to come into alignment with the primary axis of phenotypic divergence between the sympatric and allopatric regions.
Collapse
Affiliation(s)
- Will M C Jarvis
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Hsu SK, Lai WY, Novak J, Lehner F, Jakšić AM, Versace E, Schlötterer C. Reproductive isolation arises during laboratory adaptation to a novel hot environment. Genome Biol 2024; 25:141. [PMID: 38807159 PMCID: PMC11134630 DOI: 10.1186/s13059-024-03285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations from different environments, but not among replicate populations from the same environment. In contrast, reproductive isolation among populations independently adapted to the same/similar environment can arise from both mutation-order speciation or system drift. RESULTS In experimentally evolved populations adapting to a hot environment for over 100 generations, we find evidence for pre- and postmating reproductive isolation. On one hand, an altered lipid metabolism and cuticular hydrocarbon composition pointed to possible premating barriers between the ancestral and replicate evolved populations. On the other hand, the pronounced gene expression differences in male reproductive genes may underlie the postmating isolation among replicate evolved populations adapting to the same environment with the same standing genetic variation. CONCLUSION Our study confirms that replicated evolution experiments provide valuable insights into the mechanisms of speciation. The rapid emergence of the premating reproductive isolation during temperature adaptation showcases incipient ecological speciation. The potential evidence of postmating reproductive isolation among replicates gave rise to two hypotheses: (1) mutation-order speciation through a common selection on early fecundity leading to an inherent inter-locus sexual conflict; (2) system drift with genetic drift along the neutral ridges.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, Vetmeduni Vienna, Vienna, Austria
| | - Felix Lehner
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present Address: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | | |
Collapse
|
3
|
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J. Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. J Evol Biol 2023; 36:1266-1281. [PMID: 37534753 DOI: 10.1111/jeb.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2023]
Abstract
Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.
Collapse
Affiliation(s)
- Christopher Mitchell
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Zachariah Wylde
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - Enrique Del Castillo
- Department of Industrial & Manufacturing Engineering and Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James Rapkin
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - John Hunt
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| |
Collapse
|
4
|
Wang Z, Receveur JP, Pu J, Cong H, Richards C, Liang M, Chung H. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife 2022; 11:e80859. [PMID: 36473178 PMCID: PMC9757832 DOI: 10.7554/elife.80859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| | - Joseph P Receveur
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
- Institute for Genome Sciences, University of MarylandBaltimoreUnited States
| | - Jian Pu
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- College of Agriculture, Sichuan Agricultural UniversitySichuanChina
| | - Haosu Cong
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Cole Richards
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Muxuan Liang
- Department of Biostatistics, University of FloridaGainesvilleUnited States
| | - Henry Chung
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
5
|
Rusuwa BB, Chung H, Allen SL, Frentiu FD, Chenoweth SF. Natural variation at a single gene generates sexual antagonism across fitness components in Drosophila. Curr Biol 2022; 32:3161-3169.e7. [PMID: 35700732 DOI: 10.1016/j.cub.2022.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Mutations with conflicting fitness effects in males and females accumulate in sexual populations, reducing their adaptive capacity.1,2 Although quantitative genetic studies indicate that sexually antagonistic polymorphisms are common,3-5 their molecular basis and population genetic properties remain poorly understood.6,7 Here, we show in fruit flies how natural variation at a single gene generates sexual antagonism through phenotypic effects on cuticular hydrocarbon (CHC) traits that function as both mate signals and protectors against abiotic stress8 across a latitudinal gradient. Tropical populations of Drosophila serrata have polymorphic CHCs producing sexual antagonism through opposing but sex-limited effects on these two fitness-related functions. We dissected this polymorphism to a single fatty-acyl CoA reductase gene, DsFAR2-B, that is expressed in oenocyte cells where CHCs are synthesized. RNAi-mediated disruption of the DsFAR2-B ortholog in D. melanogaster oenocytes affected CHCs in a similar way to that seen in D. serrata. Population genomic analysis revealed that balancing selection likely operates at the DsFAR2-B locus in the wild. Our study provides insights into the genetic basis of sexual antagonism in nature and connects sexually varying antagonistic selection on phenotypes with balancing selection on genotypes that maintains molecular variation.
Collapse
Affiliation(s)
- Bosco B Rusuwa
- School of Biological Sciences, The University of Queensland, St Lucia, Australia; Department of Biological Sciences, Chancellor College, University of Malawi, Zomba, Malawi
| | - Henry Chung
- Department of Entomology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Francesca D Frentiu
- School of Biological Sciences, The University of Queensland, St Lucia, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
6
|
Wang X, Verschut TA, Billeter JC, Maan ME. Seven Questions on the Chemical Ecology and Neurogenetics of Resource-Mediated Speciation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adaptation to different environments can result in reproductive isolation between populations and the formation of new species. Food resources are among the most important environmental factors shaping local adaptation. The chemosensory system, the most ubiquitous sensory channel in the animal kingdom, not only detects food resources and their chemical composition, but also mediates sexual communication and reproductive isolation in many taxa. Chemosensory divergence may thus play a crucial role in resource-mediated adaptation and speciation. Understanding how the chemosensory system can facilitate resource-mediated ecological speciation requires integrating mechanistic studies of the chemosensory system with ecological studies, to link the genetics and physiology of chemosensory properties to divergent adaptation. In this review, we use examples of insect research to present seven key questions that can be used to understand how the chemosensory system can facilitate resource-mediated ecological speciation in consumer populations.
Collapse
|
7
|
Leeson SA, Kennington WJ, Evans TA, Simmons LW. Phenotypic plasticity but no adaptive divergence in cuticular hydrocarbons and desiccation resistance among translocated populations of dung beetles. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10074-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Wang Y, Cooper TF. Environment-dependent costs and benefits of recombination in independently evolved populations of Escherichia coli. Evolution 2020; 74:1865-1873. [PMID: 32281651 DOI: 10.1111/evo.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Understanding of the causes by which reproductive isolation arises remains limited. We examine the role of adaptation in driving reproductive isolation among 12 Escherichia coli populations evolved in two different environments. We found that, regardless of whether parents were selected in the same or different environments, the average fitness of recombinants was lower than the expected, consistent with a prevailing influence of incompatibility between independently accumulated mutations. Exceptions to this pattern occurred among recombinants of some parents evolved in different environments. These recombinants were less fit than expected in the selective environment of one parent, but more fit than expected in the selective environment of the other parent. Our results indicate that both parallel and divergent adaptation can quickly lead to intrinsic genetic barriers contributing to the initial stages of speciation and show that these barriers can be complex, for example, depending on the environment in which recombinant offspring are tested.
Collapse
Affiliation(s)
- Yinhua Wang
- Department of Biology, University of Houston, Houston, Texas, 77204.,Present address: Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Tim F Cooper
- Department of Biology, University of Houston, Houston, Texas, 77204.,Present address: Institute of Natural and Mathematical Sciences, Massey University, Auckland, 0630, New Zealand
| |
Collapse
|
9
|
Ala-Honkola O, Kauranen H, Tyukmaeva V, Boetzl FA, Hoikkala A, Schmitt T. Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. INSECT SCIENCE 2020; 27:304-316. [PMID: 30176124 DOI: 10.1111/1744-7917.12639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Environmental cues, mainly photoperiod and temperature, are known to control female adult reproductive diapause in several insect species. Diapause enhances female survival during adverse conditions and postpones progeny production to the favorable season. Male diapause (a reversible inability to inseminate receptive females) has been studied much less than female diapause. However, if the males maximized their chances to fertilize females while minimizing their energy expenditure, they would be expected to be in diapause at the same time as females. We investigated Drosophila montana male mating behavior under short-day conditions that induce diapause in females and found the males to be reproductively inactive. We also found that males reared under long-day conditions (reproducing individuals) court reproducing postdiapause females, but not diapausing ones. The diapausing flies of both sexes had more long-chain and less short-chain hydrocarbons on their cuticle than the reproducing ones, which presumably increase their survival under stressful conditions, but at the same time decrease their attractiveness. Our study shows that the mating behavior of females and males is well coordinated during and after overwintering and it also gives support to the dual role of insect cuticular hydrocarbons in adaptation and mate choice.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
The complex genetic architecture of male mate choice evolution between Drosophila species. Heredity (Edinb) 2020; 124:737-750. [PMID: 32203250 DOI: 10.1038/s41437-020-0309-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mate choice behaviors are among the most important reproductive isolating barriers in many animals. Little is known about the genetic basis of reproductively isolating behaviors, but examples to date provide evidence that they can have a simple genetic basis. However, it is unclear if these results indicate that individual genes with large effects are common, or are instead due to ascertainment biases. Here, we present the results of a QTL mapping study for the most important behavioral isolating barrier between Drosophila simulans and D. sechellia: male mate choice. Our QTL results initially suggested that differences in male mate choice may be due to a couple loci with large effects. However, as we divided the largest-effect QTL using stable introgression strains, we found evidence of multiple interacting loci. We further find that separate regions of the genome control different aspects of male choice. Taken together, our results suggest that the genetic architecture of mate choice behavior, in this case, is more complex than QTL mapping suggested, highlighting potential challenges to future mapping studies. We discuss the implications of these results as they relate to signal-receiver coevolution, mate choice, and reproductive isolation.
Collapse
|
11
|
Berdan E, Enge S, Nylund GM, Wellenreuther M, Martens GA, Pavia H. Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly Coelopa frigida. Ecol Evol 2019; 9:12156-12170. [PMID: 31832150 PMCID: PMC6854331 DOI: 10.1002/ece3.5690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) form the boundary between insects and their environments and often act as essential cues for species, mate, and kin recognition. This complex polygenic trait can be highly variable both among and within species, but the causes of this variation, especially the genetic basis, are largely unknown. In this study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, Coelopa frigida, and found that composition was affected by both genetic (sex and population) and environmental (larval diet) factors. We subsequently conducted behavioral trials that show CHCs are likely used as a sexual signal. We identified general shifts in CHC chemistry as well as individual compounds and found that the methylated compounds, mean chain length, proportion of alkenes, and normalized total CHCs differed between sexes and populations. We combined these data with whole genome resequencing data to examine the genetic underpinnings of these differences. We identified 11 genes related to CHC synthesis and found population-level outlier SNPs in 5 that are concordant with phenotypic differences. Together these results reveal that the CHC composition of C. frigida is dynamic, strongly affected by the larval environment, and likely under natural and sexual selection.
Collapse
Affiliation(s)
- Emma Berdan
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
| | - Swantje Enge
- Institute for Chemistry and Biology of the Marine EnvironmentCarl‐von‐Ossietzky University OldenburgWilhelmshavenGermany
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Göran M. Nylund
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Maren Wellenreuther
- Plant & Food Research LimitedNelsonNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Henrik Pavia
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| |
Collapse
|
12
|
Belkina EG, Naimark EB, Gorshkova AA, Markov AV. Does adaptation to different diets result in assortative mating? Ambiguous results from experiments on Drosophila. J Evol Biol 2018; 31:1803-1814. [PMID: 30222229 DOI: 10.1111/jeb.13375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
The emergence of behavioural isolation between populations under divergent selection can be crucial for ecological speciation, but the mechanisms underlying such isolation are poorly understood. Several experimental evolution studies have shown that positive assortative mating (preference for similar mates) can arise rapidly in Drosophila laboratory populations reared in different stressful conditions, while other studies failed to confirm this effect. Here, we present the results of an evolution experiment in which outbred lines of Drosophila melanogaster were reared for 1-2 years on one of the three different diets (standard, starch based or high salt). We show that nonrandom mating arose in some, but not all lines, and that the manifestations and possible interpretations of this nonrandomness depend strongly on the type of tests used to assess mating preferences. More specifically, multiple-choice four-fly tests revealed positive assortative mating (prevalence of homogamic matings) in some starch-adapted and salt-adapted lines when paired with a control line reared on the standard diet, but competitive three-fly tests rather revealed competitive advantage of control males and females over the flies reared on stressful diets. The results imply that divergent adaptation can result in differences in mating propensity or competitive ability, which, in turn, may either facilitate or hamper speciation depending on the relative frequency of high- vs. low-competition settings in natural habitats of the diverging populations. The results also emphasize the importance of using diverse tests for assessing mating structure in natural and laboratory populations.
Collapse
Affiliation(s)
- Elena G Belkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena B Naimark
- Borissiak Paleontological Institute of Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander V Markov
- Borissiak Paleontological Institute of Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Hidalgo K, Montazeau C, Siaussat D, Braman V, Trabalon M, Simard F, Renault D, Dabiré RK, Mouline K. Distinct physiological, biochemical and morphometric adjustments in the malaria vectors Anopheles gambiae and A. coluzzii as means to survive dry season conditions in Burkina Faso. ACTA ACUST UNITED AC 2018; 221:jeb.174433. [PMID: 29378815 DOI: 10.1242/jeb.174433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 01/17/2023]
Abstract
Aestivation and dispersive migration are the two strategies evoked in the literature to explain the way in which malaria vectors Anopheles coluzzii and A. gambiae survive the harsh climatic conditions of the dry season in sub-Saharan Africa. However, the physiological mechanisms regulating these two strategies are unknown. In the present study, mosquito species were exposed to controlled environmental conditions mimicking the rainy and dry seasons of south western Burkina Faso. Survival strategies were studied through morphometric (wing length), ecophysiological (respiratory gas exchanges), biochemical (cuticular hydrocarbons composition) and molecular (AKH mRNA expression levels) parameters, variations of which are usually considered to be hallmarks of aestivation and dispersion mechanisms in various insects. Our results showed that ecophysiological and morphometric adjustments are made in both species to prevent water losses during the dry season. However, the usual metabolic rate modifications expected as signatures of aestivation and migration were not observed, highlighting specific and original physiological mechanisms sustaining survival in malaria mosquitoes during the dry season. Differences in epicuticular hydrocarbon composition and AKH levels of expression were found between the permanent and temporary A. coluzzii populations, illustrating the great phenotypic plasticity of this mosquito species. Altogether, our work underlines the diverse and complex pattern of changes occurring in the two mosquito species and at the population level to cope with the dry season and highlights potential targets of future control tools.
Collapse
Affiliation(s)
- K Hidalgo
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du General Leclerc, CS 74205 35042 Rennes, Cedex, France .,INRA UR370 QuaPA, MASS Group, 63122 Saint-Genès-Champanelle, France
| | - C Montazeau
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France
| | - D Siaussat
- UMR 7618 Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Université Pierre et Marie Curie (UPMC), 4 Place Jussieu, Tour 44-45, 3ème étage, 75005 Paris, France
| | - V Braman
- UMR 7618 Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Université Pierre et Marie Curie (UPMC), 4 Place Jussieu, Tour 44-45, 3ème étage, 75005 Paris, France
| | - M Trabalon
- Université de Rennes 1, UMR CNRS 6552 Ethologie animale et humaine, Campus de Beaulieu, 263 Avenue du General Leclerc, 35042 Rennes, Cedex, France
| | - F Simard
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France
| | - D Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du General Leclerc, CS 74205 35042 Rennes, Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231 Paris, Cedex 05, France
| | - R K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - K Mouline
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France.,Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
14
|
Otte T, Hilker M, Geiselhardt S. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. J Chem Ecol 2018; 44:235-247. [PMID: 29468480 DOI: 10.1007/s10886-018-0934-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022]
Abstract
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.
Collapse
Affiliation(s)
- Tobias Otte
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
15
|
Tejeda MT, Arredondo‐Gordillo J, Orozco‐Dávila D, Quintero‐Fong L, Díaz‐Fleischer F. Directional selection to improve the sterile insect technique: Survival and sexual performance of desiccation resistant Anastrepha ludens strains. Evol Appl 2017; 10:1020-1030. [PMID: 29151857 PMCID: PMC5680626 DOI: 10.1111/eva.12506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
The sterile insect technique (SIT) is an effective, environmentally friendly method for insect control whose success depends on the sexual performance and survival of sterile males. These two parameters are influenced by environmental conditions of target areas, and releasing insects with a higher tolerance to stressful environments can improve SIT efficiency. Directional selection can be used to produce insect strains with higher tolerance to extreme environmental conditions, such as low humidity, for extended periods. We evaluated, under field cage conditions, the sexual competitiveness, sexual compatibility, and survival of strains of Anastrepha ludens (Loew) selected for desiccation resistance to determine the value of directional selection as a possible approach to enhance SIT efficiency. Fly strains (selected and unselected and those mass-reared) were exposed to stressful conditions of low humidity and food and water deprivation for 24 hr before test. As a control, mild conditions without the stressors were used. No differences in sexual competitiveness and sexual compatibility between selected, nonselected, and mass-reared strains were observed when previously exposed to mild conditions. Thus, selection for desiccation resistance does not modified negatively the sexual performance. However, when insects were exposed to stressful conditions, males of selected strains sexually outperform mass-reared males. Additionally, selected strains presented higher survival than mass-reared flies. The approach to integrate directional selection with other technologies in the SIT as well as the implications of using a desiccation-selected strain in the current pest management program is discussed.
Collapse
Affiliation(s)
- Marco T. Tejeda
- INBIOTECAUniversidad VeracruzanaXalapaMéxico
- Departamento de Filtrado GenéticoPrograma Moscamed acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | - José Arredondo‐Gordillo
- Departamento de Biología, Ecología y Comportamiento, Desarrollo de MétodosPrograma Moscafrut Acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | - Dina Orozco‐Dávila
- Subdirección de ProducciónPrograma Moscafrut Acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | - Luis Quintero‐Fong
- Departamento de Validación Tecnológica, Desarrollo de MétodosPrograma Moscafrut Acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | | |
Collapse
|
16
|
|
17
|
Booksmythe I, Rundle HD, Arnqvist G. Sexual dimorphism in epicuticular compounds despite similar sexual selection in sex role-reversed seed beetles. J Evol Biol 2017; 30:2005-2016. [DOI: 10.1111/jeb.13171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/28/2017] [Accepted: 08/20/2017] [Indexed: 01/06/2023]
Affiliation(s)
- I. Booksmythe
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - H. D. Rundle
- Department of Biology; University of Ottawa; Ottawa ON Canada
| | - G. Arnqvist
- Department of Animal Ecology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
18
|
Tissue-specific insulin signaling mediates female sexual attractiveness. PLoS Genet 2017; 13:e1006935. [PMID: 28817572 PMCID: PMC5560536 DOI: 10.1371/journal.pgen.1006935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.
Collapse
|
19
|
Botella-Cruz M, Villastrigo A, Pallarés S, López-Gallego E, Millán A, Velasco J. Cuticle hydrocarbons in saline aquatic beetles. PeerJ 2017; 5:e3562. [PMID: 28717597 PMCID: PMC5511699 DOI: 10.7717/peerj.3562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 11/20/2022] Open
Abstract
Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae) and Enochrus jesusarribasi (Hydrophilidae), using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae) compared with other aquatic Coleoptera (freshwater Dytiscidae). Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.
Collapse
Affiliation(s)
| | - Adrián Villastrigo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Susana Pallarés
- Department of Ecology and Hydrology, University of Murcia, Spain
| | - Elena López-Gallego
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, University of Murcia, Spain
| |
Collapse
|
20
|
Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS. Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 2016; 30:66-80. [PMID: 27718537 DOI: 10.1111/jeb.12988] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern United States, as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster.
Collapse
Affiliation(s)
- S Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - R Hanus
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - V Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - E L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - A O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - D Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - J Cvačka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - P S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Tejeda MT, Arredondo J, Liedo P, Pérez-Staples D, Ramos-Morales P, Díaz-Fleischer F. Reasons for success: Rapid evolution for desiccation resistance and life-history changes in the polyphagous flyAnastrepha ludens. Evolution 2016; 70:2583-2594. [DOI: 10.1111/evo.13070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Marco T. Tejeda
- INBIOTECA; Universidad Veracruzana; Xalapa Veracruz 91090 México
- Departamento de Cría; Programa Moscamed acuerdo SAGARPA-IICA; Metapa de Domínguez Chiapas 30860 México
| | - José Arredondo
- Departamento de Biología, Ecología y Comportamiento; Desarrollo de Métodos; Programa Moscafrut acuerdo SAGARPA-IICA Metapa de Domínguez Chiapas 30860 México
| | - Pablo Liedo
- El Colegio de la Frontera Sur; Tapachula Chiapas 30700 México
| | | | - Patricia Ramos-Morales
- UNAM, Facultad de Ciencias; Laboratorio de Genética y Toxicología Ambiental and Drosophila Stock Center México; Distrito Federal 04510 México
| | | |
Collapse
|
22
|
Arcaz AC, Huestis DL, Dao A, Yaro AS, Diallo M, Andersen J, Blomquist GJ, Lehmann T. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons. ACTA ACUST UNITED AC 2016; 219:1675-88. [PMID: 27207644 PMCID: PMC4920233 DOI: 10.1242/jeb.135665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/09/2016] [Indexed: 01/08/2023]
Abstract
The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism.
Collapse
Affiliation(s)
- Arthur C Arcaz
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD 20852, USA
| | - Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD 20852, USA
| | - Adama Dao
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, BP 1805, Mali
| | - Alpha S Yaro
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, BP 1805, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, BP 1805, Mali
| | - John Andersen
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD 20852, USA
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD 20852, USA
| |
Collapse
|
23
|
Holman L, Hanley B, Millar JG. Highly specific responses to queen pheromone in three Lasius ant species. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2058-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Denis B, Rouzic AL, Wicker-Thomas C. Hydrocarbon Patterns and Mating Behaviour in Populations of Drosophila yakuba. INSECTS 2015; 6:897-911. [PMID: 26516919 PMCID: PMC4693177 DOI: 10.3390/insects6040897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
Drosophila yakuba is widespread in Africa. Here we compare the cuticular hydrocarbon (CHC) profiles and mating behavior of mainland (Kounden, Cameroon) and island (Mayotte, Sao-Tome, Bioko) populations. The strains each had different CHC profiles: Bioko and Kounden were the most similar, while Mayotte and Sao-Tome contained significant amounts of 7-heptacosene. The CHC profile of the Sao-Tome population differed the most, with half the 7-tricosene of the other populations and more 7-heptacosene and 7-nonacosene. We also studied the characteristics of the mating behavior of the four strains: copulation duration was similar but latency times were higher in Mayotte and Sao-Tome populations. We found partial reproductive isolation between populations, especially in male-choice experiments with Sao-Tome females.
Collapse
Affiliation(s)
- Béatrice Denis
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France.
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France.
| | - Claude Wicker-Thomas
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France.
| |
Collapse
|
25
|
Rundle HD, Dyer KA. Reproductive character displacement of female mate preferences for male cuticular hydrocarbons inDrosophila subquinaria. Evolution 2015; 69:2625-37. [DOI: 10.1111/evo.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Howard D. Rundle
- Department of Biology; University of Ottawa; Ottawa Ontario K1N 6N5 Canada
| | - Kelly A. Dyer
- Department of Genetics; University of Georgia; Athens Georgia 30602
| |
Collapse
|
26
|
Chung H, Carroll SB. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 2015; 37:822-30. [PMID: 25988392 PMCID: PMC4683673 DOI: 10.1002/bies.201500014] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolutionary changes in traits that affect both ecological divergence and mating signals could lead to reproductive isolation and the formation of new species. Insect cuticular hydrocarbons (CHCs) are potential examples of such dual traits. They form a waxy layer on the cuticle of the insect to maintain water balance and prevent desiccation, while also acting as signaling molecules in mate recognition and chemical communication. Because the synthesis of these hydrocarbons in insect oenocytes occurs through a common biochemical pathway, natural or sexual selection on one role may affect the other. In this review, we explore how ecological divergence in insect CHCs can lead to divergence in mating signals and reproductive isolation. We suggest that the evolution of insect CHCs may be ripe models for understanding ecological speciation.
Collapse
Affiliation(s)
- Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, WI, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, WI, USA
| |
Collapse
|
27
|
Bonduriansky R, Mallet MA, Arbuthnott D, Pawlowsky-Glahn V, Egozcue JJ, Rundle HD. Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence. Ecol Lett 2015; 18:317-26. [PMID: 25649176 DOI: 10.1111/ele.12412] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/07/2014] [Accepted: 01/03/2015] [Indexed: 01/17/2023]
Abstract
Condition is a central concept in evolutionary ecology, but the roles of genetic and environmental quality in condition-dependent trait expression remain poorly understood. Theory suggests that condition integrates genetic, epigenetic and somatic factors, and therefore predicts alignment between the phenotypic effects of genetic and environmental quality. To test this key prediction, we manipulated both genetic (mutational) and environmental (dietary) quality in Drosophila melanogaster and examined responses in morphological and chemical (cuticular hydrocarbon, CHC) traits in both sexes. While the phenotypic effects of diet were consistent among genotypes, effects of mutation load varied in magnitude and direction. Average effects of diet and mutation were aligned for most morphological traits, but non-aligned for the male sexcombs and CHCs in both sexes. Our results suggest the existence of distinct forms of condition dependence, one integrating both genetic and environmental effects and the other purely environmental. We propose a model to account for these observations.
Collapse
Affiliation(s)
- Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, House CM, Sharma MD, Hunt J. Environmental heterogeneity, multivariate sexual selection and genetic constraints on cuticular hydrocarbons in Drosophila simulans. J Evol Biol 2014; 27:700-13. [PMID: 24779049 DOI: 10.1111/jeb.12338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sexual selection is responsible for the evolution of many elaborate traits, but sexual trait evolution could be influenced by opposing natural selection as well as genetic constraints. As such, the evolution of sexual traits could depend heavily on the environment if trait expression and attractiveness vary between environments. Here, male Drosophila simulans were reared across a range of diets and temperatures, and we examined differences between these environments in terms of (i) the expression of male cuticular hydrocarbons (CHCs) and (ii) which male CHC profiles were most attractive to females. Temperature had a strong effect on male CHC expression, whereas the effect of diet was weaker. Male CHCs were subject to complex patterns of directional, quadratic and correlational sexual selection, and we found differences between environments in the combination of male CHCs that were most attractive to females, with clearer differences between diets than between temperatures. We also show that genetic covariance between environments is likely to cause a constraint on independent CHC evolution between environments. Our results demonstrate that even across the narrow range of environmental variation studied here, predicting the outcome of sexual selection can be extremely complicated, suggesting that studies ignoring multiple traits or environments may provide an over-simplified view of the evolution of sexual traits.
Collapse
|
29
|
Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2014; 180:38-42. [PMID: 25460832 DOI: 10.1016/j.cbpa.2014.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster.
Collapse
Affiliation(s)
- Joseph R Stinziano
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Richard J Sové
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
30
|
Kalra B, Parkash R. Sex-specific divergence for body size and desiccation-related traits in Drosophila hydei from the western Himalayas. Comp Biochem Physiol A Mol Integr Physiol 2014; 177:1-10. [DOI: 10.1016/j.cbpa.2014.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022]
|
31
|
Simmons LW, Thomas ML, Gray B, Zuk M. Replicated evolutionary divergence in the cuticular hydrocarbon profile of male crickets associated with the loss of song in the Hawaiian archipelago. J Evol Biol 2014; 27:2249-57. [DOI: 10.1111/jeb.12478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 02/02/2023]
Affiliation(s)
- L. W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology; The University of Western Australia; Crawley WA Australia
| | - M. L. Thomas
- Centre for Evolutionary Biology; School of Animal Biology; The University of Western Australia; Crawley WA Australia
| | - B. Gray
- Department of Biology; University of California; Riverside CA USA
| | - M. Zuk
- Department of Ecology, Evolution and Behavior; University of Minnesota; St. Paul MN USA
| |
Collapse
|
32
|
Bontonou G, Wicker-Thomas C. Sexual Communication in the Drosophila Genus. INSECTS 2014; 5:439-58. [PMID: 26462693 PMCID: PMC4592592 DOI: 10.3390/insects5020439] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/20/2022]
Abstract
In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- CNRS UPR 9034 and Université de Paris Sud, 91198 Gif sur Yvette, France.
| | | |
Collapse
|
33
|
Ingleby FC, Innocenti P, Rundle HD, Morrow EH. Between-sex genetic covariance constrains the evolution of sexual dimorphism in Drosophila melanogaster. J Evol Biol 2014; 27:1721-32. [PMID: 24893565 DOI: 10.1111/jeb.12429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/27/2022]
Abstract
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex-specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between-sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.
Collapse
Affiliation(s)
- F C Ingleby
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, UK
| | | | | | | |
Collapse
|
34
|
Dyer KA, White BE, Sztepanacz JL, Bewick ER, Rundle HD. Reproductive character displacement of epicuticular compounds and their contribution to mate choice in Drosophila subquinaria and Drosophila recens. Evolution 2014; 68:1163-75. [PMID: 24351014 PMCID: PMC4278427 DOI: 10.1111/evo.12335] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 12/03/2013] [Indexed: 11/29/2022]
Abstract
Interactions between species can alter selection on sexual displays used in mate choice within species. Here we study the epicuticular pheromones of two Drosophila species that overlap partially in geographic range and are incompletely reproductively isolated. Drosophila subquinaria shows a pattern of reproductive character displacement against Drosophila recens, and partial behavioral isolation between conspecific sympatric versus allopatric populations, whereas D. recens shows no such variation in mate choice. First, using manipulative perfuming experiments, we show that females use pheromones as signals for mate discrimination both between species and among populations of D. subquinaria. Second, we show that patterns of variation in epicuticular compounds, both across populations and between species, are consistent with those previously shown for mating probabilities: pheromone compositions differ between populations of D. subquinaria that are allopatric versus sympatric with D. recens, but are similar across populations of D. recens regardless of overlap with D. subquinaria. We also identify differences in pheromone composition among allopatric regions of D. subquinaria. In sum, our results suggest that epicuticular compounds are key signals used by females during mate recognition, and that these traits have diverged among D. subquinaria populations in response to reinforcing selection generated by the presence of D. recens.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, Georgia, 30602.
| | | | | | | | | |
Collapse
|
35
|
Steiger S, Ower GD, Stökl J, Mitchell C, Hunt J, Sakaluk SK. Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proc Biol Sci 2013; 280:20132353. [PMID: 24197415 DOI: 10.1098/rspb.2013.2353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) play an essential role in mate recognition in insects but the form and intensity of sexual selection on CHCs has only been evaluated in a handful of studies, and never in a natural population. We quantified sexual selection operating on CHCs in a wild population of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. Multivariate selection analysis revealed a saddle-shaped fitness surface, suggesting a complex interplay between the total abundance of CHCs and specific CHC combinations in their influence on female choice. The fitness surface resulting from two axes of disruptive selection reflected a trade-off between short- and long-chained CHCs, suggesting that males may be sacrificing some level of desiccation resistance in favour of increased attractiveness. There was a significant correlation between male body size and total CHC abundance, suggesting that male CHCs provide females with a reliable cue for maximizing benefits obtained from males. Notwithstanding the conspicuousness of males' acoustic signals, our results suggest that selection imposed on males via female mating preferences may be far more complex than previously appreciated and operating in multiple sensory modalities.
Collapse
Affiliation(s)
- Sandra Steiger
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, , Normal, IL 61790-4120, USA, Institute of Experimental Ecology, University of Ulm, , Ulm 89081, Germany, Institute of Zoology, University of Regensburg, , Regensburg 93053, Germany, Centre for Ecology and Conservation, School of Biosciences, University of Exeter, , Cornwall Campus, Penryn TR10 9EZ, UK
| | | | | | | | | | | |
Collapse
|
36
|
Bontonou G, Denis B, Wicker-Thomas C. Interaction between temperature and male pheromone in sexual isolation in Drosophila melanogaster. J Evol Biol 2013; 26:2008-20. [PMID: 23944628 PMCID: PMC4217391 DOI: 10.1111/jeb.12206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In Drosophila, female hydrocarbons are known to be involved in premating isolation between different species and pheromonal races. The role of male-specific hydrocarbon polymorphism is not as well documented. The dominant cuticular hydrocarbon (CHC) in male D. melanogaster is usually 7-tricosene (7-T), with the exception of African populations, in which 7-pentacosene (7-P) is dominant. Here, we took advantage of a population from the Comoro Islands (Com), in which males fell on a continuum of low to high levels of 7-T, to perform temperature selection and selection on CHCs’ profiles. We conducted several experiments on the selected Com males to study the plasticity of their CHCs in response to temperature shift, their role in resistance to desiccation and in sexual selection. We then compared the results obtained for selected lines to those from three common laboratory strains with different and homogenous hydrocarbon profiles: CS, Cot and Tai. Temperature selection modified the CHC profiles of the Com males in few generations of selection. We showed that the 7-P/7-T ratio depends on temperature with generally more 7-P at higher temperatures and observed a relationship between chain length and resistance to desiccation in both temperature- and phenotypically selected Com lines. There was partial sexual isolation between the flies with clear-cut phenotypes within the phenotypically selected lines and the laboratory strains. These results indicate that the dominant male pheromones are under environmental selection and may have played a role in reproductive isolation.
Collapse
Affiliation(s)
- G Bontonou
- CNRS UPR 9034, Université de Paris Sud, Gif sur Yvette, France
| | | | | |
Collapse
|
37
|
Holman L, Lanfear R, d'Ettorre P. The evolution of queen pheromones in the ant genus Lasius. J Evol Biol 2013; 26:1549-58. [PMID: 23662630 DOI: 10.1111/jeb.12162] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
Abstract
Queen pheromones are among the most important chemical messages regulating insect societies yet they remain largely undiscovered, hindering research into interesting proximate and ultimate questions. Identifying queen pheromones in multiple species would give new insight into the selective pressures and evolutionary constraints acting on these ubiquitous signals. Here, we present experimental and comparative evidence that 3-methylalkanes, hydrocarbons present on the queen's cuticle, are a queen pheromone throughout the ant genus Lasius. Interspecific variation in the chemical profile is consistent with 3-methylalkanes evolving more slowly than other types of hydrocarbons, perhaps due to differential selection or evolutionary constraints. We argue that the sensory ecology of the worker response imposes strong stabilizing selection on queen pheromones relative to other hydrocarbons. 3-Methylalkanes are also strongly physiologically and genetically coupled with fecundity in at least one Lasius species, which may translate into evolutionary constraints. Our results highlight how honest signalling could minimize evolutionary conflict over reproduction, promoting the evolution and maintenance of eusociality.
Collapse
Affiliation(s)
- L Holman
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
38
|
Curtis S, Sztepanacz JL, White BE, Dyer KA, Rundle HD, Mayer P. Epicuticular Compounds of Drosophila subquinaria and D. recens: Identification, Quantification, and Their Role in Female Mate Choice. J Chem Ecol 2013; 39:579-90. [DOI: 10.1007/s10886-013-0284-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/04/2013] [Accepted: 03/24/2013] [Indexed: 10/26/2022]
|
39
|
Holman L, Linksvayer TA, d'Ettorre P. Genetic constraints on dishonesty and caste dimorphism in an ant. Am Nat 2013; 181:161-70. [PMID: 23348771 DOI: 10.1086/668828] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ultimate causes of honest signaling remain a subject of debate, with questions remaining over the relative importance of costs and constraints. Signal costs may make dishonesty prohibitively expensive, while genetic constraints could make it impossible. We investigated honest signaling using full-sib analysis and parent-offspring regression in the ant Lasius niger, in which queens produce a cuticular hydrocarbon-based pheromone that signals fertility and inhibits worker reproduction and aggression. We found multiple lines of evidence that cuticular hydrocarbon production is genetically correlated with oogenesis and that the queen pheromone 3-methylhentriacontane and other 3-methylalkanes have strong genetic links with fertility relative to other cuticular hydrocarbons. These genetic correlations may maintain honesty in the face of directional selection on signaling and explain the putatively widespread use of cuticular hydrocarbons in fertility signaling across the social insects. We also found evidence for a positive genetic correlation for fertility between the castes; that is, the most fertile queens produced especially fertile workers. These results highlight that intercaste genetic correlations could constrain the evolution of queen-worker dimorphism, such that worker reproduction may sometimes reflect a nonadaptive "caste load" rather than positively selected cheating.
Collapse
Affiliation(s)
- Luke Holman
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2200 Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, Dworkin I, Hunt J. Genotype-by-environment interactions for cuticular hydrocarbon expression in Drosophila simulans. J Evol Biol 2012; 26:94-107. [DOI: 10.1111/jeb.12030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/16/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Affiliation(s)
- F. C. Ingleby
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - D. J. Hosken
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - K. Flowers
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - M. F. Hawkes
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - S. M. Lane
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - J. Rapkin
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - I. Dworkin
- Program in Ecology, Evolutionary Biology and Behavior; Department of Zoology; Michigan State University; East Lansing MI USA
| | - J. Hunt
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| |
Collapse
|
41
|
Bontonou G, Denis B, Wicker-Thomas C. Male pheromone polymorphism and reproductive isolation in populations of Drosophila simulans. Ecol Evol 2012; 2:2527-36. [PMID: 23145337 PMCID: PMC3492778 DOI: 10.1002/ece3.342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/11/2022] Open
Abstract
The dominant cuticular hydrocarbons (HC) in Drosophila simulans are 7-tricosene (7-T) and 7-pentacosene (7-P). The 7-T is the major HC in East Africa and in other continents. In West Africa, D. simulans is very rare and displays 7-P as the major compound. We studied three D. simulans strains from Egypt (Eg), Sao-Tome (ST), and Cameroon (Cam), with 7-T, intermediary or 7-P phenotypes. HC profiles of ST and Cam female differed slightly from corresponding male profiles; females had more 7-T and less 7-P. Varying temperature affected all HCs (even those with 27 and 29 carbons)-not just 7-T and 7-P; there was no clear relationship between HC phenotype and resistance to desiccation. We report reproductive isolation between Eg and ST and Eg and Cam (but not between ST and Cam), which is due to Eg and Cam female preferences for their own males. In conclusion, our findings do support divergence of D. simulans populations from West Africa for both pheromonal profile and mating preference.
Collapse
|
42
|
Evolutionary optimum for male sexual traits characterized using the multivariate Robertson-Price Identity. Proc Natl Acad Sci U S A 2012; 109:10414-9. [PMID: 22615415 DOI: 10.1073/pnas.1116828109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenotypes tend to remain relatively constant in natural populations, suggesting a limit to trait evolution. Although stationary phenotypes suggest stabilizing selection, directional selection is more commonly reported. However, selection on phenotypes will have no evolutionary consequence if the traits do not genetically covary with fitness, a covariance known as the Robertson-Price Identity. The nature of this genetic covariance determines if phenotypes will evolve directionally or whether they reside at an evolutionary optimum. Here, we show how a set of traits can be shown to be under net stabilizing selection through an application of the multivariate Robertson-Price Identity. We characterize how a suite of male sexual displays genetically covaries with fitness in a population of Drosophila serrata. Despite strong directional sexual selection on these phenotypes directly and significant genetic variance in them, little genetic covariance was detected with overall fitness. Instead, genetic analysis of trait deviations showed substantial stabilizing selection on the genetic variance of these traits with respect to overall fitness, indicating that they reside at an evolutionary optimum. In the presence of widespread pleiotropy, stabilizing selection on focal traits will arise through the net effects of selection on other, often unmeasured, traits and will tend to be stronger on trait combinations than single traits. Such selection may be difficult to detect in phenotypic analyses if the environmental covariance between the traits and fitness obscures the underlying genetic associations. The genetic analysis of trait deviations provides a way of detecting the missing stabilizing selection inferred by recent metaanalyses.
Collapse
|
43
|
Non-ecological speciation, niche conservatism and thermal adaptation: how are they connected? ORG DIVERS EVOL 2012. [DOI: 10.1007/s13127-012-0082-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Divergent Selection and Then What Not: The Conundrum of Missing Reproductive Isolation in Misty Lake and Stream Stickleback. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/902438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In ecological speciation, reproductive isolation evolves as a consequence of adaptation to different selective environments. A frequent contributor to this process is the evolution of positive assortative mate choice between ecotypes. We tested this expectation for lake and inlet stream threespine stickleback (Gasterosteus aculeatus) from the Misty system (Vancouver Island, Canada), which show strong genetically based adaptive divergence and little genetic exchange in nature. This, and work on other stickleback systems, led us to expect positive assortative mating. Yet, our standard “no-choice” laboratory experiment on common-garden fish revealed no evidence for this—despite divergence in traits typically mediating assortative mating in stickleback. These results remind us that divergent natural selection may not inevitably lead to the evolution of positive assortative mate choice. The apparent lack of strong and symmetric reproductive barriers in this system presents a conundrum: why are such barriers not evident despite strong adaptive divergence and low gene flow in nature?
Collapse
|
45
|
BEDHOMME STÉPHANIE, CHIPPINDALE ADAMK, PRASAD NG, DELCOURT MATTHIEU, ABBOTT JESSICAK, MALLET MARTINA, RUNDLE HOWARDD. Male-limited evolution suggests no extant intralocus sexual conflict over the sexually dimorphic cuticular hydrocarbons of Drosophila melanogaster. J Genet 2011; 90:443-52. [DOI: 10.1007/s12041-011-0109-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Bonduriansky R. Sexual Selection and Conflict as Engines of Ecological Diversification. Am Nat 2011; 178:729-45. [DOI: 10.1086/662665] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Easty LK, Schwartz AK, Gordon SP, Hendry AP. Does sexual selection evolve following introduction to new environments? Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Charette M, Darveau CA, Perry SF, Rundle HD. Evolutionary consequences of altered atmospheric oxygen in Drosophila melanogaster. PLoS One 2011; 6:e26876. [PMID: 22046390 PMCID: PMC3203924 DOI: 10.1371/journal.pone.0026876] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
Twelve replicate populations of Drosophila melanogaster, all derived from a common ancestor, were independently evolved for 34+ generations in one of three treatment environments of varying PO(2): hypoxia (5.0-10.1 kPa), normoxia (21.3 kPa), and hyperoxia (40.5 kPa). Several traits related to whole animal performance and metabolism were assayed at various stages via "common garden" and reciprocal transplant assays to directly compare evolved and acclimatory differences among treatments. Results clearly demonstrate the evolution of a greater tolerance to acute hypoxia in the hypoxia-evolved populations, consistent with adaptation to this environment. Greater hypoxia tolerance was associated with an increase in citrate synthase activity in fly homogenate when compared to normoxic (control) populations, suggesting an increase in mitochondrial volume density in these populations. In contrast, no direct evidence of increased performance of the hyperoxia-evolved populations was detected, although a significant decrease in the tolerance of these populations to acute hypoxia suggests a cost to adaptation to hyperoxia. Hyperoxia-evolved populations had lower productivity overall (i.e., across treatment environments) and there was no evidence that hypoxia or hyperoxia-evolved populations had greatest productivity or longevity in their respective treatment environments, suggesting that these assays failed to capture the components of fitness relevant to adaptation.
Collapse
Affiliation(s)
- Marc Charette
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Steve F. Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Sharma MD, Hunt J, Hosken DJ. ANTAGONISTIC RESPONSES TO NATURAL AND SEXUAL SELECTION AND THE SEX-SPECIFIC EVOLUTION OF CUTICULAR HYDROCARBONS IN DROSOPHILA SIMULANS. Evolution 2011; 66:665-677. [DOI: 10.1111/j.1558-5646.2011.01468.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Nielsen ML, Holman L. Terminal investment in multiple sexual signals: immune-challenged males produce more attractive pheromones. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01914.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|