1
|
Nydam ML. Ascidian evolution and ecology. Genesis 2023; 61:e23541. [PMID: 37583358 DOI: 10.1002/dvg.23541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Affiliation(s)
- Marie L Nydam
- Life Sciences Concentration, Soka University of America, Aliso Viejo, California, USA
| |
Collapse
|
2
|
Wilson ER, Murphy KJ, Wyeth RC. Ecological Review of the Ciona Species Complex. THE BIOLOGICAL BULLETIN 2022; 242:153-171. [PMID: 35580029 DOI: 10.1086/719476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractThe set of four closely related solitary ascidians Ciona spp. were once considered a single cosmopolitan species, Ciona intestinalis, but are now recognized as genetically and morphologically distinct species. The possibility of ecological differences between the species was not widely considered in studies preceding the schism of Ciona spp. Consequently, there may be an over-generalization of the ecology of Ciona spp., with potential implications for the broad range of studies targeting these species, encompassing the evolution, development, genomics, and invasion biology of Ciona spp. We completed a comprehensive review of the ecology of Ciona spp. to establish the similarities and differences between the widely distributed Ciona robusta and C. intestinalis (and what little is known of the two other species, Ciona sp. C and Ciona sp. D). When necessary, we used study locations and the species' geographic ranges to infer the species in each study in the review. As expected, ecological similarities are the norm between the two species, spanning both abiotic and biotic interactions. However, there are also important differences that have potential implications for other aspects of the biology of Ciona spp. For example, differences in temperature and salinity tolerances likely correspond with the disparities in the geographic distribution of the species. Asymmetries in topics studied in each species diminish our ability to fully compare several aspects of the ecology of Ciona spp. and are priority areas for future research. We anticipate that our clarification of common and unique aspects of each species' ecology will help to provide context for future research in many aspects of the biology of Ciona spp.
Collapse
|
3
|
Tokuoka M, Maeda K, Kobayashi K, Mochizuki A, Satou Y. The gene regulatory system for specifying germ layers in early embryos of the simple chordate. SCIENCE ADVANCES 2021; 7:7/24/eabf8210. [PMID: 34108211 PMCID: PMC8189585 DOI: 10.1126/sciadv.abf8210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
In animal embryos, gene regulatory networks control the dynamics of gene expression in cells and coordinate such dynamics among cells. In ascidian embryos, gene expression dynamics have been dissected at the single-cell resolution. Here, we revealed mathematical functions that represent the regulatory logics of all regulatory genes expressed at the 32-cell stage when the germ layers are largely specified. These functions collectively explain the entire mechanism by which gene expression dynamics are controlled coordinately in early embryos. We found that regulatory functions for genes expressed in each of the specific lineages contain a common core regulatory mechanism. Last, we showed that the expression of the regulatory genes became reproducible by calculation and controllable by experimental manipulations. Thus, these regulatory functions represent an architectural design for the germ layer specification of this chordate and provide a platform for simulations and experiments to understand the operating principles of gene regulatory networks.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuki Maeda
- Faculty of Informatics, University of Fukuchiyama, 3370 Hori, Fukuchiyama, Kyoto 620-0886, Japan
| | - Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Atsushi Mochizuki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Satou Y, Sato A, Yasuo H, Mihirogi Y, Bishop J, Fujie M, Kawamitsu M, Hisata K, Satoh N. Chromosomal Inversion Polymorphisms in Two Sympatric Ascidian Lineages. Genome Biol Evol 2021; 13:6209075. [PMID: 33822040 PMCID: PMC8186479 DOI: 10.1093/gbe/evab068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Chromosomal rearrangements can reduce fitness of heterozygotes and can thereby prevent gene flow. Therefore, such rearrangements can play a role in local adaptation and speciation. In particular, inversions are considered to be a major potential cause for chromosomal speciation. There are two closely related, partially sympatric lineages of ascidians in the genus Ciona, which we call type-A and type-B animals in the present study. Although these invertebrate chordates are largely isolated reproductively, hybrids can be found in wild populations, suggesting incomplete prezygotic barriers. Although the genome of type-A animals has been decoded and widely used, the genome for type-B animals has not been decoded at the chromosomal level. In the present study, we sequenced the genomes of two type-B individuals from different sides of the English Channel (in the zone of sympatry with type-A individuals) and compared them at the chromosomal level with the type-A genome. Although the overall structures were well conserved between type A and type B, chromosomal alignments revealed many inversions differentiating these two types of Ciona; it is probable that the frequent inversions have contributed to separation between these two lineages. In addition, comparisons of the genomes between the two type-B individuals revealed that type B had high rates of inversion polymorphisms and nucleotide polymorphisms, and thus type B might be in the process of differentiation into multiple new types or species. Our results suggest an important role of inversions in chromosomal speciation of these broadcasting spawners.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Japan.,Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, United Kingdom.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoyoshi Yasuo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-mer, France
| | - Yukie Mihirogi
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Japan
| | - John Bishop
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
5
|
Corrêa de Barros R, Moreira da Rocha R. Genetic analyses reveal cryptic diversity in the widely distributed Styela canopus (Ascidiacea:Styelidae). INVERTEBR SYST 2021. [DOI: 10.1071/is20058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The routine use of DNA sequencing techniques and phylogenetic analysis has resulted in the discovery of many cryptic species, especially in the oceans. The common, globally introduced species Styela canopus is suspected to be a complex of cryptic species because of its widespread distribution and variable external morphology. We tested this possibility using COI and ANT marker sequences to uncover the phylogenetic relationship among 19 populations, and to examine genetic variability as well as gene flow. We obtained 271 COI and 67 ANT sequences and found surprising diversity among the 19 populations (COI: π = 0.18, hd = 0.99; ANT: π = 0.13, hd = 0.95). Corresponding topologies were found using Bayesian inference and maximum likelihood for both simple locus (COI) and multilocus (COI + ANT) analyses and so the clades received strong support. We used simple (ABGD, bPTP, GMYC) and multiple (BSD) locus methods to delimit species. The simple locus methods indicated that the current Styela canopus comprises at least 15 species. The BSD method for concatenated data supported 7 of the 15 species. We suggest that S. canopus should be treated as the Styela canopus complex. The large number of cryptic species found, often with more than one clade found in sympatry, creates opportunities for better understanding reproductive isolation, hybridisation or speciation. As several lineages have already been introduced widely around the world, we must quickly understand their diversity and invasive abilities.
Collapse
|
6
|
Layton KKS, Carvajal JI, Wilson NG. Mimicry and mitonuclear discordance in nudibranchs: New insights from exon capture phylogenomics. Ecol Evol 2020; 10:11966-11982. [PMID: 33209263 PMCID: PMC7664011 DOI: 10.1002/ece3.6727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Abstract
Phylogenetic inference and species delimitation can be challenging in taxonomic groups that have recently radiated and where introgression produces conflicting gene trees, especially when species delimitation has traditionally relied on mitochondrial data and color pattern. Chromodoris, a genus of colorful and toxic nudibranch in the Indo-Pacific, has been shown to have extraordinary cryptic diversity and mimicry, and has recently radiated, ultimately complicating species delimitation. In these cases, additional genome-wide data can help improve phylogenetic resolution and provide important insights about evolutionary history. Here, we employ a transcriptome-based exon capture approach to resolve Chromodoris phylogeny with data from 2,925 exons and 1,630 genes, derived from 15 nudibranch transcriptomes. We show that some previously identified mimics instead show mitonuclear discordance, likely deriving from introgression or mitochondrial capture, but we confirm one "pure" mimic in Western Australia. Sister-species relationships and species-level entities were recovered with high support in both concatenated maximum likelihood (ML) and summary coalescent phylogenies, but the ML topologies were highly variable while the coalescent topologies were consistent across datasets. Our work also demonstrates the broad phylogenetic utility of 149 genes that were previously identified from eupulmonate gastropods. This study is one of the first to (a) demonstrate the efficacy of exon capture for recovering relationships among recently radiated invertebrate taxa, (b) employ genome-wide nuclear markers to test mimicry hypotheses in nudibranchs and (c) provide evidence for introgression and mitochondrial capture in nudibranchs.
Collapse
Affiliation(s)
- Kara K. S. Layton
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
- School of Biological Sciences, Zoology BuildingUniversity of AberdeenAberdeenUK
| | - Jose I. Carvajal
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| | - Nerida G. Wilson
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| |
Collapse
|
7
|
Hotta K, Dauga D, Manni L. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Sci Rep 2020; 10:17916. [PMID: 33087765 PMCID: PMC7578030 DOI: 10.1038/s41598-020-73544-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ciona robusta (Ciona intestinalis type A), a model organism for biological studies, belongs to ascidians, the main class of tunicates, which are the closest relatives of vertebrates. In Ciona, a project on the ontology of both development and anatomy is ongoing for several years. Its goal is to standardize a resource relating each anatomical structure to developmental stages. Today, the ontology is codified until the hatching larva stage. Here, we present its extension throughout the swimming larva stages, the metamorphosis, until the juvenile stages. For standardizing the developmental ontology, we acquired different time-lapse movies, confocal microscope images and histological serial section images for each developmental event from the hatching larva stage (17.5 h post fertilization) to the juvenile stage (7 days post fertilization). Combining these data, we defined 12 new distinct developmental stages (from Stage 26 to Stage 37), in addition to the previously defined 26 stages, referred to embryonic development. The new stages were grouped into four Periods named: Adhesion, Tail Absorption, Body Axis Rotation, and Juvenile. To build the anatomical ontology, 203 anatomical entities were identified, defined according to the literature, and annotated, taking advantage from the high resolution and the complementary information obtained from confocal microscopy and histology. The ontology describes the anatomical entities in hierarchical levels, from the cell level (cell lineage) to the tissue/organ level. Comparing the number of entities during development, we found two rounds on entity increase: in addition to the one occurring after fertilization, there is a second one during the Body Axis Rotation Period, when juvenile structures appear. Vice versa, one-third of anatomical entities associated with the embryo/larval life were significantly reduced at the beginning of metamorphosis. Data was finally integrated within the web-based resource "TunicAnatO", which includes a number of anatomical images and a dictionary with synonyms. This ontology will allow the standardization of data underpinning an accurate annotation of gene expression and the comprehension of mechanisms of differentiation. It will help in understanding the emergence of elaborated structures during both embryogenesis and metamorphosis, shedding light on tissue degeneration and differentiation occurring at metamorphosis.
Collapse
Affiliation(s)
- Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, 223-8522, Japan.
| | - Delphine Dauga
- Bioself Communication, 28 rue de la bibliotheque, 13001, Marseille, France
| | - Lucia Manni
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121, Padova, Italy.
| |
Collapse
|
8
|
Simon A, Fraïsse C, El Ayari T, Liautard-Haag C, Strelkov P, Welch JJ, Bierne N. How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. J Evol Biol 2020; 34:208-223. [PMID: 33045123 DOI: 10.1111/jeb.13709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study 'replicated' instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.
Collapse
Affiliation(s)
- Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Christelle Fraïsse
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria, Austria
| | - Tahani El Ayari
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
9
|
Viard F, Riginos C, Bierne N. Anthropogenic hybridization at sea: three evolutionary questions relevant to invasive species management. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190547. [PMID: 32654643 PMCID: PMC7423285 DOI: 10.1098/rstb.2019.0547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Species introductions promote secondary contacts between taxa with long histories of allopatric divergence. Anthropogenic contact zones thus offer valuable contrasts to speciation studies in natural systems where past spatial isolations may have been brief or intermittent. Investigations of anthropogenic hybridization are rare for marine animals, which have high fecundity and high dispersal ability, characteristics that contrast to most terrestrial animals. Genomic studies indicate that gene flow can still occur after millions of years of divergence, as illustrated by invasive mussels and tunicates. In this context, we highlight three issues: (i) the effects of high propagule pressure and demographic asymmetries on introgression directionality, (ii) the role of hybridization in preventing introduced species spread, and (iii) the importance of postzygotic barriers in maintaining reproductive isolation. Anthropogenic contact zones offer evolutionary biologists unprecedented large scale hybridization experiments. In addition to breaking the highly effective reproductive isolating barrier of spatial segregation, they allow researchers to explore unusual demographic contexts with strong asymmetries. The outcomes are diverse, from introgression swamping to strong barriers to gene flow, and lead to local containment or widespread invasion. These outcomes should not be neglected in management policies of marine invasive species. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Frédérique Viard
- AD2M, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
10
|
Asymmetric Fitness of Second-Generation Interspecific Hybrids Between Ciona robusta and Ciona intestinalis. G3-GENES GENOMES GENETICS 2020; 10:2697-2711. [PMID: 32518083 PMCID: PMC7407461 DOI: 10.1534/g3.120.401427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reproductive isolation is central to speciation, but interspecific crosses between two closely related species can produce viable and fertile hybrids. Two different species of tunicates in the same ascidian genus, Ciona robusta and Ciona intestinalis, can produce hybrids. However, wild sympatric populations display limited gene flow, suggesting the existence of obstacles to interspecific reproduction that remain unknown. Here, we took advantage of a closed culture system to cross C. robusta with C. intestinalis and established F1 and F2 hybrids. We monitored post-embryonic development, survival, and sexual maturation to characterize the genetic basis of simple traits, and further probe the physiological mechanisms underlying reproductive isolation. Partial viability of first and second generation hybrids suggested that both pre- and postzygotic mechanisms contributed to genomic incompatibilities in hybrids. We observed asymmetric fitness, whereby the C. intestinalis maternal lines fared more poorly in our system, pointing to maternal origins of species-specific sensitivity. We discuss the possibility that asymmetrical second generation inviability and infertility emerge from interspecific incompatibilities between the nuclear and mitochondrial genomes, or other maternal effect genes. This work paves the way to quantitative genetic approaches to study the mechanisms underlying genomic incompatibilities and other complex traits in the genome-enabled Ciona model.
Collapse
|
11
|
Ruiz MB, Taverna A, Servetto N, Sahade R, Held C. Hidden diversity in Antarctica: Molecular and morphological evidence of two different species within one of the most conspicuous ascidian species. Ecol Evol 2020; 10:8127-8143. [PMID: 32788966 PMCID: PMC7417227 DOI: 10.1002/ece3.6504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
The Southern Ocean is one of the most isolated marine ecosystems, characterized by high levels of endemism, diversity, and biomass. Ascidians are among the dominant groups in Antarctic benthic assemblages; thus, recording the evolutionary patterns of this group is crucial to improve our current understanding of the assembly of this polar ocean. We studied the genetic variation within Cnemidocarpa verrucosa sensu lato, one of the most widely distributed abundant and studied ascidian species in Antarctica. Using a mitochondrial and a nuclear gene (COI and 18S), the phylogeography of fifteen populations distributed along the West Antarctic Peninsula and Burdwood Bank/MPA Namuncurá (South American shelf) was characterized, where the distribution of the genetic distance suggested the existence of, at least, two species within nominal C. verrucosa. When reevaluating morphological traits to distinguish between genetically defined species, the presence of a basal disk in one of the genotypes could be a diagnostic morphological trait to differentiate the species. These results are surprising due to the large research that has been carried out with the conspicuous C. verrucosa with no differentiation between species. Furthermore, it provides important tools to distinguish species in the field and laboratory. But also, these results give new insights into patterns of differentiation between closely related species that are distributed in sympatry, where the permeability of species boundaries still needs to be well understood.
Collapse
Affiliation(s)
- Micaela B. Ruiz
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Anabela Taverna
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Natalia Servetto
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Ricardo Sahade
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Christoph Held
- Section Functional Ecology, Evolutionary MacroecologyAlfred Wegener Institute Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| |
Collapse
|
12
|
Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, Hisata K, Takeda H, Satoh N. A Nearly Complete Genome of Ciona intestinalis Type A (C. robusta) Reveals the Contribution of Inversion to Chromosomal Evolution in the Genus Ciona. Genome Biol Evol 2020; 11:3144-3157. [PMID: 31621849 PMCID: PMC6836712 DOI: 10.1093/gbe/evz228] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the chromosomes. Short sequencing reads predicted a genome size of 114-120 Mb; therefore, it is likely that the current assembly contains almost the entire genome, although this estimate of genome size was smaller than previous estimates. Remapping of the Hi-C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
13
|
Salas E, Hobbs JA, Bernal MA, Simison WB, Berumen ML, Bernardi G, Rocha LA. Distinct patterns of hybridization across a suture zone in a coral reef fish ( Dascyllus trimaculatus). Ecol Evol 2020; 10:2813-2837. [PMID: 32211158 PMCID: PMC7083663 DOI: 10.1002/ece3.6068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Hybrid zones are natural laboratories for investigating the dynamics of gene flow, reproductive isolation, and speciation. A predominant marine hybrid (or suture) zone encompasses Christmas Island (CHR) and Cocos (Keeling) Islands (CKE), where 15 different instances of interbreeding between closely related species from Indian and Pacific Oceans have been documented. Here, we report a case of hybridization between genetically differentiated Pacific and Indian Ocean lineages of the three-spot dascyllus, Dascyllus trimaculatus (Rüppell, 1829). Field observations indicate there are subtle color differences between Pacific and Indian Ocean lineages. Most importantly, population densities of color morphs and genetic analyses (mitochondrial DNA and SNPs obtained via RADSeq) suggest that the pattern of hybridization within the suture zone is not homogeneous. At CHR, both color morphs were present, mitochondrial haplotypes of both lineages were observed, and SNP analyses revealed both pure and hybrid genotypes. Meanwhile, in CKE, the Indian Ocean color morphs were prevalent, only Indian Ocean mitochondrial haplotypes were observed, and SNP analysis showed hybrid individuals with a large proportion (~80%) of their genotypes assigning to the Indian Ocean lineage. We conclude that CHR populations are currently receiving an influx of individuals from both ocean basins, with a greater influence from the Pacific Ocean. In contrast, geographically isolated CKE populations appear to be self-recruiting and with more influx of individuals from the Indian Ocean. Our research highlights how patterns of hybridization can be different at scales of hundreds of kilometers, due to geographic isolation and the history of interbreeding between lineages.
Collapse
Affiliation(s)
- Eva Salas
- Ichthyology DepartmentCalifornia Academy of SciencesSan FranciscoCAUSA
- Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzCAUSA
| | - Jean‐Paul A. Hobbs
- School of Biological SciencesThe University of QueenslandBrisbaneQLDAustralia
| | | | - W. Brian Simison
- Center for Comparative GenomicsCalifornia Academy of SciencesSan FranciscoCAUSA
| | - Michael L. Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Giacomo Bernardi
- Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzCAUSA
| | - Luiz A. Rocha
- Ichthyology DepartmentCalifornia Academy of SciencesSan FranciscoCAUSA
| |
Collapse
|
14
|
Epigenetic patterns associated with an ascidian invasion: a comparison of closely related clades in their native and introduced ranges. Sci Rep 2019; 9:14275. [PMID: 31582771 PMCID: PMC6776620 DOI: 10.1038/s41598-019-49813-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Environmentally induced epigenetic modifications have been proposed as one mechanism underlying rapid adaptive evolution of invasive species. Didemnum vexillum is an invasive colonial ascidian that has established in many coastal waters worldwide. Phylogenetic analyses have revealed that D. vexillum populations consist of two distinct clades; clade B appears to be restricted to the native range (Japan), whereas clade A is found in many regions throughout the world, including New Zealand. The spread of D. vexillum clade A suggests that it might be intrinsically more invasive than clade B, despite low levels of genetic diversity compared to populations from the native region. This study investigated whether D. vexillum clade A exhibits epigenetic signatures (specifically differences in DNA methylation) associated with invasiveness. Global DNA methylation patterns were significantly different between introduced clade A colonies, and both clades A and B in the native range. Introduced colonies also showed a significant reduction in DNA methylation levels, which could be a mechanism for increasing phenotypic plasticity. High levels of DNA methylation diversity were maintained in the introduced population, despite reduced levels of genetic diversity, which may allow invasive populations to respond quickly to changes in new environments. Epigenetic changes induced during the invasion process could provide a means for rapid adaptation despite low levels of genetic variation in introduced populations.
Collapse
|
15
|
Chenuil A, Cahill AE, Délémontey N, Du Salliant du Luc E, Fanton H. Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-10991-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractSpecies are the currency of biology and important units of biodiversity, thus errors in species delimitations potentially have important consequences. During the last decades, owing to the use of genetic markers, many nominal species appeared to consist of several reproductively isolated entities called cryptic species (hereafter CS). In this chapter we explain why CS are important for practical reasons related to community and ecosystem monitoring, and for biological knowledge, particularly for understanding ecological and evolutionary processes. To find solutions to practical problems and to correct biological errors, a thorough analysis of the distinct types of CS reported in the literature is necessary and some general rules have to be identified. Here we explain how to identify CS, and we propose a rational and practical classification of CS (and putative CS), based on the crossing of distinct levels of genetic isolation with distinct levels of morphological differentiation. We also explain how to identify likely explanations for a given CS (either inherent to taxonomic processes or related to taxon biology, ecology and geography) and how to build a comprehensive database aimed at answering these practical and theoretical questions. Our pilot review of the literature in marine animals established that half of the reported cases are not CS sensu stricto (i.e. where morphology cannot distinguish the entities) and just need taxonomic revision. It also revealed significant associations between CS features, such as a higher proportion of diagnostic morphological differences in sympatric than in allopatric CS and more frequent ecological differentiation between sympatric than allopatric CS, both observations supporting the competitive exclusion theory, thus suggesting that ignoring CS causes not only species diversity but also functional diversity underestimation.
Collapse
|
16
|
Kobayashi K, Satou Y. Microinjection of Exogenous Nucleic Acids into Eggs: Ciona Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542076 DOI: 10.1007/978-981-10-7545-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Microinjection is a common technique used to deliver nucleic acids into eggs and embryos in Ciona species. There are three Ciona species that are commonly used for research-Ciona intestinalis type A (C. robusta), C. intestinalis type B (C. intestinalis), and C. savignyi. Here, we present the microinjection methods using eggs and embryos of C. intestinalis type A and C. savignyi; however, our methods would also be applicable to eggs and embryos of C. intestinalis type B. Microinjection is a classical and widely used delivery method, which involves the use of a glass micropipette, a hollow glass needle with a microscopic tip, to inject nucleic acids into eggs and embryos under a stereo microscope. The required amount of nucleic acids is much smaller for microinjection than for electroporation, another delivery method. Proteins, and other chemicals, such as fluorescent dye, can be introduced with nucleic acids using a microinjection.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
17
|
Abstract
Ascidians are tunicates, which constitute the sister group of vertebrates. The ascidian genome contains two Zic genes, called Zic-r.a (also called Macho-1) and Zic-r.b (ZicL). The latter is a multi-copy gene, and the precise copy number has not yet been determined. Zic-r.a is maternally expressed, and soon after fertilization Zic-r.a mRNA is localized in the posterior pole of the zygote. Zic-r.a protein is translated there and is involved in specification of posterior fate; in particular it is important for specification of muscle fate. Zic-r.a is also expressed zygotically in neural cells of the tailbud stage. On the other hand, Zic-r.b is first expressed in marginal cells of the vegetal hemisphere of 32-cell embryos and then in neural cells that contribute to the central nervous system during gastrulation. Zic-r.b is required first for specification of mesodermal tissues and then for specification of the central nervous system. Their upstream and downstream genetic pathways have been studied extensively by functional assays, which include gene knockdown and chromatin immunoprecipitation assays. Thus, ascidian Zic genes play central roles in specification of mesodermal and neural fates.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
18
|
Cryptic genetic diversity in the mottled rabbitfish Siganus fuscescens with mitochondrial introgression at a contact zone in the South China Sea. PLoS One 2018; 13:e0193220. [PMID: 29466431 PMCID: PMC5821360 DOI: 10.1371/journal.pone.0193220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022] Open
Abstract
The taxonomy of the mottled rabbitfish Siganus fuscescens species complex has long been challenging. In this study, we analyzed microsatellite genotypes, mitochondrial lineages, and morphometric data from 373 S. fuscescens individuals sampled from the northern Philippines and Hong Kong (South China Sea, Philippine Sea and Sulu Sea basins), to examine putative species boundaries in samples comprising three co-occurring mitochondrial lineages previously reported to characterize S. fuscescens (Clade A and Clade B) or S. canaliculatus (Clade C). We report the existence of two cryptic species within S. fuscescens in the northeast region of the South China Sea and northern Philippine Sea, supported by genetic and morphological differences. Individual-based assignment methods recovered concordant groupings of individuals into two nuclear genotype clusters (Cluster 1, Cluster 2) with (1) limited gene flow, if any, between them (FST = 0.241; P < 0.001); (2) low frequency of later-generation hybrids; (3) significant association with mitochondrial Clade A and Clade B, respectively; and (4) subtle yet significant body shape differences as inferred from geometric morphometric analysis. The divergence between mitochondrial Clade C and the two other clades was not matched by genetic differences at microsatellite marker loci. The occurrence of discordant mitonuclear combinations (20.5% of the total number of individuals) is thought to result from mitochondrial introgression, consistent with a scenario of demographic, and presumably spatial, post-Pleistocene expansion of populations from northern regions into a secondary contact zone in the South China Sea. Mitonuclear discordance due to introgression obscures phylogenetic relationships for recently-diverged lineages, and cautions against the use of mitochondrial markers alone for species identification within the mottled rabbitfish species complex in the South China Sea region.
Collapse
|
19
|
Nydam ML, Stephenson EE, Waldman CE, De Tomaso AW. Balancing selection on allorecognition genes in the colonial ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:60-74. [PMID: 28024871 DOI: 10.1016/j.dci.2016.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Allorecognition is the capability of an organism to recognize its own or related tissues. The colonial ascidian Botryllus schlosseri, which comprises five genetically distinct and divergent species (Clades A-E), contains two adjacent genes that control allorecognition: fuhcsec and fuhctm. These genes have been characterized extensively in Clade A and are highly polymorphic. Using alleles from 10 populations across the range of Clade A, we investigated the type and strength of selection maintaining this variation. Both fuhc genes exhibit higher within-population variation and lower population differentiation measures (FST) than neutral loci. The fuhc genes contain a substantial number of codons with >95% posterior probability of dN/dS > 1. fuhcsec and fuhctm also have polymorphisms shared between Clade A and Clade E that were present prior to speciation (trans-species polymorphisms). These results provide robust evidence that the fuhc genes are evolving under balancing selection.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, 600 W. Walnut Street, Danville, KY 40422, United States.
| | - Emily E Stephenson
- Division of Science and Mathematics, Centre College, 600 W. Walnut Street, Danville, KY 40422, United States; Centre for Infectious Disease Research, P.O. Box 34681, Lusaka, 10101, Zambia.
| | - Claire E Waldman
- Division of Science and Mathematics, Centre College, 600 W. Walnut Street, Danville, KY 40422, United States.
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
20
|
Nydam ML, Giesbrecht KB, Stephenson EE. Origin and Dispersal History of Two Colonial Ascidian Clades in the Botryllus schlosseri Species Complex. PLoS One 2017; 12:e0169944. [PMID: 28107476 PMCID: PMC5249052 DOI: 10.1371/journal.pone.0169944] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022] Open
Abstract
Human-induced global warming and species introductions are rapidly altering the composition and functioning of Earth’s marine ecosystems. Ascidians (Phylum Chordata, Subphylum Tunicata, Class Ascidiacea) are likely to play an increasingly greater role in marine communities. The colonial ascidian B. schlosseri is a cryptic species complex comprising five genetically divergent clades (A-E). Clade A is a global species, and Clade E has so far been identified in European waters only. Using the largest mitochondrial cytochrome oxidase I datasets yet assembled, we determine the origin and dispersal history of these species. Nucleotide diversity and Approximate Bayesian Computation analyses support a Pacific origin for Clade A, with two likely dispersal scenarios that both show the northwestern Atlantic populations establishing early in the history of the species. Both Discrete Phylogeographic Analysis and Approximate Bayesian Computation support an origin of Clade E on the French side of the English Channel. An unsampled lineage evolved from the French lineage, which reflects the conclusion from the median joining network that not all Clade E lineages have been sampled. This unsampled lineage gave rise to the haplotypes on the English side of the English Channel, which were the ancestors to the Mediterranean and Bay of Biscay populations. Clade E has a wider geographic range than previously thought, and shows evidence of recent range expansion. Both Clade A and Clade E should be considered widespread species: Clade A globally and Clade E within Europe.
Collapse
Affiliation(s)
- Marie L. Nydam
- Division of Science and Mathematics, Centre College, Danville, Kentucky, United States of America
- * E-mail:
| | - Kirsten B. Giesbrecht
- Division of Science and Mathematics, Centre College, Danville, Kentucky, United States of America
| | - Emily E. Stephenson
- Division of Science and Mathematics, Centre College, Danville, Kentucky, United States of America
| |
Collapse
|
21
|
Bouchemousse S, Lévêque L, Viard F. Do settlement dynamics influence competitive interactions between an alien tunicate and its native congener? Ecol Evol 2017; 7:200-213. [PMID: 28070284 PMCID: PMC5213624 DOI: 10.1002/ece3.2655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/16/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023] Open
Abstract
Variation in density of early stages, that is, larvae and juveniles, is a major determinant of the distribution and abundance of the adult population of most marine invertebrates. These early stages thus play a key role in competitive interactions, and, more specifically, in invasion dynamics when biologically similar native and non‐native species (NNS) come into contact in the same habitat. We examined the settlement dynamics and settlement rate of two important members of the fouling community that are common on human‐made infrastructures around the world: Ciona robusta (formerly known as Ciona intestinalis type A) and C. intestinalis (formerly known as C. intestinalis type B). In the western English Channel, the two species live in close syntopy following the recent introduction of C. robusta in the native European range of C. intestinalis. Using settlement panels replaced monthly over 2 years in four marinas (including one studied over 4 years) and species‐diagnostic molecular markers to distinguish between juveniles of both species (N = 1,650), we documented similar settlement dynamics of both species, with two settlement periods within a calendar year. With one exception, settlement times were highly similar in the congeners. Although the NNS showed lower settlement density than that of the native congener, its juvenile recruitment was high during the second settlement period that occurs after the warm season, a pattern also observed in adult populations. Altogether, our results suggest that species’ settlement dynamics do not lead to the dominance of one species over the other through space monopolization. In addition, we showed that changes over time are more pronounced in the NNS than in the native species. This is possibly due to a higher sensitivity of the NNS to changes of environmental factors such as temperature and salinity. Environmental changes may thus eventually modify the strength of competitive interactions between the two species as well as species dominance.
Collapse
Affiliation(s)
- Sarah Bouchemousse
- Sorbonne Universités UPMC Univ Paris 6 Station Biologique de Roscoff 29680 Roscoff France; CNRS UMR 7144 Adaptation et Diversité en Milieu Marin Equipe DIVCO Station Biologique de Roscoff 29680 Roscoff France
| | - Laurent Lévêque
- Sorbonne Universités UPMC Univ Paris 6 Station Biologique de Roscoff 29680 Roscoff France; CNRS FR2424 Station Biologique de Roscoff 29680 Roscoff France
| | - Frédérique Viard
- Sorbonne Universités UPMC Univ Paris 6 Station Biologique de Roscoff 29680 Roscoff France; CNRS UMR 7144 Adaptation et Diversité en Milieu Marin Equipe DIVCO Station Biologique de Roscoff 29680 Roscoff France
| |
Collapse
|
22
|
Nydam ML, Yanckello LM, Bialik SB, Giesbrecht KB, Nation GK, Peak JL. Introgression in two species of broadcast spawning marine invertebrate. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS Biol 2016; 14:e2000234. [PMID: 28027292 PMCID: PMC5189939 DOI: 10.1371/journal.pbio.2000234] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids—the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation. Isolated populations accumulate genetic differences across their genomes as they diverge, whereas gene flow between populations counteracts divergence and tends to restore genetic homogeneity. Speciation proceeds by the accumulation at specific loci of mutations that reduce the fitness of hybrids, therefore preventing gene flow—the so-called species barriers. Importantly, species barriers are expected to act locally within the genome, leading to the prediction of a mosaic pattern of genetic differentiation between populations at intermediate levels of divergence—the genic view of speciation. At the same time, linked selection also contributes to speed up differentiation in low-recombining and gene-dense regions. We used a modelling approach that accounts for both sources of genomic heterogeneity and explored a wide continuum of genomic divergence made by 61 pairs of species/populations in animals. Our analysis provides a unifying picture of the relationship between molecular divergence and ability to exchange genes. We show that the "grey zone" of speciation—the intermediate state in which species definition is controversial—spans from 0.5% to 2% of molecular divergence, with these thresholds being independent of species life history traits and ecology. Semi-isolated species, between which alleles can be exchanged at some but not all loci, are numerous, with the earliest species barriers being detected at divergences as low as 0.075%. These results have important implications regarding taxonomy, conservation biology, and the management of biodiversity.
Collapse
|
24
|
PG BL, AE M, RJ O, PH W, A B. Transcriptomic profiles of spring and summer populations of the Southern Ocean salp, Salpa thompsoni, in the Western Antarctic Peninsula region. Polar Biol 2016. [DOI: 10.1007/s00300-016-2051-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Bouchemousse S, Liautard-Haag C, Bierne N, Viard F. Distinguishing contemporary hybridization from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated Ciona species. Mol Ecol 2016; 25:5527-5542. [PMID: 27662427 DOI: 10.1111/mec.13854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Biological introductions bring into contact species that can still hybridize. The evolutionary outcomes of such secondary contacts may be diverse (e.g. adaptive introgression from or into the introduced species) but are not yet well examined in the wild. The recent secondary contact between the non-native sea squirt Ciona robusta (formerly known as C. intestinalis type A) and its native congener C. intestinalis (formerly known as C. intestinalis type B), in the Western English Channel, provides an excellent case study to examine. To examine contemporary hybridization between the two species, we developed a panel of 310 ancestry-informative SNPs from a population transcriptomic study. Hybridization rates were examined on 449 individuals sampled in eight sites from the sympatric range and five sites from allopatric ranges. The results clearly showed an almost complete absence of contemporary hybridization between the two species in syntopic localities, with only one-first-generation hybrid and no other genotype compatible with recent backcrosses. Despite the almost lack of contemporary hybridization, shared polymorphisms were observed in sympatric and allopatric populations of both species. Furthermore, one allopatric population from SE Pacific exhibited a higher rate of shared polymorphisms compared to all other C. robusta populations. Altogether, these results indicate that the observed level of shared polymorphism is more probably the outcome of ancient gene flow spread afterwards at a worldwide scale. They also emphasize efficient reproductive barriers preventing hybridization between introduced and native species, which suggests hybridization should not impede too much the expansion and the establishment of the non-native species in its introduction range.
Collapse
Affiliation(s)
- Sarah Bouchemousse
- UPMC Univ Paris 6, UMR 7144, Equipe DIVCO, Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.,CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Cathy Liautard-Haag
- Station Marine - OSU OREME, Université de Montpellier, 2 Rue des Chantiers, 34200, Sète, France.,CNRS-UM-IRD-EPHE, UMR 5554, Institut des Sciences de l'Evolution, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nicolas Bierne
- Station Marine - OSU OREME, Université de Montpellier, 2 Rue des Chantiers, 34200, Sète, France.,CNRS-UM-IRD-EPHE, UMR 5554, Institut des Sciences de l'Evolution, Place Eugène Bataillon, 34095, Montpellier, France
| | - Frédérique Viard
- UPMC Univ Paris 6, UMR 7144, Equipe DIVCO, Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .,CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| |
Collapse
|
26
|
Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization. Heredity (Edinb) 2016; 117:427-439. [PMID: 27599575 PMCID: PMC5117837 DOI: 10.1038/hdy.2016.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/08/2016] [Accepted: 04/25/2016] [Indexed: 01/30/2023] Open
Abstract
Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and Ircinia variabilis that live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish (1) the genetic structure, connectivity and signs of bottlenecks across the populations of I. fasciculata and (2) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations that might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata.
Collapse
|
27
|
Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Sci Rep 2016; 6:24875. [PMID: 27137892 PMCID: PMC4853746 DOI: 10.1038/srep24875] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 11/08/2022] Open
Abstract
Human-mediated dispersal interplays with natural processes and complicates understanding of the biogeographical history of species. This is exemplified by two invasive tunicates, Ciona robusta (formerly Ciona intestinalis type A) and C. intestinalis (formerly Ciona intestinalis type B), globally distributed and sympatric in Europe. By gathering new mitochondrial sequences that were merged with published datasets, we analysed genetic patterns in different regions, with a focus on 1) their sympatric range and 2) allopatric populations in N and S America and southern Europe. In the sympatric range, the two species display contrasting genetic diversity patterns, with low polymorphism in C. robusta supporting the prevalent view of its recent introduction. In the E Pacific, several genetic traits support the non-native status of C. robusta. However, in the NE Pacific, this appraisal requires a complex scenario of introduction and should be further examined supported by extensive sampling efforts in the NW Pacific (putative native range). For C. intestinalis, Bayesian analysis suggested a natural amphi-North Atlantic distribution, casting doubt on its non-native status in the NW Atlantic. This study shows that both natural and human-mediated dispersal have influenced genetic patterns at broad scales; this interaction lessens our ability to confidently ascertain native vs. non-native status of populations, particularly of those species that are globally distributed.
Collapse
|
28
|
Sato A, Kawashima T, Fujie M, Hughes S, Satoh N, Shimeld SM. Molecular basis of canalization in an ascidian species complex adapted to different thermal conditions. Sci Rep 2015; 5:16717. [PMID: 26577490 PMCID: PMC4649386 DOI: 10.1038/srep16717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Samantha Hughes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
29
|
Bouchemousse S, Lévêque L, Dubois G, Viard F. Co-occurrence and reproductive synchrony do not ensure hybridization between an alien tunicate and its interfertile native congener. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9788-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L. Morphological evidence that the molecularly determined Ciona intestinalis
type A and type B are different species: Ciona robusta
and Ciona intestinalis. J ZOOL SYST EVOL RES 2015. [DOI: 10.1111/jzs.12101] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Carmela Gissi
- Dipartimento di Bioscienze; Università degli Studi di Milano; Milano Italy
| | - Roberta Pennati
- Dipartimento di Bioscienze; Università degli Studi di Milano; Milano Italy
| | - Federico Caicci
- Dipartimento di Biologia; Università degli Studi di Padova; Padova Italy
| | - Fabio Gasparini
- Dipartimento di Biologia; Università degli Studi di Padova; Padova Italy
| | - Lucia Manni
- Dipartimento di Biologia; Università degli Studi di Padova; Padova Italy
| |
Collapse
|
31
|
Pennati R, Ficetola GF, Brunetti R, Caicci F, Gasparini F, Griggio F, Sato A, Stach T, Kaul-Strehlow S, Gissi C, Manni L. Morphological Differences between Larvae of the Ciona intestinalis Species Complex: Hints for a Valid Taxonomic Definition of Distinct Species. PLoS One 2015; 10:e0122879. [PMID: 25955391 PMCID: PMC4425531 DOI: 10.1371/journal.pone.0122879] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
The cosmopolitan ascidian Ciona intestinalis is the most common model species of Tunicata, the sister-group of Vertebrata, and widely used in developmental biology, genomics and evolutionary studies. Recently, molecular studies suggested the presence of cryptic species hidden within the C. intestinalis species, namely C. intestinalis type A and type B. So far, no substantial morphological differences have been identified between individuals belonging to the two types. Here we present morphometric, immunohistochemical, and histological analyses, as well as 3-D reconstructions, of late larvae obtained by cross-fertilization experiments of molecularly determined type A and type B adults, sampled in different seasons and in four different localities. Our data point to quantitative and qualitative differences in the trunk shape of larvae belonging to the two types. In particular, type B larvae exhibit a longer pre-oral lobe, longer and relatively narrower total body length, and a shorter ocellus-tail distance than type A larvae. All these differences were found to be statistically significant in a Discriminant Analysis. Depending on the number of analyzed parameters, the obtained discriminant function was able to correctly classify > 93% of the larvae, with the remaining misclassified larvae attributable to the existence of intra-type seasonal variability. No larval differences were observed at the level of histology and immunohistochemical localization of peripheral sensory neurons. We conclude that type A and type B are two distinct species that can be distinguished on the basis of larval morphology and molecular data. Since the identified larval differences appear to be valid diagnostic characters, we suggest to raise both types to the rank of species and to assign them distinct names.
Collapse
Affiliation(s)
- Roberta Pennati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della Terra, Università di Milano Bicocca, Milano, Italy
- Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes, Grenoble, France
| | | | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Francesca Griggio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Atsuko Sato
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Thomas Stach
- Humboldt-Universität zu Berlin, Institut fur Lebenswissenschaften, Vergleichende Zoologie, Berlin, Germany
| | | | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * E-mail: (CG); (LM)
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- * E-mail: (CG); (LM)
| |
Collapse
|
32
|
Kourakis MJ, Smith WC. An organismal perspective on C. intestinalis development, origins and diversification. eLife 2015; 4. [PMID: 25807088 PMCID: PMC4373457 DOI: 10.7554/elife.06024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
The ascidian Ciona intestinalis, commonly known as a 'sea squirt', has become an important model for embryological studies, offering a simple blueprint for chordate development. As a model organism, it offers the following: a small, compact genome; a free swimming larva with only about 2600 cells; and an embryogenesis that unfolds according to a predictable program of cell division. Moreover, recent phylogenies reveal that C. intestinalis occupies a privileged branch in the tree of life: it is our nearest invertebrate relative. Here, we provide an organismal perspective of C. intestinalis, highlighting aspects of its life history and habitat-from its brief journey as a larva to its radical metamorphosis into adult form-and relate these features to its utility as a laboratory model.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
33
|
Pante E, Puillandre N, Viricel A, Arnaud-Haond S, Aurelle D, Castelin M, Chenuil A, Destombe C, Forcioli D, Valero M, Viard F, Samadi S. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol Ecol 2015; 24:525-44. [DOI: 10.1111/mec.13048] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Eric Pante
- Littoral, Environnement et Sociétés (LIENSs); UMR 7266 CNRS - Université de La Rochelle; 2 rue Olympe de Gouges 17042 La Rochelle France
| | - Nicolas Puillandre
- ISYEB - UMR 7205 - CNRS, MNHN; UPMC (University Paris 06); EPHE - Muséum national d'Histoire naturelle; Sorbonne Universités; CP26, 57 rue Cuvier F-75231 Paris Cedex 05 France
| | - Amélia Viricel
- Littoral, Environnement et Sociétés (LIENSs); UMR 7266 CNRS - Université de La Rochelle; 2 rue Olympe de Gouges 17042 La Rochelle France
| | | | - Didier Aurelle
- Aix Marseille Université; CNRS, IRD; Avignon Université, IMBE UMR 7263; 13397 Marseille France
| | - Magalie Castelin
- Aquatic Animal Health Section; Fisheries and Oceans Canada; Pacific Biological Station; 3190 Hammond Bay Road Nanaimo BC Canada V9T 6N7
| | - Anne Chenuil
- Aix Marseille Université; CNRS, IRD; Avignon Université, IMBE UMR 7263; 13397 Marseille France
| | - Christophe Destombe
- Sorbonne Universités; UPMC; University Paris 06; Station Biologique de Roscoff F-29680 Roscoff France
- CNRS, Laboratory Evolutionary Biology and Ecology of Algae; Sorbonne Universités; Université Pierre et Marie Curie (UPMC) Univ Paris 06, UMI 3614, UPMC, PUCCh, UACh; Station Biologique de Roscoff F-29680 Roscoff France
| | - Didier Forcioli
- Faculté des Sciences; Université Nice-Sophia-Antipolis, Equipe Symbiose Marine UMR 7138; Parc Valrose 06108 Nice Cedex 2 France
- UMR 7138 Evolution Paris Seine; Université Pierre et Marie Curie - CNRS; 7 Quai St Bernard 75252 Paris Cedex 05 France
| | - Myriam Valero
- Sorbonne Universités; UPMC; University Paris 06; Station Biologique de Roscoff F-29680 Roscoff France
- CNRS, Laboratory Evolutionary Biology and Ecology of Algae; Sorbonne Universités; Université Pierre et Marie Curie (UPMC) Univ Paris 06, UMI 3614, UPMC, PUCCh, UACh; Station Biologique de Roscoff F-29680 Roscoff France
| | - Frédérique Viard
- Sorbonne Universités; UPMC; University Paris 06; Station Biologique de Roscoff F-29680 Roscoff France
- Centre National de la Recherche Scientifique (CNRS); Laboratory Adaptation and Diversity in the Marine Environment; Team Diversity and Connectivity in Coastal Marine Landscapes, UMR 7144; Station Biologique de Roscoff F-29680 Roscoff France
| | - Sarah Samadi
- ISYEB - UMR 7205 - CNRS, MNHN; UPMC (University Paris 06); EPHE - Muséum national d'Histoire naturelle; Sorbonne Universités; CP26, 57 rue Cuvier F-75231 Paris Cedex 05 France
| |
Collapse
|
34
|
Crocetta F, Marino R, Cirino P, Macina A, Staiano L, Esposito R, Pezzotti MR, Racioppi C, Toscano F, De Felice E, Locascio A, Ristoratore F, Spagnuolo A, Zanetti L, Branno M, Sordino P. Mutation studies in ascidians: a review. Genesis 2014; 53:160-9. [PMID: 25395385 DOI: 10.1002/dvg.22837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Historically, mutations have had a significant impact on the study of developmental processes and phenotypic evolution. Lesions in DNA are created by artificial methods or detected by natural genetic variation. Random mutations are then ascribed to genetic change by direct sequencing or positional cloning. Tunicate species of the ascidian genus Ciona represent nearly fully realized model systems in which gene function can be investigated in depth. Additionally, tunicates are valuable organisms for the study of naturally occurring mutations due to the capability to exploit genetic variation down to the molecular level. Here, we summarize the available information about how mutations are studied in ascidians with examples of insights that have resulted from these applications. We also describe notions and methodologies that might be useful for the implementation of easy and tight procedures for mutations studies in Ciona.
Collapse
Affiliation(s)
- Fabio Crocetta
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee T, Shin S. Morphological and molecular identification of an introduced alien sea squirt (Tunicata: Ascidiacea) in Korea. P BIOL SOC WASH 2014. [DOI: 10.2988/0006-324x-127.1.284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
36
|
Sato A, Shimeld SM, Bishop JDD. Symmetrical Reproductive Compatibility of Two Species in the Ciona intestinalis (Ascidiacea) Species Complex, a Model for Marine Genomics and Developmental Biology. Zoolog Sci 2014; 31:369-74. [DOI: 10.2108/zs130249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Atsuko Sato
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS United Kingdom
| | - Sebastian M. Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS United Kingdom
| | - John D. D. Bishop
- Marine Biological Association of the UK, The Laboratory, Plymouth, PL1 2PB, United Kingdom
| |
Collapse
|
37
|
Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Sci Rep 2013; 3:3197. [PMID: 24217373 PMCID: PMC3824166 DOI: 10.1038/srep03197] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/28/2013] [Indexed: 11/08/2022] Open
Abstract
The existence of globally-distributed species with low dispersal capabilities is a paradox that has been explained as a result of human-mediated transport and by hidden diversity in the form of unrecognized cryptic species. Both factors are not mutually exclusive, but relatively few studies have demonstrated the presence of both. Here we analyse the genetic patterns of the colonial ascidian Diplosoma listerianum, a species nowadays distributed globally. The study of a fragment of a mitochondrial gene in localities worldwide revealed the existence of multiple cryptic species. In addition, we found a complex geographic structure and multiple clades occurred in sympatry. One of the species showed strong population structure irrespective of geographical distances, which is coherent with stochastic dispersal linked to human transport. The present study shows the complexity of discerning the role of cryptic diversity from human-driven range shifts worldwide, as well as disentangling the effects of natural and artificial dispersal.
Collapse
|
38
|
Roux C, Tsagkogeorga G, Bierne N, Galtier N. Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species. Mol Biol Evol 2013; 30:1574-87. [PMID: 23564941 DOI: 10.1093/molbev/mst066] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inferring a realistic demographic model from genetic data is an important challenge to gain insights into the historical events during the speciation process and to detect molecular signatures of selection along genomes. Recent advances in divergence population genetics have reported that speciation in face of gene flow occurred more frequently than theoretically expected, but the approaches used did not account for genome-wide heterogeneity (GWH) in introgression rates. Here, we investigate the impact of GWH on the inference of divergence with gene flow between two cryptic species of the marine model Ciona intestinalis by analyzing polymorphism and divergence patterns in 852 protein-coding sequence loci. These morphologically similar entities are highly diverged molecular-wise, but evidence of hybridization has been reported in both laboratory and field studies. We compare various speciation models and test for GWH under the approximate Bayesian computation framework. Our results demonstrate the presence of significant extents of gene flow resulting from a recent secondary contact after >3 My of divergence in isolation. The inferred rates of introgression are relatively low, highly variable across loci and mostly unidirectional, which is consistent with the idea that numerous genetic incompatibilities have accumulated over time throughout the genomes of these highly diverged species. A genomic map of the level of gene flow identified two hotspots of introgression, that is, large genome regions of unidirectional introgression. This study clarifies the history and degree of isolation of two cryptic and partially sympatric model species and provides a methodological framework to investigate GWH at various stages of speciation process.
Collapse
Affiliation(s)
- Camille Roux
- Institut des Sciences de l'Évolution, Université Montpellier 2, CNRS, Montpellier, France.
| | | | | | | |
Collapse
|
39
|
Tsagkogeorga G, Cahais V, Galtier N. The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol 2012; 4:740-9. [PMID: 22745226 PMCID: PMC3509891 DOI: 10.1093/gbe/evs054] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phylogenomics has revealed the existence of fast-evolving animal phyla in which the amino acid substitution rate, averaged across many proteins, is consistently higher than in other lineages. The reasons for such differences in proteome-wide evolutionary rates are still unknown, largely because only a handful of species offer within-species genomic data from which molecular evolutionary processes can be deduced. In this study, we use next-generation sequencing technologies and individual whole-transcriptome sequencing to gather extensive polymorphism sequence data sets from Ciona intestinalis. Ciona is probably the best-characterized member of the fast-evolving Urochordata group (tunicates), which was recently identified as the sister group of the slow-evolving vertebrates. We introduce and validate a maximum-likelihood framework for single-nucleotide polymorphism and genotype calling, based on high-throughput short-read typing. We report that the C. intestinalis proteome is characterized by a high level of within-species diversity, efficient purifying selection, and a substantial percentage of adaptive amino acid substitutions. We conclude that the increased rate of amino acid sequence evolution in tunicates, when compared with vertebrates, is the consequence of both a 2–6 times higher per-year mutation rate and prevalent adaptive evolution.
Collapse
Affiliation(s)
- Georgia Tsagkogeorga
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.
| | | | | |
Collapse
|
40
|
Smith KF, Stefaniak L, Saito Y, Gemmill CEC, Cary SC, Fidler AE. Increased inter-colony fusion rates are associated with reduced COI haplotype diversity in an invasive colonial ascidian Didemnum vexillum. PLoS One 2012; 7:e30473. [PMID: 22303442 PMCID: PMC3269411 DOI: 10.1371/journal.pone.0030473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species.
Collapse
|
41
|
Gagnaire PA, Minegishi Y, Zenboudji S, Valade P, Aoyama J, Berrebi P. WITHIN-POPULATION STRUCTURE HIGHLIGHTED BY DIFFERENTIAL INTROGRESSION ACROSS SEMIPERMEABLE BARRIERS TO GENE FLOW IN ANGUILLA MARMORATA. Evolution 2011; 65:3413-27. [DOI: 10.1111/j.1558-5646.2011.01404.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Nydam ML, Harrison RG. Reproductive protein evolution in two cryptic species of marine chordate. BMC Evol Biol 2011; 11:18. [PMID: 21247489 PMCID: PMC3036616 DOI: 10.1186/1471-2148-11-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/19/2011] [Indexed: 12/11/2022] Open
Abstract
Background Reproductive character displacement (RCD) is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional) selection. Here, we identify a set of candidate gamete recognition proteins (GRPs) in the ascidian Ciona intestinalis and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition). Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1), we then directly test the RCD hypothesis by comparing divergence (omega) and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H) statistics in sympatric and allopatric populations of two distinct forms of C. intestinalis (Types A and B) between which there are strong post-zygotic barriers. Results Candidate gamete recognition proteins from two lineages of C. intestinalis (Type A and B) are evolving more rapidly than control proteins, consistent with patterns seen in insects and mammals. However, ω (dN/dS) is not significantly different between the sympatric and allopatric populations, and none of the polymorphism statistics show significant differences between sympatric and allopatric populations. Conclusions Enhanced prezygotic isolation in sympatry has become a well-known feature of gamete recognition proteins in marine broadcast spawners. But in most cases the evolutionary process or processes responsible for this pattern have not been identified. Although gamete recognition proteins in C. intestinalis do appear to evolve more rapidly, on average, than proteins with other functions, rates of evolution are not different in allopatric and sympatric populations of the two reproductively isolated forms. That sympatry is probably human-mediated, and therefore recent, may explain the absence of RCD.
Collapse
Affiliation(s)
- Marie L Nydam
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|