1
|
Wong ELY, Filatov DA. The role of recombination landscape in species hybridisation and speciation. FRONTIERS IN PLANT SCIENCE 2023; 14:1223148. [PMID: 37484464 PMCID: PMC10361763 DOI: 10.3389/fpls.2023.1223148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | |
Collapse
|
2
|
Filatov DA. Recent expansion of the non-recombining sex-linked region on Silene latifolia sex chromosomes. J Evol Biol 2022; 35:1696-1708. [PMID: 35834179 PMCID: PMC10083954 DOI: 10.1111/jeb.14063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Evolution of a non-recombining sex-specific region on the Y (or W) chromosome (NRY) is a key step in sex chromosome evolution, but how recombination suppression evolves is not well understood. Studies in many different organisms indicated that NRY evolution often involves several expansion steps. Why such NRY expansions occur remains unclear, although it is though that they are likely driven by sexually antagonistic selection. This paper describes a recent NRY expansion due to shift of the pseudoautosomal boundary on the sex chromosomes of a dioecious plant Silene latifolia. The shift resulted in inclusion of at least 16 pseudoautosomal genes into the NRY. This region is pseudoautosomal in closely related Silene dioica and Silene diclinis, indicating that the NRY expansion occurred in S. latifolia after it speciated from the other species ~120 thousand years ago. As S. latifolia and S. dioica actively hybridise across Europe, interspecific gene flow could blur the PAR boundary in these species. The pseudoautosomal genes have significantly elevated genetic diversity (π ~ 3% at synonymous sites), which is consistent with balancing selection maintaining diversity in this region. The recent shift of the PAR boundary in S. latifolia offers an opportunity to study the process of on-going NRY expansion.
Collapse
|
3
|
Liu X, Glémin S, Karrenberg S. Evolution of putative barrier loci at an intermediate stage of speciation with gene flow in campions (Silene). Mol Ecol 2020; 29:3511-3525. [PMID: 32740990 PMCID: PMC7540528 DOI: 10.1111/mec.15571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (FST) and sequence divergence (dXY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,UMR CNRS 6553 ECOBIO, Université de Rennes I, Rennes Cedex, France
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Moreira-Hernández JI, Muchhala N. Importance of Pollinator-Mediated Interspecific Pollen Transfer for Angiosperm Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024804] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding how pollen moves between species is critical to understanding speciation, diversification, and evolution of flowering plants. For co-flowering species that share pollinators, competition through interspecific pollen transfer (IPT) can profoundly impact floral evolution, decreasing female fitness via heterospecific pollen deposition on stigmas and male fitness via pollen misplacement during visits to heterospecific flowers. The pollination literature demonstrates that such reproductive interference frequently selects for reproductive character displacement in floral traits linked to pollinator attraction, pollen placement, and mating systems and has also revealed that IPT between given pairs of species is typically asymmetric. More recent work is starting to elucidate its importance to the speciation process, clarifying the link between IPT and current and historical patterns of hybridization, the evolution of phenotypic novelty through adaptive introgression, and the rise of reproductive isolation. Our review aims to stimulate further research on IPT as a ubiquitous mechanism that plays a central role in angiosperm diversification.
Collapse
Affiliation(s)
- Juan Isaac Moreira-Hernández
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| | - Nathan Muchhala
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| |
Collapse
|
5
|
Dávalos LM, Lancaster WC, Núñez-Novas MS, León YM, Lei B, Flanders J, Russell AL. A coalescent-based estimator of genetic drift, and acoustic divergence in the Pteronotus parnellii species complex. Heredity (Edinb) 2019; 122:417-427. [PMID: 30120366 PMCID: PMC6460761 DOI: 10.1038/s41437-018-0129-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
Determining the processes responsible for phenotypic variation is one of the central tasks of evolutionary biology. While the importance of acoustic traits for foraging and communication in echolocating mammals suggests adaptation, the seldom-tested null hypothesis to explain trait divergence is genetic drift. Here we derive FST values from multi-locus coalescent isolation-with-migration models, and couple them with estimates of quantitative trait divergence, or PST, to test drift as the evolutionary process responsible for phenotypic divergence in island populations of the Pteronotus parnellii species complex. Compared to traditional comparisons of PST to FST, the migration-based estimates of FST are unidirectional instead of bidirectional, simultaneously integrate variation among loci and individuals, and posterior densities of PST and FST can be compared directly. We found the evolution of higher call frequencies is inconsistent with genetic drift for the Hispaniolan population, despite many generations of isolation from its Puerto Rican counterpart. While the Hispaniolan population displays dimorphism in call frequencies, the higher frequency of the females is incompatible with sexual selection. Instead, cultural drift toward higher frequencies among Hispaniolan females might explain the divergence. By integrating Bayesian coalescent and trait analyses, this study demonstrates a powerful approach to testing genetic drift as the default evolutionary mechanism of trait differentiation between populations.
Collapse
Affiliation(s)
- Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Winston C Lancaster
- Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA
- Department of Biology, University of Alabama, Birmingham, AL, 35294, USA
| | - Miguel S Núñez-Novas
- Museo Nacional de Historia Natural Profesor Eugenio De Jesús Marcano. César Nicolás Penson Street esq. Máximo Gómez, Plaza de la Cultura, Santo Domingo, Dominican Republic
| | - Yolanda M León
- Instituto Tecnológico de Santo Domingo y Grupo Jaragua, Santo Domingo, Dominican Republic
| | - Bonnie Lei
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Microsoft, One Microsoft Way, Redmond, WA, 98052, USA
| | - Jon Flanders
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Bat Conservation International, 500 North Capital of Texas Highway, Austin, TX, 78746, USA
| | - Amy L Russell
- Department of Biology, Grand Valley State University, Allendale, MI, 49401, USA.
| |
Collapse
|
6
|
Karrenberg S, Liu X, Hallander E, Favre A, Herforth-Rahmé J, Widmer A. Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution 2018; 73:245-261. [PMID: 30499144 DOI: 10.1111/evo.13652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/13/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near-complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.
Collapse
Affiliation(s)
- Sophie Karrenberg
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Xiaodong Liu
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Emelie Hallander
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden.,Current Address: Swedish Board of Agriculture, Vallgatan 8, 551 82, Jönköping, Sweden
| | - Adrien Favre
- Department of Diversity and Evolution of Higher Plants, Institute of Ecology, Evolution and Diversity, Goethe-University, 60439, Frankfurt am Main, Germany.,Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Joelle Herforth-Rahmé
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland.,Current Address: Research Institute of Organic Agriculture FiBL, Department of Soil Sciences, Ackerstrasse 113, Box 219, 5070, Frick, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
7
|
Liu X, Karrenberg S. Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Mol Ecol 2018; 27:3889-3904. [PMID: 29577481 DOI: 10.1111/mec.14562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
The evolution of reproductive barriers and their underlying genetic architecture is of central importance for the formation of new species. Reproductive barriers can be controlled either by few large-effect loci suggesting strong selection on key traits, or by many small-effect loci, consistent with gradual divergence or with selection on polygenic or multiple traits. Genetic coupling between reproductive barrier loci further promotes divergence, particularly divergence with ongoing gene flow. In this study, we investigated the genetic architectures of ten morphological, phenological and life history traits associated with reproductive barriers between the hybridizing sister species Silene dioica and S. latifolia; both are dioecious with XY-sex determination. We used quantitative trait locus (QTL) mapping in two reciprocal F2 crosses. One to six QTLs per trait, including nine major QTLs (PVE > 20%), were detected on 11 of the 12 linkage groups. We found strong evidence for coupling of QTLs for uncorrelated traits and for an important role of sex chromosomes in the genetic architectures of reproductive barrier traits. Unexpectedly, QTLs detected in the two F2 crosses differed largely, despite limited phenotypic differences between them and sufficient statistical power. The widely dispersed genetic architectures of traits associated with reproductive barriers suggest gradual divergence or multifarious selection. Coupling of the underlying QTLs likely promoted divergence with gene flow in this system. The low congruence of QTLs between the two crosses further points to variable and possibly redundant genetic architectures of traits associated with reproductive barriers, with important implications for the evolutionary dynamics of divergence and speciation.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Pabijan M, Zieliński P, Dudek K, Stuglik M, Babik W. Isolation and gene flow in a speciation continuum in newts. Mol Phylogenet Evol 2017; 116:1-12. [PMID: 28797693 DOI: 10.1016/j.ympev.2017.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023]
Abstract
Because reproductive isolation often evolves gradually, differentiating lineages may retain the potential for genetic exchange for prolonged periods, providing an opportunity to quantify and to understand the fundamental role of gene flow during speciation. Here we delimit evolutionary lineages, reconstruct the phylogeny and infer gene flow in newts of the Lissotriton vulgaris species complex based on 74 nuclear markers sampled from 127 localities. We demonstrate that distinct lineages along the speciation continuum in newts exchange nontrivial amounts of genes, affecting their evolutionary trajectories. By integrating a wide array of methods, we delimit nine evolutionary lineages and show that two principal factors have driven their genetic differentiation: time since the last common ancestor determining levels of shared ancestral polymorphism, and shifts in geographic distributions determining the extent of secondary contact. Post-divergence gene flow, indicative of evolutionary non-independence, has been most extensive in Central Europe, while four southern European lineages have acquired the population-genetic hallmarks of independent species (L. graecus, L. kosswigi, L. lantzi, L. schmidtleri). We obtained strong statistical support for widespread mtDNA introgression following secondary contact, previously suggested by discordance between mtDNA phylogeny and morphology. Our study reveals long-term evolutionary persistence of evolutionary lineages that may periodically exchange genes with one another: although some of these lineages may become extinct or fuse, others will acquire complete reproductive isolation and will carry signatures of this complex history in their genomes.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | - Piotr Zieliński
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | - Michał Stuglik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland; Scotland's Rural College, Integrative Animal Sciences, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK.
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
9
|
Recombination provides evidence for ancient hybridisation in the Silene aegyptiaca (Caryophyllaceae) complex. ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0331-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Favre A, Widmer A, Karrenberg S. Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment. THE NEW PHYTOLOGIST 2017; 213:1487-1499. [PMID: 27775172 DOI: 10.1111/nph.14202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silene dioica and S. latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F1 ) and second-generation (F2 ) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4 yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F1 hybrids performed intermediately and F2 hybrids underperformed in comparison to F1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F1 and F2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.
Collapse
Affiliation(s)
- Adrien Favre
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Alex Widmer
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Sophie Karrenberg
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Ecology and Genetics, Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| |
Collapse
|
11
|
Guirao-Rico S, Sánchez-Gracia A, Charlesworth D. Sequence diversity patterns suggesting balancing selection in partially sex-linked genes of the plant Silene latifolia are not generated by demographic history or gene flow. Mol Ecol 2017; 26:1357-1370. [PMID: 28035715 DOI: 10.1111/mec.13969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
DNA sequence diversity in genes in the partially sex-linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within-species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex-determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation-based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex-linked genes, which requires closer linkage with the fully sex-linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism.
Collapse
Affiliation(s)
- Sara Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| |
Collapse
|
12
|
Campos JL, Qiu S, Guirao-Rico S, Bergero R, Charlesworth D. Recombination changes at the boundaries of fully and partially sex-linked regions between closely related Silene species pairs. Heredity (Edinb) 2016; 118:395-403. [PMID: 27827389 DOI: 10.1038/hdy.2016.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
The establishment of a region of suppressed recombination is a critical change during sex chromosome evolution, leading to such properties as Y (and W) chromosome genetic degeneration, accumulation of repetitive sequences and heteromorphism. Although chromosome inversions can cause large regions to have suppressed recombination, and inversions are sometimes involved in sex chromosome evolution, gradual expansion of the non-recombining region could potentially sometimes occur. We here test whether closer linkage has recently evolved between the sex-determining region and several genes that are partially sex-linked in Silene latifolia, using Silene dioica, a closely related dioecious plants whose XY sex chromosome system is inherited from a common ancestor. The S. latifolia pseudoautosomal region (PAR) includes several genes extremely closely linked to the fully Y-linked region. These genes were added to an ancestral PAR of the sex chromosome pair in two distinct events probably involving translocations of autosomal genome regions causing multiple genes to become partially sex-linked. Close linkage with the PAR boundary must have evolved since these additions, because some genes added in both events now show almost complete sex linkage in S. latifolia. We compared diversity patterns of five such S. latifolia PAR boundary genes with their orthologues in S. dioica, including all three regions of the PAR (one gene that was in the ancestral PAR and two from each of the added regions). The results suggest recent recombination suppression in S. latifolia, since its split from S. dioica.
Collapse
Affiliation(s)
- J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Reifová R, Majerová V, Reif J, Ahola M, Lindholm A, Procházka P. Patterns of gene flow and selection across multiple species of Acrocephalus warblers: footprints of parallel selection on the Z chromosome. BMC Evol Biol 2016; 16:130. [PMID: 27311647 PMCID: PMC4910229 DOI: 10.1186/s12862-016-0692-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023] Open
Abstract
Background Understanding the mechanisms and selective forces leading to adaptive radiations and origin of biodiversity is a major goal of evolutionary biology. Acrocephalus warblers are small passerines that underwent an adaptive radiation in the last approximately 10 million years that gave rise to 37 extant species, many of which still hybridize in nature. Acrocephalus warblers have served as model organisms for a wide variety of ecological and behavioral studies, yet our knowledge of mechanisms and selective forces driving their radiation is limited. Here we studied patterns of interspecific gene flow and selection across three European Acrocephalus warblers to get a first insight into mechanisms of radiation of this avian group. Results We analyzed nucleotide variation at eight nuclear loci in three hybridizing Acrocephalus species with overlapping breeding ranges in Europe. Using an isolation-with-migration model for multiple populations, we found evidence for unidirectional gene flow from A. scirpaceus to A. palustris and from A. palustris to A. dumetorum. Gene flow was higher between genetically more closely related A. scirpaceus and A. palustris than between ecologically more similar A. palustris and A. dumetorum, suggesting that gradual accumulation of intrinsic barriers rather than divergent ecological selection are more efficient in restricting interspecific gene flow in Acrocephalus warblers. Although levels of genetic differentiation between different species pairs were in general not correlated, we found signatures of apparently independent instances of positive selection at the same two Z-linked loci in multiple species. Conclusions Our study brings the first evidence that gene flow occurred during Acrocephalus radiation and not only between sister species. Interspecific gene flow could thus be an important source of genetic variation in individual Acrocephalus species and could have accelerated adaptive evolution and speciation rate in this avian group by creating novel genetic combinations and new phenotypes. Independent instances of positive selection at the same loci in multiple species indicate an interesting possibility that the same loci might have contributed to reproductive isolation in several speciation events. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0692-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | - Veronika Majerová
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czech Republic.,Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Markus Ahola
- Department of Biology, Section of Ecology, FI-20014 University of Turku, Turku, Finland.,Natural Resources Institute Finland, Itäinen Pitkäkatu 3, FI-20240, Turku, Finland
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
14
|
Osborne OG, Chapman MA, Nevado B, Filatov DA. Maintenance of Species Boundaries Despite Ongoing Gene Flow in Ragworts. Genome Biol Evol 2016; 8:1038-47. [PMID: 26979797 PMCID: PMC4860686 DOI: 10.1093/gbe/evw053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
The role of hybridization between diversifying species has been the focus of a huge amount of recent evolutionary research. While gene flow can prevent speciation or initiate species collapse, it can also generate new hybrid species. Similarly, while adaptive divergence can be wiped out by gene flow, new adaptive variation can be introduced via introgression. The relative frequency of these outcomes, and indeed the frequency of hybridization and introgression in general are largely unknown. One group of closely-related species with several documented cases of hybridization is the Mediterranean ragwort (genus: Senecio) species-complex. Examples of both polyploid and homoploid hybrid speciation are known in the clade, although their evolutionary relationships and the general frequency of introgressive hybridization among them remain unknown. Using a whole genome gene-space dataset comprising eight Senecio species we fully resolve the phylogeny of these species for the first time despite phylogenetic incongruence across the genome. Using a D-statistic approach, we demonstrate previously unknown cases of introgressive hybridization between multiple pairs of taxa across the species tree. This is an important step in establishing these species as a study system for diversification with gene flow, and suggests that introgressive hybridization may be a widespread and important process in plant evolution.
Collapse
Affiliation(s)
- Owen G Osborne
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom Department of Life Sciences, Imperial College London - Silwood Park Campus, Berkshire, United Kingdom
| | - Mark A Chapman
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom Department of Life Sciences, Imperial College London - Silwood Park Campus, Berkshire, United Kingdom Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Hu XS, Filatov DA. The large-X effect in plants: increased species divergence and reduced gene flow on the Silene X-chromosome. Mol Ecol 2016; 25:2609-19. [PMID: 26479725 DOI: 10.1111/mec.13427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022]
Abstract
The disproportionately large involvement of the X-chromosome in the isolation of closely related species (the large-X effect) has been reported for many animals, where X-linked genes are mostly hemizygous in the heterogametic sex. The expression of deleterious recessive mutations is thought to drive the frequent involvement of the X-chromosome in hybrid sterility, as well as to reduce interspecific gene flow for X-linked genes. Here, we evaluate the role of the X-chromosome in the speciation of two closely related plant species - the white and red campions (Silene latifolia and S. dioica) - that hybridize widely across Europe. The two species evolved separate sexes and sex chromosomes relatively recently (~10(7) years), and unlike most animal species, most X-linked genes have intact Y-linked homologs. We demonstrate that the X-linked genes show a very small and insignificant amount of interspecific gene flow, while gene flow involving autosomal loci is significant and sufficient to homogenize the gene pools of the two species. These findings are consistent with the hypothesis of the large-X effect in Silene and comprise the first report of this effect in plants. Nonhemizygosity of many X-linked genes in Silene males indicates that exposure of recessive mutations to selection may not be essential for the occurrence of the large-X effect. Several possible causes of the large-X effect in Silene are discussed.
Collapse
Affiliation(s)
- Xin-Sheng Hu
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX13RB, UK
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX13RB, UK
| |
Collapse
|
16
|
Zhang JJ, Montgomery BR, Huang SQ. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species. AOB PLANTS 2016; 8:plw032. [PMID: 27178066 PMCID: PMC4940505 DOI: 10.1093/aobpla/plw032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/27/2016] [Indexed: 05/14/2023]
Abstract
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids.
Collapse
Affiliation(s)
- Jin-Ju Zhang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Benjamin R Montgomery
- Division of Natural Sciences & Engineering, University of South Carolina Upstate, Spartanburg, SC 29303, USA
| | - Shuang-Quan Huang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
17
|
Nista P, Brothers AN, Delph LF. Differences in style length confer prezygotic isolation between two dioecious species of Silene in sympatry. Ecol Evol 2015; 5:2703-11. [PMID: 26257882 PMCID: PMC4523365 DOI: 10.1002/ece3.1350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/08/2022] Open
Abstract
One fundamental signature of reinforcement is elevated prezygotic reproductive isolation between related species in sympatry relative to allopatry. However, this alone is inadequate evidence for reinforcement, as traits conferring reproductive isolation can occur as a by-product of other forces. We conducted crosses between Silene latifolia and S. diclinis, two closely related dioecious flowering plant species. Crosses with S. latifolia mothers from sympatry exhibited lower seed set than mothers from five allopatric populations when S. diclinis was the father. However, two other allopatric populations also exhibited low seed set. A significant interaction between style length and sire species revealed that seed set declined as style length increased when interspecific, but not intraspecific, fathers where used. Moreover, by varying the distance pollen tubes had to traverse, we found interspecific pollen placement close to the ovary resulted in seed set in both long- and short-styled S. latifolia mothers. Our results reveal that the long styles of S. latifolia in sympatry with S. diclinis contribute to the prevention of hybrid formation. We argue that forces other than reinforcing selection are likely to be responsible for the differences in style length seen in sympatry.
Collapse
Affiliation(s)
- Phil Nista
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| | - Amanda N Brothers
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| | - Lynda F Delph
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| |
Collapse
|
18
|
Huang CL, Ho CW, Chiang YC, Shigemoto Y, Hsu TW, Hwang CC, Ge XJ, Chen C, Wu TH, Chou CH, Huang HJ, Gojobori T, Osada N, Chiang TY. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:834-847. [PMID: 25237766 DOI: 10.1111/tpj.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.
Collapse
Affiliation(s)
- Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hart MW. Models of selection, isolation, and gene flow in speciation. THE BIOLOGICAL BULLETIN 2014; 227:133-145. [PMID: 25411372 DOI: 10.1086/bblv227n2p133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many marine ecologists aspire to use genetic data to understand how selection and demographic history shape the evolution of diverging populations as they become reproductively isolated species. I propose combining two types of genetic analysis focused on this key early stage of the speciation process to identify the selective agents directly responsible for population divergence. Isolation-with-migration (IM) models can be used to characterize reproductive isolation between populations (low gene flow), while codon models can be used to characterize selection for population differences at the molecular level (especially positive selection for high rates of amino acid substitution). Accessible transcriptome sequencing methods can generate the large quantities of data needed for both types of analysis. I highlight recent examples (including our work on fertilization genes in sea stars) in which this confluence of interest, models, and data has led to taxonomically broad advances in understanding marine speciation at the molecular level. I also highlight new models that incorporate both demography and selection: simulations based on these theoretical advances suggest that polymorphisms shared among individuals (a key source of information in IM models) may lead to false-positive evidence of selection (in codon models), especially during the early stages of population divergence and speciation that are most in need of study. The false-positive problem may be resolved through a combination of model improvements plus experiments that document the phenotypic and fitness effects of specific polymorphisms for which codon models and IM models indicate selection and reproductive isolation (such as genes that mediate sperm-egg compatibility at fertilization).
Collapse
Affiliation(s)
- Michael W Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
20
|
Weingartner LA, Delph LF. Neo-sex chromosome inheritance across species in Silene
hybrids. J Evol Biol 2014; 27:1491-9. [DOI: 10.1111/jeb.12371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Affiliation(s)
| | - L. F. Delph
- Department of Biology; Indiana University; Bloomington IN USA
| |
Collapse
|
21
|
McIntosh EJ, Rossetto M, Weston PH, Wardle GM. Maintenance of strong morphological differentiation despite ongoing natural hybridization between sympatric species of Lomatia (Proteaceae). ANNALS OF BOTANY 2014; 113:861-872. [PMID: 24489011 PMCID: PMC3962242 DOI: 10.1093/aob/mct314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 12/13/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND AIMS When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecological preferences, exceeding those found in most studies of hybridization to date. METHODS Nuclear microsatellite markers (nSSRs), genotyping methods and morphometric analyses were used to uncover patterns of hybridization and the role of gene flow in morphological differentiation between sympatric species. KEY RESULTS The complexity of hybridization patterns differed markedly between sites, however, signals of introgression were present at all sites. One site provided evidence of a large hybrid swarm and the likely presence of multiple hybrid generations and backcrosses, another site a handful of early generational hybrids and a third site only traces of admixture from a past hybridization event. The presence of cryptic hybrids and a pattern of morphological bimodality amongst hybrids often disguised the extent of underlying genetic admixture. CONCLUSIONS Distinct parental habitats and phenotypes are expected to form barriers that contribute to the rapid reversion of hybrid populations to their parental character state, due to limited opportunities for hybrid/intermediate advantage. Furthermore, strong genomic filters may facilitate continued gene flow between species without the danger of assimilation. Stochastic fire events facilitate temporal phenological isolation between species and may partly explain the bi-directional and site-specific patterns of hybridization observed. Furthermore, the findings suggest that F1 hybrids are rare, and backcrosses may occur rapidly following these initial hybridization events.
Collapse
Affiliation(s)
- Emma J. McIntosh
- The Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
- School of Biological Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - Maurizio Rossetto
- The Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
| | - Peter H. Weston
- The Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
| | - Glenda M. Wardle
- School of Biological Sciences, the University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Testing for the footprint of sexually antagonistic polymorphisms in the pseudoautosomal region of a plant sex chromosome pair. Genetics 2013; 194:663-72. [PMID: 23733787 DOI: 10.1534/genetics.113.152397] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.
Collapse
|
23
|
Käfer J, Talianová M, Bigot T, Michu E, Guéguen L, Widmer A, Žlůvová J, Glémin S, Marais GAB. Patterns of molecular evolution in dioecious and non-dioecious Silene. J Evol Biol 2012. [PMID: 23206219 DOI: 10.1111/jeb.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioecy (i.e. having separate sexes) is a rather rare breeding system in flowering plants. Such rareness may result from a high probability of extinction in dioecious species because of less efficient dispersal and the costs of sexual selection, which are expected to harm dioecious species' survival on the long term. These handicaps should decrease the effective population size (Ne) of dioecious species, which in turn should reduce the efficacy of selection. Moreover, sexual selection in dioecious species is expected to specifically affect some genes, which will evolve under positive selection. The relative contribution of these effects is currently unknown and we tried to disentangle them by comparing sequence evolution between dioecious and non-dioecious species in the Silene genus (Caryophyllaceae), where dioecy has evolved at least twice. For the dioecious species in the section Melandrium, where dioecy is the oldest, we found a global reduction of purifying selection, while on some, male-biased genes, positive selection was found. For section Otites, where dioecy evolved more recently, we found no significant differences between dioecious and non-dioecious species. Our results are consistent with the view that dioecy is an evolutionary dead end in flowering plants, although other scenarios for explaining reduced Ne cannot be ruled out. Our results also show that contrasting forces act on the genomes of dioecious plants, and suggest that some time is required before the genome of such plants bears the footprints of dioecy.
Collapse
Affiliation(s)
- J Käfer
- Univ Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|