1
|
Djermoun S, Rode DKH, Jiménez-Siebert E, Netter N, Lesterlin C, Drescher K, Bigot S. Biofilm architecture determines the dissemination of conjugative plasmids. Proc Natl Acad Sci U S A 2025; 122:e2417452122. [PMID: 40279390 PMCID: PMC12054802 DOI: 10.1073/pnas.2417452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/27/2025] Open
Abstract
Plasmid conjugation is a contact-dependent horizontal gene transfer mechanism that significantly contributes to the dissemination of antibiotic resistance among bacteria. While the molecular mechanisms of conjugation have been extensively studied, our understanding of plasmid transfer dynamics within spatially structured bacterial communities and the influence of community architecture on plasmid dissemination remains limited. In this study, we use live-cell fluorescence microscopy to investigate the propagation of the broad host range RP4 conjugative plasmid in Escherichia coli populations exhibiting varying levels of spatial organization. In high-density, two-dimensional cell monolayers, direct and tight contact between donors and recipients is not only necessary but also sufficient to trigger RP4 plasmid transfer, ensuring optimal plasmid propagation. In three-dimensional mature biofilms, the emergent community architecture limits the ability of donor cells to enter regions with high cell density, which hinders the establishment of direct contacts with recipients and impedes plasmid transfer in biofilms. In contrast, microcolonies, early-stage biofilms, and biofilms with a lower surface coverage leave open access points for donor cells in regions that later emerge as high-cell-density regions in mature biofilms, which facilitates plasmid transfer. These findings reveal the crucial role of bacterial community architecture in determining the efficiency of plasmid dissemination.
Collapse
Affiliation(s)
- Sarah Djermoun
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| | | | | | - Niklas Netter
- Biozentrum, University of Basel, Basel4056, Switzerland
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| | - Knut Drescher
- Biozentrum, University of Basel, Basel4056, Switzerland
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| |
Collapse
|
2
|
Zhang J, Zhao L, Wang W, Zhang Q, Wang XT, Xing DF, Ren NQ, Lee DJ, Chen C. Large language model for horizontal transfer of resistance gene: From resistance gene prevalence detection to plasmid conjugation rate evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172466. [PMID: 38626826 DOI: 10.1016/j.scitotenv.2024.172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.
Collapse
Affiliation(s)
- Jiabin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
3
|
Mishra S, Klümper U, Voolaid V, Berendonk TU, Kneis D. Simultaneous estimation of parameters governing the vertical and horizontal transfer of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149174. [PMID: 34375245 DOI: 10.1016/j.scitotenv.2021.149174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The accelerated spread of antibiotic resistance genes (ARG) in the environment occurs mainly through plasmid transfer facilitated via bacterial conjugation. To predict and efficiently counteract the problems associated with ARG transmission, it is important to estimate conjugation rates under different experimental conditions. The classical models typically used to estimate parameters for mating experiments, while pragmatic in calculating growth and plasmid transfer, often ignore processes such as the reduction in growth due to plasmid bearing costs and are non-inclusive of environmental influences like temperature effects. Here, we present a process-based numerical model taking into account the fitness cost associated with plasmid carriage and temperature dependencies in vertical and horizontal gene transfer processes. Observations from liquid culture conjugation experiments using Escherichia coli and the plasmid pB10 were used to validate our proposed model. We present a comparison between the parameters estimated using the existing and the proposed model. Uncertainties in the estimated parameters were quantified using classical and advanced Bayesian methods. For our mating experiments, we found that at temperatures between 20 and 37 °C, the plasmid bearing costs reduced the growth rates by > 35%. The temperature dependency model of conjugation showed a good fit (mean absolute percentage error < 10%) independent of the bacteria and the plasmid under study. The proposed model simultaneously estimates growth and plasmid transfer rate constants for all three strains (donor, recipient, and transconjugant). Simultaneous estimation of growth and conjugation parameters is particularly useful to estimate the spread of ARG when one of the mating partners inhibits the growth of the other, which is common in multi-species mating or when the incurred plasmid costs are situation dependent (e.g., increased plasmid cost in a mating environment) as observed in this study.
Collapse
Affiliation(s)
- Sulagna Mishra
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany.
| | - Uli Klümper
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| | - Veiko Voolaid
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| | - Thomas U Berendonk
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| | - David Kneis
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| |
Collapse
|
4
|
Sheppard RJ, Barraclough TG, Jansen VAA. The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. Am Nat 2021; 198:473-488. [PMID: 34559608 DOI: 10.1086/716063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.
Collapse
|
5
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
6
|
Malwade A, Nguyen A, Sadat-Mousavi P, Ingalls BP. Predictive Modeling of a Batch Filter Mating Process. Front Microbiol 2017; 8:461. [PMID: 28377756 PMCID: PMC5359259 DOI: 10.3389/fmicb.2017.00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
Quantitative characterizations of horizontal gene transfer are needed to accurately describe gene transfer processes in natural and engineered systems. A number of approaches to the quantitative description of plasmid conjugation have appeared in the literature. In this study, we seek to extend that work, motivated by the question of whether a mathematical model can accurately predict growth and conjugation dynamics in a batch process. We used flow cytometry to make time-point observations of a filter-associated mating between two E. coli strains, and fit ordinary differential equation models to the data. A model comparison analysis identified the model formulation that is best supported by the data. Identifiability analysis revealed that the parameters were estimated with acceptable accuracy. The predictive power of the model was assessed by comparison with test data that demanded extrapolation from the training experiments. This study represents the first attempt to assess the quality of model predictions for plasmid conjugation. Our successful application of this approach lays a foundation for predictive modeling that can be used both in the study of natural plasmid transmission and in model-based design of engineering approaches that employ conjugation, such as plasmid-mediated bioaugmentation.
Collapse
Affiliation(s)
- Akshay Malwade
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| | - Angel Nguyen
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| | | | - Brian P Ingalls
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
7
|
Abstract
Biofilms dominate microbial life, and their importance for human health and the environment can no longer be dismissed. Nevertheless many of the processes governing this form of microbial growth are still poorly understood. This includes the horizontal exchange of genetic information, which is a major driver in bacterial evolution and rapid adaptation, exemplified by the alarming spread of multi-drug resistance among pathogens mediated by plasmids. Biofilms are often considered hot spot for horizontal gene transfer, yet several studies have shown that plasmid transfer is limited to the outer layers. On the basis of results from decades of research we analyse this paradox and discuss the mechanisms by which biofilm growth can promote the initial transfer of some plasmids, but also limit further plasmid invasion into the population or community. If we want to adequately promote or combat horizontal gene spread in biofilms, we need to gain better insight into the physicochemical and biological mechanisms that control this process.
Collapse
Affiliation(s)
- Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | - Eva Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| |
Collapse
|
8
|
Lee S, Takahashi Y, Oura H, Suzuki-Minakuchi C, Okada K, Yamane H, Nomura N, Nojiri H. Effects of carbazole-degradative plasmid pCAR1 on biofilm morphology in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:261-271. [PMID: 26743211 DOI: 10.1111/1758-2229.12376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Bacteria typically form biofilms under natural conditions. To elucidate the effect of the carriage of carbazole-degradative plasmid pCAR1 on biofilm formation by host bacteria, we compared the biofilm morphology, using confocal laser scanning microscopy, of three pCAR1-free and pCAR1-carrying Pseudomonas hosts: P. putida KT2440, P. aeruginosa PAO1 and P. fluorescens Pf0-1. Although pCAR1 did not significantly affect biofilm formation by PAO1 or Pf0-1, pCAR1-carrying KT2440 became filamentous and formed flat biofilms, whereas pCAR1-free KT2440 formed mushroom-like biofilms. pCAR1 contains three genes encoding nucleoid-associated proteins (NAPs), namely, Pmr, Pnd and Phu. The enhanced filamentous morphology was observed in two double mutants [KT2440(pCAR1ΔpmrΔpnd) and KT2440(pCAR1ΔpmrΔphu)], suggesting that these NAPs are involved in modulating the filamentous phenotype. Transcriptome analyses of the double mutants identified 32 candidate genes that may be involved in filamentation of KT2440. Overexpression of PP_2193 in KT2440 induced filamentation and overexpression of PP_0308 or PP_0309 in KT2440(pCAR1) enhanced filamentation of cells over time. This suggests that pCAR1 induces development of an abnormal filamentous morphology by KT2440 via a process involving overexpression of several genes, such as PP_2193. In addition, pCAR1-encoded NAPs partly suppress too much filamentation of KT2440(pCAR1) by repressing transcription of some genes, such as PP_0308 and PP_0309.
Collapse
Affiliation(s)
- Seunguk Lee
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yurika Takahashi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiromu Oura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Besaury L, Pawlak B, Quillet L. Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4013-4023. [PMID: 25009094 DOI: 10.1007/s11356-014-3254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance and expression of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed along a gradient of copper concentration in microcosms prepared from Seine estuary mudflat sediment. We demonstrated that the abundance of copA and cusA genes decreased with the increase of copper concentration and that cusA gene was up to ten times higher than the copA gene. Only the copA gene was expressed in both oxic and anoxic conditions. The abundance and activity of the microbial community remained constant whatever the concentrations of copper along the gradient. The molecular phylogeny of the two copper-resistance genes was studied and revealed that the increase of copper increased the diversity of copA and cusA gene sequences.
Collapse
Affiliation(s)
- Ludovic Besaury
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Bâtiment IRESE B, 2ème étage, UFR des Sciences, Université de Rouen, 76821, Mont Saint Aignan, France.
| | - Barbara Pawlak
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Bâtiment IRESE B, 2ème étage, UFR des Sciences, Université de Rouen, 76821, Mont Saint Aignan, France
| | - Laurent Quillet
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Bâtiment IRESE B, 2ème étage, UFR des Sciences, Université de Rouen, 76821, Mont Saint Aignan, France
| |
Collapse
|
10
|
Hall JPJ, Harrison E, Lilley AK, Paterson S, Spiers AJ, Brockhurst MA. Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects. Environ Microbiol 2015; 17:5008-22. [PMID: 25969927 PMCID: PMC4989453 DOI: 10.1111/1462-2920.12901] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/26/2023]
Abstract
Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co‐occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a Pseudomonas fluorescens
SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid‐borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus‐encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co‐occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity.
Collapse
Affiliation(s)
- James P J Hall
- Department of Biology, Wentworth Way, University of York, York, UK
| | - Ellie Harrison
- Department of Biology, Wentworth Way, University of York, York, UK
| | - Andrew K Lilley
- Pharmaceutical Science Research Division, King's College London, London, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew J Spiers
- The SIMBIOS Centre, School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | |
Collapse
|
11
|
Freese PD, Korolev KS, Jiménez JI, Chen IA. Genetic drift suppresses bacterial conjugation in spatially structured populations. Biophys J 2014; 106:944-54. [PMID: 24559997 DOI: 10.1016/j.bpj.2014.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 11/24/2022] Open
Abstract
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Peter D Freese
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts
| | - Kirill S Korolev
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Physics and Program in Bioinformatics, Boston University, Boston, Massachusetts
| | - José I Jiménez
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts; Faculty of Health and Medical Sciences, University of Surrey, United Kingdom
| | - Irene A Chen
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts; Department of Chemistry and Biochemistry, Program in Biomolecular Sciences and Engineering, University of California at Santa Barbara, Santa Barbara, California.
| |
Collapse
|
12
|
Van Meervenne E, De Weirdt R, Van Coillie E, Devlieghere F, Herman L, Boon N. Biofilm models for the food industry: hot spots for plasmid transfer? Pathog Dis 2014; 70:332-8. [PMID: 24436212 DOI: 10.1111/2049-632x.12134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/26/2022] Open
Abstract
Biofilms represent a substantial problem in the food industry, with food spoilage, equipment failure, and public health aspects to consider. Besides, biofilms may be a hot spot for plasmid transfer, by which antibiotic resistance can be disseminated to potential foodborne pathogens. This study investigated biomass and plasmid transfer in dual-species (Pseudomonas putida and Escherichia coli) biofilm models relevant to the food industry. Two different configurations (flow-through and drip-flow) and two different inoculation procedures (donor-recipient and recipient-donor) were tested. The drip-flow configuration integrated stainless steel coupons in the setup while the flow-through configuration included a glass flow cell and silicone tubing. The highest biomass density [10 log (cells cm-²)] was obtained in the silicone tubing when first the recipient strain was inoculated. High plasmid transfer ratios, up to 1/10 (transconjugants/total bacteria), were found. Depending on the order of inoculation, a difference in transfer efficiency between the biofilm models could be found. The ease by which the multiresistance plasmid was transferred highlights the importance of biofilms in the food industry as hot spots for the acquisition of multiresistance plasmids. This can impede the treatment of foodborne illnesses if pathogens acquire this multiresistance in or from the biofilm.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium; Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium; Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Król JE, Wojtowicz AJ, Rogers LM, Heuer H, Smalla K, Krone SM, Top EM. Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid 2013; 70:110-9. [PMID: 23558148 DOI: 10.1016/j.plasmid.2013.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
In spite of the contribution of plasmids to the spread of antibiotic resistance in human pathogens, little is known about the transferability of various drug resistance plasmids in bacterial biofilms. The goal of this study was to compare the efficiency of transfer of 19 multidrug resistance plasmids into Escherichia coli recipient biofilms and determine the effects of biofilm age, biofilm-donor exposure time, and donor-to-biofilm attachment on this process. An E. coli recipient biofilm was exposed separately to 19 E. coli donors, each with a different plasmid, and transconjugants were determined by plate counting. With few exceptions, plasmids that transferred well in a liquid environment also showed the highest transferability in biofilms. The difference in transfer frequency between the most and least transferable plasmid was almost a million-fold. The 'invasibility' of the biofilm by plasmids, or the proportion of biofilm cells that acquired plasmids within a few hours, depended not only on the type of plasmid, but also on the time of biofilm exposure to the donor and on the ability of the plasmid donor to attach to the biofilm, yet not on biofilm age. The efficiency of donor strain attachment to the biofilm was not affected by the presence of plasmids. The most invasive plasmid was pHH2-227, which based on genome sequence analysis is a hybrid between IncU-like and IncW plasmids. The wide range in transferability in an E. coli biofilm among plasmids needs to be taken into account in our fight against the spread of drug resistance.
Collapse
Affiliation(s)
- Jaroslaw E Król
- Department of Biological Sciences, University of Idaho, ID 83844-3051, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
del Campo I, Ruiz R, Cuevas A, Revilla C, Vielva L, de la Cruz F. Determination of conjugation rates on solid surfaces. Plasmid 2012; 67:174-82. [PMID: 22289895 DOI: 10.1016/j.plasmid.2012.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/27/2022]
Abstract
A cytometric method for the estimation of end-point conjugation rates is developed and adapted to surface conjugation. This method improves the through-put of conjugation assays based on replica-plating and results in less noisy experimental data. Although conjugation on solid surfaces deviates from ideal conditions in which cells are continuously mixed, results show that, within the limits of high initial population densities and short mating times, end-point estimates of the conjugation rates are robust measurements. They are independent of the donor/recipient ratios and, to some extent, of the sampling time. Remixing the mating population in the course of a conjugation experiment results in a boost in the frequency of transconjugants.
Collapse
Affiliation(s)
- Irene del Campo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-IDICAN, Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Quan XC, Ma JY, Xiong WC, Yang ZF. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules. JOURNAL OF HAZARDOUS MATERIALS 2011; 196:278-286. [PMID: 21962861 DOI: 10.1016/j.jhazmat.2011.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65-135% for the granules on Day 18, and 6-24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon-Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/isolation & purification
- Aerobiosis
- Biodegradation, Environmental
- Biomass
- Bioreactors/microbiology
- DNA, Bacterial/genetics
- Electrophoresis, Agar Gel
- Genes, Bacterial
- Genetic Engineering
- Microscopy, Electron, Scanning
- Plasmids
- Pseudomonas putida/genetics
- Pseudomonas putida/growth & development
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sewage/microbiology
- Surface Properties
- Water Pollutants, Chemical/isolation & purification
- Water Purification/methods
Collapse
Affiliation(s)
- Xiang-chun Quan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | | | | | | |
Collapse
|
16
|
Zhong X, Droesch J, Fox R, Top EM, Krone SM. On the meaning and estimation of plasmid transfer rates for surface-associated and well-mixed bacterial populations. J Theor Biol 2011; 294:144-52. [PMID: 22085738 DOI: 10.1016/j.jtbi.2011.10.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/28/2022]
Abstract
Conjugative plasmid transfer is key to the ability of bacteria to rapidly adapt to new environments, but there is no agreement on a single quantitative measure of the rate of plasmid transfer. Some studies derive estimates of transfer rates from mass-action differential equation models of plasmid population biology. The often-used 'endpoint method' is such an example. Others report measures of plasmid transfer efficiency that simply represent ratios of plasmid-bearing and plasmid-free cell densities and do not correspond to parameters in any mathematical model. Unfortunately, these quantities do not measure the same thing - sometimes differing by orders of magnitude - and their use is often clouded by a lack of specificity. Moreover, they do not distinguish between bulk transfer rates that are only relevant in well-mixed populations and the 'intrinsic' rates between individual cells. This leads to problems for surface-associated populations, which are not well-mixed but spatially structured. We used simulations of a spatially explicit mathematical model to evaluate the effectiveness of these various plasmid transfer efficiency measures when they are applied to surface-associated populations. The simulation results, supported by some experimental findings, showed that these measures can be affected by initial cell densities, donor-to-recipient ratios and initial cell cluster size, and are therefore flawed as universal measures of plasmid transfer efficiency. The simulations also allowed us to formulate some guiding principles on when these estimates are appropriate for spatially structured populations and how to interpret the results. While we focus on plasmid transfer, the general lessons of this study should apply to any measures of horizontal spread (e.g., infection rates in epidemiology) that are based on simple mass-action models (e.g., SIR models in epidemiology) but applied to spatial settings.
Collapse
Affiliation(s)
- Xue Zhong
- Department of Mathematics, University of Idaho, Moscow, ID 83844-1103, USA
| | | | | | | | | |
Collapse
|
17
|
Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 2011; 77:5079-88. [PMID: 21642400 DOI: 10.1128/aem.00090-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biofilms represent a common bacterial lifestyle in clinically and environmentally important habitats, there is scant information on the extent of gene transfer in these spatially structured populations. The objective of this study was to gain insight into factors that affect transfer of the promiscuous multidrug resistance plasmid pB10 in Escherichia coli biofilms. Biofilms were grown in different experimental settings, and plasmid transfer was monitored using laser scanning confocal microscopy and plate counting. In closed flow cells, plasmid transfer in surface-attached submerged biofilms was negligible. In contrast, a high plasmid transfer efficiency was observed in a biofilm floating at the air-liquid interface in an open flow cell with low flow rates. A vertical flow cell and a batch culture biofilm reactor were then used to detect plasmid transfer at different depths away from the air-liquid interface. Extensive plasmid transfer occurred only in a narrow zone near that interface. The much lower transfer frequencies in the lower zones coincided with rapidly decreasing oxygen concentrations. However, when an E. coli csrA mutant was used as the recipient, a thick biofilm was obtained at all depths, and plasmid transfer occurred at similar frequencies throughout. These results and data from separate aerobic and anaerobic matings suggest that oxygen can affect IncP-1 plasmid transfer efficiency, not only directly but also indirectly, through influencing population densities and therefore colocalization of donors and recipients. In conclusion, the air-liquid interface can be a hot spot for plasmid-mediated gene transfer due to high densities of juxtaposed donor and recipient cells.
Collapse
|
18
|
Quan X, Tang H, Ma J. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:689-695. [PMID: 20951494 DOI: 10.1016/j.jhazmat.2010.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/23/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.
Collapse
Affiliation(s)
- Xiangchun Quan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | | | | |
Collapse
|
19
|
Quan XC, Tang H, Xiong WC, Yang ZF. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:1136-1142. [PMID: 20430519 DOI: 10.1016/j.jhazmat.2010.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 microm. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V(max)=31.1 mg 2,4-D/gVSS h, K(i)=597.9 mg/L and K(s)=257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- Aerobiosis
- Biodegradation, Environmental
- Bioreactors
- Chromosomes, Bacterial/genetics
- Electrophoresis, Gel, Pulsed-Field
- Environmental Pollutants/metabolism
- Kinetics
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Plasmids/genetics
- Protein Denaturation
- Pseudomonas putida/genetics
- Pseudomonas putida/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sewage/microbiology
Collapse
Affiliation(s)
- Xiang-chun Quan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | | | | | | |
Collapse
|
20
|
MacLean RC, Hall AR, Perron GG, Buckling A. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat Rev Genet 2010; 11:405-14. [PMID: 20479772 DOI: 10.1038/nrg2778] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite efforts from a range of disciplines, our ability to predict and combat the evolution of antibiotic resistance in pathogenic bacteria is limited. This is because resistance evolution involves a complex interplay between the specific drug, bacterial genetics and both natural and treatment ecology. Incorporating details of the molecular mechanisms of drug resistance and ecology into evolutionary models has proved useful in predicting the dynamics of resistance evolution. However, putting these models to practical use will require extensive collaboration between mathematicians, molecular biologists, evolutionary ecologists and clinicians.
Collapse
Affiliation(s)
- R Craig MacLean
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
21
|
Accounting for mating pair formation in plasmid population dynamics. J Theor Biol 2009; 262:711-9. [PMID: 19835890 DOI: 10.1016/j.jtbi.2009.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/23/2022]
Abstract
Plasmids are important vehicles for horizontal gene transfer and rapid adaptation in bacteria, including the spread of antibiotic resistance genes. Conjugative transfer of a plasmid from a plasmid-bearing to a plasmid-free bacterial cell requires contact and attachment of the cells followed by plasmid DNA transfer prior to detachment. We introduce a system of differential equations for plasmid transfer in well-mixed populations that accounts for attachment, DNA transfer, and detachment dynamics. These equations offer advantages over classical mass-action models that combine these three processes into a single "bulk" conjugation rate. By decomposing the process of plasmid transfer into its constituent parts, this new model provides a framework that facilitates meaningful comparisons of plasmid transfer rates in surface and liquid environments. The model also allows one to account for experimental and environmental effects such as mixing intensity. To test the adequacy of the model and further explore the effects of mixing on plasmid transfer, we performed batch culture experiments using three different plasmids and a range of different mixing intensities. The results show that plasmid transfer is optimized at low to moderate shaking speeds and that vigorous shaking negatively affects plasmid transfer. Using reasonable assumptions on attachment and detachment rates, the mathematical model predicts the same behavior.
Collapse
|
22
|
Slater FR, Bruce KD, Ellis RJ, Lilley AK, Turner SL. Heterogeneous selection in a spatially structured environment affects fitness tradeoffs of plasmid carriage in pseudomonads. Appl Environ Microbiol 2008; 74:3189-97. [PMID: 18378654 PMCID: PMC2394952 DOI: 10.1128/aem.02383-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 03/21/2008] [Indexed: 11/20/2022] Open
Abstract
Environmental conditions under which fitness tradeoffs of plasmid carriage are balanced to facilitate plasmid persistence remain elusive. Periodic selection for plasmid-encoded traits due to the spatial and temporal variation typical in most natural environments (such as soil particles, plant leaf and root surfaces, gut linings, and the skin) may play a role. However, quantification of selection pressures and their effects is difficult at a scale relevant to the bacterium in situ. The present work describes a novel experimental system for such fine-scale quantification, with conditions designed to mimic the mosaic of spatially variable selection pressures present in natural surface environments. The effects of uniform and spatially heterogeneous mercuric chloride (HgCl(2)) on the dynamics of a model community of plasmid-carrying, mercury-resistant (Hg(r)) and plasmid-free, mercury-sensitive (Hg(s)) pseudomonads were compared. Hg resulted in an increase in the surface area occupied by, and therefore an increase in the fitness of, Hg(r) bacteria relative to Hg(s) bacteria. Uniform and heterogeneous Hg distributions were demonstrated to result in different community structures by epifluorescence microscopy, with heterogeneous Hg producing spatially variable selection landscapes. The effects of heterogeneous Hg were only apparent at scales of a few hundred micrometers, emphasizing the importance of using appropriate analysis methods to detect effects of environmental heterogeneity on community dynamics. Heterogeneous Hg resulted in negative frequency-dependent selection for Hg(r) cells, suggesting that sporadic selection may facilitate the discontinuous distribution of plasmids through host populations in complex, structured environments.
Collapse
Affiliation(s)
- Frances R Slater
- The Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Sabia C, de Niederhäusern S, Guerrieri E, Messi P, Anacarso I, Manicardi G, Bondi M. Detection of bacteriocin production and virulence traits in vancomycin-resistant enterococci of different sources. J Appl Microbiol 2008; 104:970-9. [DOI: 10.1111/j.1365-2672.2007.03612.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Frequency-dependent advantages of plasmid carriage by Pseudomonas in homogeneous and spatially structured environments. ISME JOURNAL 2008; 1:92-5. [PMID: 18043617 DOI: 10.1038/ismej.2007.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conditions promoting the persistence of a plasmid carrying a trait that may be mutually beneficial to other cells in its vicinity were studied in structured and unstructured environments. A large plasmid encoding mercury resistance in Pseudomonas fluorescens was used, and the mercury concentration allowing invasion from rare for both plasmid-bearing and plasmid-free cells was determined for different initial inoculum densities in batch-culture structured (filter surface) and unstructured (mixed broth) environments. A range of mercury concentrations were found where both cell types could coexist, the regions being relatively similar in the two types of environment although density-dependent in the unstructured environment. The coexistence is explained in terms of frequency-dependent selection of the mutually beneficial mercury resistance trait, and the dynamics of bacterial growth under batch culture conditions. However, the region of coexistence was complicated by conjugation which increased plasmid spread in the mixed broth culture but not the structured environment.
Collapse
|
25
|
Boon N, Depuydt S, Verstraete W. Evolutionary algorithms and flow cytometry to examine the parameters influencing transconjugant formation. FEMS Microbiol Ecol 2006; 55:17-27. [PMID: 16420611 DOI: 10.1111/j.1574-6941.2005.00002.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
An evolutionary algorithm was used to determine the optimal combination of parameters for transconjugant formation. As a model system, a gfp tagged TOL plasmid pWW0 was chosen to examine transfer from Pseudomonas putida to Escherichia coli. A comparison of flow cytometry results with plating and microscopy showed that the majority of transconjugants were not culturable. The transconjugant ratio therefore was determined by flow cytometry. The evolutionary algorithm showed that the optimal conditions were obtained at 28 degrees C and at the highest nutrient concentrations. This work demonstrates that evolutionary algorithms can be used to find optimal parameter interactions in environmental microbiology.
Collapse
Affiliation(s)
- Nico Boon
- Laboratory of Microbial Ecology and Technology, LabMET, Ghent University, Ghent, Belgium.
| | | | | |
Collapse
|
26
|
|
27
|
Messi P, Guerrieri E, Bondi M. Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 346:213-9. [PMID: 15993695 DOI: 10.1016/j.scitotenv.2004.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Accepted: 12/01/2004] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance and antibacterial activity were determined on heterotrophic bacteria isolated from mineral waters. Of the 120 isolates Pseudomonas spp. (55.8%) was the predominant group followed by Acinetobacter spp. (14.17%), Flavobacterium spp. (10.83%), Achromobacter spp. (10%), Burkholderia cepacia (3.3%), Agrobacterium/radiobacter (2.5%), Moraxella spp. (1.7%), Aeromonas hydrophila (1.7%). Over 80% of the isolates were resistant to one or more antibiotics and the highest resistance was found for chloramphenicol, ampicillin, colistin and sulfamethizole (60%, 55%, 50% and 47.5%, respectively). Strains with multiple antibiotic resistance (MAR) represented 55% of isolates and the most resistant organism belonged to the genus Pseudomonas. Of 40 randomly selected strains, 27 (67.5%) had antibacterial activity towards one or more indicators. This activity, found in a high percentage in the genus Pseudomonas (92%), emerged mainly against closely related microorganisms. Several producers were active also against Escherichia coli, Salmonella, Listeria monocytogenes and Staphylococcus aureus. Forty-six percent of the isolates harboured 1 to 5 plasmids with molecular weights ranging from 2.1 to 41.5 MDa.
Collapse
Affiliation(s)
- Patrizia Messi
- Department of Biomedical Sciences, University of Modena and Reggio E., Via Campi 287, 41100 Modena, Italy
| | | | | |
Collapse
|