1
|
Bockhoff M, Marginson H, Ittulak H, Roy A, Amyot M. Influence of vegetative cover on snowpack mercury speciation and stocks in the greening Canadian subarctic region. ENVIRONMENTAL RESEARCH 2025; 264:120333. [PMID: 39547571 DOI: 10.1016/j.envres.2024.120333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A notable greening and warming of the Arctic and Subarctic due to climate change has uncertain implications for the global cycling of mercury (Hg). Snowpacks are dynamic reservoirs for Hg susceptible to solar radiation and wind pumping, with vegetative cover potentially altering Hg photochemistry. However, the impact of northern greening on the transformation of major Hg species and on Hg stocks remain poorly understood. Temporal surface snow and snowpit sampling was conducted under tree canopies and open tundra sites at the boreal-tundra ecotone in Nunavik, Canada. Maximum (mean) concentrations of 69.1 ng/L (8.8 ng/L) total mercury (HgT) and 46.9 ng/L (5.5 ng/L) reactive mercury (HgR) were measured in forest surface snow, with maximums attributed to rapid atmospheric oxidation events. Significant post-depositional reductions were recorded in the bay, tundra, and forest (67-99% HgR) and suggested greater Hg sequestration may occur under tree canopies. Increasing methylmercury (MeHg), HgT, and dissolved organic carbon (DOC) concentrations were detected across a vegetation gradient shifting towards humic-like organic matter. Notably, springtime depth profiles presented an approximate 12-fold greater accumulation of HgT under tree canopies compared to open tundra (p < 0.01), with up to 16-times higher stocks (HgT, MeHg, DOC) at elevated vegetation density (p < 0.05). In the North, increasing vegetation cover and surface warming may favor Hg accumulation and methylation in snowpacks, facilitated by interactions with organic matter, and further enriched by the reduced wind and solar exposure experienced under forest canopies.
Collapse
Affiliation(s)
- Maëlys Bockhoff
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada
| | - Holly Marginson
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada
| | - Henry Ittulak
- Northern Village of Kangiqsualujjuaq, QC, J0M 1N0, Canada
| | - Alexandre Roy
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, QC, Canada; Centre d'Études Nordiques, Québec, Canada
| | - Marc Amyot
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada; Centre d'Études Nordiques, Québec, Canada.
| |
Collapse
|
2
|
Kachiprath B, Solomon S, Gopi J, Jayachandran PR, Thajudeen J, Sarasan M, Mohan AS, Puthumana J, Chaithanya ER, Philip R. Exploring bacterial diversity in Arctic fjord sediments: a 16S rRNA-based metabarcoding portrait. Braz J Microbiol 2024; 55:499-513. [PMID: 38175355 PMCID: PMC10920534 DOI: 10.1007/s42770-023-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
The frosty polar environment houses diverse habitats mostly driven by psychrophilic and psychrotolerant microbes. Along with traditional cultivation methods, next-generation sequencing technologies have become common for exploring microbial communities from various extreme environments. Investigations on glaciers, ice sheets, ponds, lakes, etc. have revealed the existence of numerous microorganisms while details of microbial communities in the Arctic fjords remain incomplete. The current study focuses on understanding the bacterial diversity in two Arctic fjord sediments employing the 16S rRNA gene metabarcoding and its comparison with previous studies from various Arctic habitats. The study revealed that Proteobacteria was the dominant phylum from both the fjord samples followed by Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Chloroflexi and Chlamydiae. A significant proportion of unclassified reads derived from bacteria was also detected. Psychrobacter, Pseudomonas, Acinetobacter, Aeromonas, Photobacterium, Flavobacterium, Gramella and Shewanella were the major genera in both the fjord sediments. The above findings were confirmed by the comparative analysis of fjord metadata with the previously reported (secondary metadata) Arctic samples. This study demonstrated the potential of 16S rRNA gene metabarcoding in resolving bacterial composition and diversity thereby providing new in situ insights into Arctic fjord systems.
Collapse
Affiliation(s)
- Bhavya Kachiprath
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Solly Solomon
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
- Fishery Survey of India, Cochin Zonal Base, Kochangadi Road, Kochi, Kerala, 682005, India
| | - Jayanath Gopi
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Kingdom of Saudi Arabia
| | - P R Jayachandran
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Jabir Thajudeen
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403804, India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Anjali S Mohan
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - E R Chaithanya
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Rosamma Philip
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India.
| |
Collapse
|
3
|
Touchette D, Gostinčar C, Whyte LG, Altshuler I. Lichen-associated microbial members are prevalent in the snow microbiome of a sub-arctic alpine tundra. FEMS Microbiol Ecol 2023; 99:fiad151. [PMID: 37977855 DOI: 10.1093/femsec/fiad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Snow is the largest component of the cryosphere, with its cover and distribution rapidly decreasing over the last decade due to climate warming. It is imperative to characterize the snow (nival) microbial communities to better understand the role of microorganisms inhabiting these rapidly changing environments. Here, we investigated the core nival microbiome, the cultivable microbial members, and the microbial functional diversity of the remote Uapishka mountain range, a massif of alpine sub-arctic tundra and boreal forest. Snow samples were taken over a two-month interval along an altitude gradient with varying degree of anthropogenic traffic and vegetation cover. The core snow alpine tundra/boreal microbiome, which was present across all samples, constituted of Acetobacterales, Rhizobiales and Acidobacteriales bacterial orders, and of Mycosphaerellales and Lecanorales fungal orders, with the dominant fungal taxa being associated with lichens. The snow samples had low active functional diversity, with Richness values ranging from 0 to 19.5. The culture-based viable microbial enumeration ranged from 0 to 8.05 × 103 CFUs/mL. We isolated and whole-genome sequenced five microorganisms which included three fungi, one alga, and one potentially novel bacterium of the Lichenihabitans genus; all of which appear to be part of lichen-associated taxonomic clades.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| | - C Gostinčar
- University of Ljubljana, Department of Biology, Biotechnical Faculty, Ljubljana 1000, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| |
Collapse
|
4
|
Malard LA, Bergk-Pinto B, Layton R, Vogel TM, Larose C, Pearce DA. Snow Microorganisms Colonise Arctic Soils Following Snow Melt. MICROBIAL ECOLOGY 2023; 86:1661-1675. [PMID: 36939866 PMCID: PMC10497451 DOI: 10.1007/s00248-023-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Arctic soils are constantly subjected to microbial invasion from either airborne, marine, or animal sources, which may impact local microbial communities and ecosystem functioning. However, in winter, Arctic soils are isolated from outside sources other than snow, which is the sole source of microorganisms. Successful colonisation of soil by snow microorganisms depends on the ability to survive and compete of both, the invading and resident community. Using shallow shotgun metagenome sequencing and amplicon sequencing, this study monitored snow and soil microbial communities throughout snow melt to investigate the colonisation process of Arctic soils. Microbial colonisation likely occurred as all the characteristics of successful colonisation were observed. The colonising microorganisms originating from the snow were already adapted to the local environmental conditions and were subsequently subjected to many similar conditions in the Arctic soil. Furthermore, competition-related genes (e.g. motility and virulence) increased in snow samples as the snow melted. Overall, one hundred potentially successful colonisers were identified in the soil and, thus, demonstrated the deposition and growth of snow microorganisms in soils during melt.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Benoit Bergk-Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
- BioIT, TAG (Transversal Activities in Applied Genomics) Sciensano, 1050, Brussels, Belgium
| | - Rose Layton
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
5
|
Gu X, Cao Z, Zhao L, Seswita-Zilda D, Zhang Q, Fu L, Li J. Metagenomic Insights Reveal the Microbial Diversity and Associated Algal-Polysaccharide-Degrading Enzymes on the Surface of Red Algae among Remote Regions. Int J Mol Sci 2023; 24:11019. [PMID: 37446198 DOI: 10.3390/ijms241311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macroalgae and macroalgae-associated bacteria together constitute the most efficient metabolic cycling system in the ocean. Their interactions, especially the responses of macroalgae-associated bacteria communities to algae in different geographical locations, are mostly unknown. In this study, metagenomics was used to analyze the microbial diversity and associated algal-polysaccharide-degrading enzymes on the surface of red algae among three remote regions. There were significant differences in the macroalgae-associated bacteria community composition and diversity among the different regions. At the phylum level, Proteobacteria, Bacteroidetes, and Actinobacteria had a significantly high relative abundance among the regions. From the perspective of species diversity, samples from China had the highest macroalgae-associated bacteria diversity, followed by those from Antarctica and Indonesia. In addition, in the functional prediction of the bacterial community, genes associated with amino acid metabolism, carbohydrate metabolism, energy metabolism, metabolism of cofactors and vitamins, and membrane transport had a high relative abundance. Canonical correspondence analysis and redundancy analysis of environmental factors showed that, without considering algae species and composition, pH and temperature were the main environmental factors affecting bacterial community structure. Furthermore, there were significant differences in algal-polysaccharide-degrading enzymes among the regions. Samples from China and Antarctica had high abundances of algal-polysaccharide-degrading enzymes, while those from Indonesia had extremely low abundances. The environmental differences between these three regions may impose a strong geographic differentiation regarding the biodiversity of algal microbiomes and their expressed enzyme genes. This work expands our knowledge of algal microbial ecology, and contributes to an in-depth study of their metabolic characteristics, ecological functions, and applications.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Dewi Seswita-Zilda
- Research Center for Deep Sea, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya, Pademangan, Jakarta 14430, Indonesia
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
6
|
Amores-Arrocha H, Asamoah-Asare AKB, Opio J, Martin A, Cuthbertson L, Bradford HR, Avila-Jimenez ML, Pearce DA. Analysis of Bacterial Communities around the Adventdalen Landfill Site in Svalbard. Microorganisms 2023; 11:microorganisms11041093. [PMID: 37110516 PMCID: PMC10146328 DOI: 10.3390/microorganisms11041093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Ecosystems are often resilient enough to fully recover following a natural disturbance, or to transform into a new equilibrium favourable to the surrounding flora and fauna. However, at a local level, whether this transformation will be beneficial or not depends strongly on the level of disturbance and the available mechanisms for recovery. The Arctic, however, provides a potentially extreme environment for microbial growth and this is reflected in the microbial biodiversity, the in-situ growth rates, the biogeochemical cycling and its sensitivity to environmental change. In this study, we evaluated the current microbial biodiversity and environmental conditions around the landfill site in Adventdalen, Svalbard to identify differences across bacterial communities that might promote or accelerate naturally occurring environmental recovery. Landfill sites can induce changes in the local environment through the input of exogenous chemicals (both organic and inorganic) and microorganisms. Leachate can flow with run-off from the primary location of the landfill site due to rain, snow or ice melt and spread material into soils surrounding the site. In this study we found a strong effect of the landfill site on the bacterial diversity in the local landscape. Intervention is highly desirable to enhance the environment and improve the restoration by subtly altering the conditions at the site (such as the pH or drainage courses) and by encouraging specific groups of naturally occurring indigenous microorganisms to bioremediate the site.
Collapse
Affiliation(s)
- Hermi Amores-Arrocha
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| | - Alex K B Asamoah-Asare
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| | - Joyce Opio
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| | - Alex Martin
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| | - Lewis Cuthbertson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| | - Hannah R Bradford
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| | | | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, UK
| |
Collapse
|
7
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
8
|
Yu X, Gao X, Shang L, Wang X, Jiao Y, Zhang XH, Shi X. Spatial and temporal change determined co-occurrence networks stability and community assembly processes of epipelagic seawater microbial community in the Nordic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160321. [PMID: 36414066 DOI: 10.1016/j.scitotenv.2022.160321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The Nordic Sea has a vital impact on the global climate change, occupies a significant status in the physical oceanography research, on account of its intersection of complex ocean currents. To explore the influence of seasonal and spatial heterogeneity in its epipelagic seawater on the microbial community structure, a total of 54 seawater samples from 18 stations and 3 water layers (0 m, 50 m, 100 m) were collected in the summer of 2017 and the autumn of 2018 from the Norwegian Sea, the Greenland Sea and the vicinity of Jan Mayen Island in the Nordic Sea. Alpha- and Beta- diversity analysis showed that significant differences were found between characteristic bacterial groups in detached or mixed currents of corresponding seasons, as endemic OTUs with seasonal and ocean current characteristics which revealed the existence of spatiotemporal patterns of microbial communities in the Nordic Sea. Moreover, co-occurrence networks were conducted to show different degree of complexity and stability of microbial community response to spatiotemporal dynamic changes. Furthermore, the flow and collision between ocean currents do have an impact on the community assembly processes by affecting the migration and dispersal of microbial communities. This study reflects the response of microbial communities to the spatiotemporal dynamics and reveals the microbial community assembly mechanisms under complex hydrological condition represented in the Nordic Sea.
Collapse
Affiliation(s)
- Xiaowen Yu
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xueyu Gao
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Li Shang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoyu Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Physical Oceanography Laboratory, Ocean University of China, Qingdao 266071, PR China
| | - Yutian Jiao
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Physical Oceanography Laboratory, Ocean University of China, Qingdao 266071, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiaochong Shi
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
9
|
Nawaz S, Rafiq M, Pepper IL, Betancourt WQ, Shah AA, Hasan F. Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range, Pakistan. World J Microbiol Biotechnol 2023; 39:94. [PMID: 36754876 DOI: 10.1007/s11274-023-03532-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
Natural pristine environments including cold habitats are thought to be the potent reservoirs of antibiotic-resistant genes and have been recurrently reported in polar glaciers' native bacteria, nevertheless, their abundance among the non-polar glaciers' inhabitant bacteria is mostly uncharted. Herein we evaluated antibiotic resistance profile, abundance of antibiotic-resistant genes plus class 1, 2, and 3 integron integrases in 65 culturable bacterial isolates retrieved from a non-polar glacier. The 16S rRNA gene sequencing analysis identified predominantly Gram-negative 43 (66.15%) and Gram-positive 22 (33.84%) isolates. Among the Gram-negative bacteria, Gammaproteobacteria were dominant (62.79%), followed by Betaproteobacteria (18.60%) and Alphaproteobacteria (9.30%), whereas Phyla Actinobacteria (50%) and Firmicutes (40.90%) were predominant among Gram-positive. The Kirby Bauer disc diffusion method evaluated significant antibiotic resistance among the isolates. PCR amplification revealed phylum Proteobacteria predominantly carrying 21 disparate antibiotic-resistant genes like; blaAmpC 6 (100%), blaVIM-1, blaSHV and blaDHA 5 (100%) each, blaOXA-1 1 (100%), blaCMY-4 4 (100%), followed by Actinobacteria 14, Firmicutes 13 and Bacteroidetes 11. Tested isolates were negative for blaKPC, qnrA, vanA, ermA, ermB, intl2, and intl3. Predominant Gram-negative isolates had higher MAR index values, compared to Gram-positive. Alignment of protein homology sequences of antibiotic-resistant genes with references revealed amino acid variations in blaNDM-1, blaOXA-1, blaSHV, mecA, aac(6)-Ib3, tetA, tetB, sul2, qnrB, gyrA, and intI1. Promising antibiotic-resistant bacteria, harbored with numerous antibiotic-resistant genes and class 1 integron integrase with some amino acid variations detected, accentuating the mandatory focus to evaluate the intricate transcriptome analysis of glaciated bacteria conferring antibiotic resistance.
Collapse
Affiliation(s)
- Sabir Nawaz
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan.
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W. Calle Agua Nueva, 85745, Tucson, AZ, USA
| | - Walter Q Betancourt
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W. Calle Agua Nueva, 85745, Tucson, AZ, USA
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
10
|
Sarmiento-Vizcaíno A, Martín J, Ortiz-López FJ, Reyes F, García LA, Blanco G. Natural products, including a new caboxamycin, from Streptomyces and other Actinobacteria isolated in Spain from storm clouds transported by Northern winds of Arctic origin. Front Chem 2022; 10:948795. [PMID: 36405319 PMCID: PMC9669575 DOI: 10.3389/fchem.2022.948795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 01/23/2025] Open
Abstract
Actinobacteria, mostly Streptomyces species, are the main source of natural products essential in medicine. While the majority of producer microorganisms of secondary metabolite are reported from terrestrial or marine environments, there are limited reports of their isolation from atmospheric precipitations. Clouds are considered as atmospheric oases for microorganisms and there is a recent paradigm shift whereby atmospheric-derived Actinobacteria emerge as an alternative source for drug discovery. In this context, we studied a total of 18 bioactive Actinobacteria strains, isolated by sampling nine precipitation events with prevailing Northern winds in the Cantabrian Sea coast, Northern Spain. Backward trajectories meteorological analyses indicate that air masses were originated mostly in the Arctic Ocean, and their trajectory to downwind areas involved the Atlantic Ocean and also terrestrial sources from continental Europe, and in some events from Canada, Greenland, Mauritania and Canary Islands. Taxonomic identification of the isolates, by 16S rRNA gene sequencing and phylogenetic analyses, revealed that they are members of three Actinobacteria genera. Fifteen of the isolates are Streptomyces species, thus increasing the number of bioactive species of this genus in the atmosphere to a 6.8% of the total currently validated species. In addition, two of the strains belong to the genus Micromonospora and one to genus Nocardiopsis. These findings reinforce a previous atmospheric dispersal model, extended herein to the genus Micromonospora. Production of bioactive secondary metabolites was screened in ethyl acetate extracts of the strains by LC-UV-MS and a total of 94 secondary metabolites were detected after LC/MS dereplication. Comparative analyses with natural products databases allowed the identification of 69 structurally diverse natural products with contrasted biological activities, mostly as antibiotics and antitumor agents, but also anti-inflammatory, antiviral, antiparasitic, immunosuppressant and neuroprotective among others. The molecular formulae of the 25 remaining compounds were determined by HRMS. None of these molecules had been previously reported in natural product databases indicating potentially novel metabolites. As a proof of concept, a new metabolite caboxamycin B (1) was isolated from the culture broth of Streptomyces sp. A-177 and its structure was determined by various spectrometric methods. To the best of our knowledge, this is the first novel natural product obtained from an atmospheric Streptomyces, thus pointing out precipitations as an innovative source for discovering new pharmaceutical natural products.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional Área de Microbiología Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | | | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A. García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente Área de Ingeniería Química Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional Área de Microbiología Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Zakharova Y, Bashenkhaeva M, Galachyants Y, Petrova D, Tomberg I, Marchenkov A, Kopyrina L, Likhoshway Y. Variability of Microbial Communities in Two Long-Term Ice-Covered Freshwater Lakes in the Subarctic Region of Yakutia, Russia. MICROBIAL ECOLOGY 2022; 84:958-973. [PMID: 34741646 DOI: 10.1007/s00248-021-01912-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Although under-ice microbial communities are subject to a cold environment, low concentrations of nutrients, and a lack of light, they nevertheless take an active part in biogeochemical cycles. However, we still lack an understanding of how high their diversity is and how these communities are distributed during the long-term ice-cover period. Here, we assessed for the first time the composition and distribution of microbial communities during the ice-cover period in two subarctic lakes (Labynkyr and Vorota) located in the area of the lowest temperature in the Northern Hemisphere. The diversity distribution and abundance of main bacterial taxa as well as the composition of microalgae varied by time and habitat. The 16S rRNA gene sequencing method revealed, in general, a high diversity of bacterial communities where Proteobacteria (~ 45%) and Actinobacteria (~ 21%) prevailed. There were significant differences between the communities of the lakes: Chthoniobacteraceae, Moraxellaceae, and Pirellulaceae were abundant in Lake Labynkyr, while Cyanobiaceae, Oligoflexales, Ilumatobacteraceae, and Methylacidiphilaceae were more abundant in Lake Vorota. The most abundant families were evenly distributed in April, May, and June their contribution was different in different habitats. In April, Moraxellaceae and Ilumatobacteraceae were the most abundant in the water column, while Sphingomonadaceae was abundant both in water column and on the ice bottom. In May, the abundance of Comamonadaceae increased and reached the maximum in June, while Cyanobiaceae, Oxalobacteraceae, and Pirellulaceae followed. We found a correlation of the structure of bacterial communities with snow thickness, pH, Nmin concentration, and conductivity. We isolated psychrophilic heterotrophic bacteria both from dominating and minor taxa of the communities studied. This allowed for specifying their ecological function in the under-ice communities. These findings will advance our knowledge of the under-ice microbial life.
Collapse
Affiliation(s)
- Yulia Zakharova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Maria Bashenkhaeva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia.
| | - Yuri Galachyants
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Darya Petrova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Irina Tomberg
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Artyom Marchenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Liubov Kopyrina
- Institute for Biological Problems of Cryolithozone, Siberian Branch of the Russian Academy of Sciences, 41 Lenin Ave, Yakutsk, 677980, Russia
| | - Yelena Likhoshway
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| |
Collapse
|
12
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
13
|
Malard LA, Pearce DA. Bacterial Colonisation: From Airborne Dispersal to Integration Within the Soil Community. Front Microbiol 2022; 13:782789. [PMID: 35615521 PMCID: PMC9125085 DOI: 10.3389/fmicb.2022.782789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
The deposition of airborne microorganisms into new ecosystems is the first stage of colonisation. However, how and under what circumstances deposited microorganisms might successfully colonise a new environment is still unclear. Using the Arctic snowpack as a model system, we investigated the colonisation potential of snow-derived bacteria deposited onto Arctic soils during and after snowmelt using laboratory-based microcosm experiments to mimic realistic environmental conditions. We tested different melting rate scenarios to evaluate the influence of increased precipitation as well as the influence of soil pH on the composition of bacterial communities and on the colonisation potential. We observed several candidate colonisations in all experiments; with a higher number of potentially successful colonisations in acidoneutral soils, at the average snowmelt rate measured in the Arctic. While the higher melt rate increased the total number of potentially invading bacteria, it did not promote colonisation (snow ASVs identified in the soil across multiple sampling days and still present on the last day). Instead, most potential colonists were not identified by the end of the experiments. On the other hand, soil pH appeared as a determinant factor impacting invasion and subsequent colonisation. In acidic and alkaline soils, bacterial persistence with time was lower than in acidoneutral soils, as was the number of potentially successful colonisations. This study demonstrated the occurrence of potentially successful colonisations of soil by invading bacteria. It suggests that local soil properties might have a greater influence on the colonisation outcome than increased precipitation or ecosystem disturbance.
Collapse
Affiliation(s)
- Lucie A. Malard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Lucie A. Malard,
| | - David A. Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
- David A. Pearce,
| |
Collapse
|
14
|
Sipes K, Paul R, Fine A, Li P, Liang R, Boike J, Onstott TC, Vishnivetskaya TA, Schaeffer S, Lloyd KG. Permafrost Active Layer Microbes From Ny Ålesund, Svalbard (79°N) Show Autotrophic and Heterotrophic Metabolisms With Diverse Carbon-Degrading Enzymes. Front Microbiol 2022; 12:757812. [PMID: 35185810 PMCID: PMC8851200 DOI: 10.3389/fmicb.2021.757812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The active layer of permafrost in Ny Ålesund, Svalbard (79°N) around the Bayelva River in the Leirhaugen glacier moraine is measured as a small net carbon sink at the brink of becoming a carbon source. In many permafrost-dominating ecosystems, microbes in the active layers have been shown to drive organic matter degradation and greenhouse gas production, creating positive feedback on climate change. However, the microbial metabolisms linking the environmental geochemical processes and the populations that perform them have not been fully characterized. In this paper, we present geochemical, enzymatic, and isotopic data paired with 10 Pseudomonas sp. cultures and metagenomic libraries of two active layer soil cores (BPF1 and BPF2) from Ny Ålesund, Svalbard, (79°N). Relative to BPF1, BPF2 had statistically higher C/N ratios (15 ± 1 for BPF1 vs. 29 ± 10 for BPF2; n = 30, p < 10–5), statistically lower organic carbon (2% ± 0.6% for BPF1 vs. 1.6% ± 0.4% for BPF2, p < 0.02), statistically lower nitrogen (0.1% ± 0.03% for BPF1 vs. 0.07% ± 0.02% for BPF2, p < 10–6). The d13C values for inorganic carbon did not correlate with those of organic carbon in BPF2, suggesting lower heterotrophic respiration. An increase in the δ13C of inorganic carbon with depth either reflects an autotrophic signal or mixing between a heterotrophic source at the surface and a lithotrophic source at depth. Potential enzyme activity of xylosidase and N-acetyl-β-D-glucosaminidase increases twofold at 15°C, relative to 25°C, indicating cold adaptation in the cultures and bulk soil. Potential enzyme activity of leucine aminopeptidase across soils and cultures was two orders of magnitude higher than other tested enzymes, implying that organisms use leucine as a nitrogen and carbon source in this nutrient-limited environment. Besides demonstrating large variability in carbon compositions of permafrost active layer soils only ∼84 m apart, results suggest that the Svalbard active layer microbes are often limited by organic carbon or nitrogen availability and have adaptations to the current environment, and metabolic flexibility to adapt to the warming climate.
Collapse
Affiliation(s)
- Katie Sipes
- Microbiology Department, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Raegan Paul
- Microbiology Department, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Aubrey Fine
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Peibo Li
- Microbiology Department, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Renxing Liang
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Julia Boike
- Alfred Wegener Institute, Potsdam, Germany.,Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sean Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Karen G Lloyd
- Microbiology Department, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
15
|
Burgay F, Barbaro E, Cappelletti D, Turetta C, Gallet JC, Isaksson E, Stenni B, Dreossi G, Scoto F, Barbante C, Spolaor A. First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard). CHEMOSPHERE 2021; 267:129335. [PMID: 33352366 DOI: 10.1016/j.chemosphere.2020.129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Fe(II) is more soluble and bioavailable than Fe(III) species, therefore the investigation of their relative abundance and redox processes is relevant to better assess the supply of bioavailable iron to the ocean and its impact on marine productivity. In this context, we present a discrete chemiluminescence-based method for the determination of Fe(II) in firn matrices. The method was applied on discrete samples from a snow pit collected at Dome C (DC, Antarctica) and on a shallow firn core from the Holtedahlfonna glacier (HDF, Svalbard), providing the first Fe(II) record from both Antarctica and Svalbard. The method showed low detection limits (0.006 ng g-1 for DC and 0.003 ng g-1 for the HDF) and a precision ranging from 3% to 20% RSD. Fe(II) concentrations ranged between the LoD and 0.077 ng g-1 and between the LoD and 0.300 ng g-1 for the Antarctic and Arctic samples, respectively. The Fe(II) contribution with respect to the total dissolved Fe was comparable in both sites accounting, on average, for 5% and 3%, respectively. We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).
Collapse
Affiliation(s)
- François Burgay
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino, 155, Venice, Italy; Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino, 155, Venice, Italy
| | - David Cappelletti
- Università degli Studi di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, Via Elce di Sotto 8, Perugia, Italy
| | - Clara Turetta
- Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy
| | | | | | - Barbara Stenni
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino, 155, Venice, Italy; Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy
| | - Giuliano Dreossi
- Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy
| | - Federico Scoto
- Institute of Atmospheric Sciences and Climate, National Research Council, Lecce, Italy
| | - Carlo Barbante
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino, 155, Venice, Italy; Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, National Research Council, Campus Scientifico, Via Torino, 155, Venice, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino, 155, Venice, Italy
| |
Collapse
|
16
|
Liu Q, Li W, Liu D, Li L, Li J, Lv N, Liu F, Zhu B, Zhou Y, Xin Y, Dong X. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME JOURNAL 2021; 15:1844-1857. [PMID: 33452478 DOI: 10.1038/s41396-020-00891-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023]
Abstract
Bacteria that inhabit glaciers usually produce carotenoids. Here, we report that a group of zeaxanthin-producing glacial Flavobacterium exhibited light-promoted growth. Of the tested 47 strains, 45 showed increased growths but two died under illumination at 50 μmol photon m-2 s-1. Light stimulation occurred mainly in either anoxic or nutrient-poor cultures, while the same levels of light promotion were found for that grown at 14 and 7 °C. Pigment assays identified overrepresentative zeaxanthin but trace retinal in the light promoted 45 strains, while flexirubin was exclusively in the light-lethal two. Genomic analysis revealed the gene cluster for zeaxanthin synthesis in the 45 strains, in which 37 strains also harbored the proteorhodopsin gene prd. Transcriptomic analysis found that light-induced expressions of both the zeaxanthin synthesis and proteorhodopsin genes. Whereas, deletion of the prd gene in one strain did not diminish light promotion, inhibition of zeaxanthin synthesis did. In comparison, no light promotion was determined in a glacier Cryobacterium luteum that produced a non-zeaxanthin-type carotenoid. Therefore, light stimulation on the glacial Flavobacterium is mostly likely related to zeaxanthin, which could provide better photoprotection and sustain membrane integrity for the organisms living in cold environments.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,China General Microorganism Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Wei Li
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuguang Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,China General Microorganism Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yuhua Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,China General Microorganism Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Monaco P, Divino F, Naclerio G, Bucci A. Microbial community analysis with a specific statistical approach after a record breaking snowfall in Southern Italy. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01604-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
Snow and ice ecosystems present unexpectedly high microbial abundance and diversity. Although arctic and alpine snow environments have been intensively investigated from a microbiological point of view, few studies have been conducted in the Apennines. Accordingly, the main purpose of this research was to analyze the microbial communities of the snow collected in two different locations of Capracotta municipality (Southern Italy) after a snowfall record occurred on March 2015 (256 cm of snow in less than 24 h).
Methods
Bacterial communities were analyzed by the Next-Generation Sequencing techniques. Furthermore, a specific statistical approach for taxonomic hierarchy data was introduced, both for the assessment of diversity within microbial communities and the comparison between different microbiotas. In general, diversity and similarity indices are more informative when computed at the lowest level of the taxonomic hierarchy, the species level. This is not the case with microbial data, for which the species level is not necessarily the most informative. Indeed, the possibility to detect a large number of unclassified records at every level of the hierarchy (even at the top) is very realistic due to both the partial knowledge about the cultivable fraction of microbial communities and limitations to taxonomic assignment connected to the quality and completeness of the 16S rRNA gene reference databases. Thus, a global approach considering information from the whole taxonomic hierarchy was adopted in order to obtain a more consistent assessment of the biodiversity.
Result
The main phyla retrieved in the investigated snow samples were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Interestingly, DNA from bacteria adapted to thrive at low temperatures, but also from microorganisms normally associated with other habitats, whose presence in the snow could be justified by wind-transport, was found. Biomolecular investigations and statistical data analysis showed relevant differences in terms of biodiversity, composition, and distribution of bacterial species between the studied snow samples.
Conclusion
The relevance of this research lies in the expansion of knowledge about microorganisms associated with cold environments in contexts poorly investigated such as the Italian Apennines, and in the development of a global statistical approach for the assessment of biological diversity and similarity of microbial communities as an additional tool to be usefully combined with the barcoding methods.
Collapse
|
18
|
Zhu C, Miller M, Lusskin N, Bergk Pinto B, Maccario L, Häggblom M, Vogel T, Larose C, Bromberg Y. Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. Microbiologyopen 2020; 9:e1100. [PMID: 32762019 PMCID: PMC7520998 DOI: 10.1002/mbo3.1100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Microbes active in extreme cold are not as well explored as those of other extreme environments. Studies have revealed a substantial microbial diversity and identified cold-specific microbiome molecular functions. We analyzed the metagenomes and metatranscriptomes of 20 snow samples collected in early and late spring in Svalbard, Norway using mi-faser, our read-based computational microbiome function annotation tool. Our results reveal a more diverse microbiome functional capacity and activity in the early- vs. late-spring samples. We also find that functional dissimilarity between the same-sample metagenomes and metatranscriptomes is significantly higher in early than late spring samples. These findings suggest that early spring samples may contain a larger fraction of DNA of dormant (or dead) organisms, while late spring samples reflect a new, metabolically active community. We further show that the abundance of sequencing reads mapping to the fatty acid synthesis-related microbial pathways in late spring metagenomes and metatranscriptomes is significantly correlated with the organic acid levels measured in these samples. Similarly, the organic acid levels correlate with the pathway read abundances of geraniol degradation and inversely correlate with those of styrene degradation, suggesting a possible nutrient change. Our study thus highlights the activity of microbial degradation pathways of complex organic compounds previously unreported at low temperatures.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Maximilian Miller
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Nicholas Lusskin
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Benoît Bergk Pinto
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Lorrie Maccario
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
- Section of MicrobiologyCopenhagen UniversityCopenhagen ØDenmark
| | - Max Häggblom
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Timothy Vogel
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Catherine Larose
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Yana Bromberg
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
- Department of GeneticsHuman Genetics InstituteRutgers UniversityPiscatawayNJUSA
| |
Collapse
|
19
|
Somers DJ, Strock KE, Saros JE. Environmental Controls on Microbial Diversity in Arctic Lakes of West Greenland. MICROBIAL ECOLOGY 2020; 80:60-72. [PMID: 31848649 DOI: 10.1007/s00248-019-01474-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
We assessed the microbial community structure of six arctic lakes in West Greenland and investigated relationships to lake physical and chemical characteristics. Lakes from the ice sheet region exhibited the highest species richness, while inland and plateau lakes had lower observed taxonomical diversity. Lake habitat differentiation during summer stratification appeared to alter within lake microbial community composition in only a subset of lakes, while lake variability across regions was a consistent driver of microbial community composition in these arctic lakes. Principal coordinate analysis revealed differentiation of communities along two axes: each reflecting differences in morphometric (lake surface area), geographic (latitude and distance from the ice sheet), physical lake variables (water clarity), and lakewater chemistry (dissolved organic carbon [DOC], dissolved oxygen [DO], total nitrogen [TN], and conductivity). Understanding these relationships between environmental variables and microbial communities is especially important as heterotrophic microorganisms are key to organic matter decomposition, nutrient cycling, and carbon flow through nutrient poor aquatic environments in the Arctic.
Collapse
Affiliation(s)
- Dana J Somers
- Biology Department, Dickinson College, Carlisle, PA, USA.
| | - Kristin E Strock
- Environmental Science Department, Dickinson College, Carlisle, PA, USA.
| | - Jasmine E Saros
- Climate Change Institute, School of Biology and Ecology, University of Maine, Orono, ME, USA
| |
Collapse
|
20
|
Wang X, Bai X, Ma L, He C, Jiang H, Sheng L, Luo W. Snow depths' impact on soil microbial activities and carbon dioxide fluxes from a temperate wetland in Northeast China. Sci Rep 2020; 10:8709. [PMID: 32457371 PMCID: PMC7250892 DOI: 10.1038/s41598-020-65569-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Snow depth may have a complex influence on carbon cycling in winter. Here we set up a field experiment to investigate how different snow depths (0 cm, 60 cm, 90 cm) influenced carbon dioxide (CO2) in a wetland. The mean ± standard error of CO2 emissions under snow addition treatments (60 cm and 90 cm snow depths) were 0.92 ± 0.16 g·cm−2·s−1 and 0.53 ± 0.16 g·cm−2·s−1, respectively, compared with snow removal treatment (0 cm snow depth), 0.11 ± 0.05 g·cm−2·s−1. In general, snow addition increased CO2 fluxes significantly. As snow depths increased, microbial biomass carbon (MBC) and bacterial diversities increased drastically. More important, the community of bacteria differed under different treatments. Firmicutes, which can resist dehydration and extremely low temperatures, was widely distributed in the snow removal treatment, where it sustained soil biochemical processes. Overall, our study indicates that snow cover counteracts the negative effects on soil microbial activities caused by low temperatures and could play a critical role in winter carbon cycling in wetlands.
Collapse
Affiliation(s)
- Xue Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117.,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117
| | - Xueyuan Bai
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117.,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117
| | - Liang Ma
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117.,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117.,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117.,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117. .,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117.
| | - Wenbo Luo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China, 130117. .,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China, 130117.
| |
Collapse
|
21
|
Gupta V, Singh I, Rasool S, Verma V. Next generation sequencing and microbiome's taxonomical characterization of frozen soil of north western Himalayas of Jammu and Kashmir, India. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Mogrovejo DC, Perini L, Gostinčar C, Sepčić K, Turk M, Ambrožič-Avguštin J, Brill FHH, Gunde-Cimerman N. Prevalence of Antimicrobial Resistance and Hemolytic Phenotypes in Culturable Arctic Bacteria. Front Microbiol 2020; 11:570. [PMID: 32318045 PMCID: PMC7147505 DOI: 10.3389/fmicb.2020.00570] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Many Arctic biomes, which are populated with abundant and diverse microbial life, are under threat: climate change and warming temperatures have raised concerns about diversity loss and possible emergence of pathogenic microorganisms. At present, there is little information on the occurrence of Arctic virulence-associated phenotypes. In this study we worked with 118 strains of bacteria (from 10 sampling sites in the Arctic region, located in Greenland and the Svalbard Archipelago) isolated using R2A medium. These strains belong to 4 phyla and represent 36 different bacterial genera. Phenotypic resistance to 8 clinically important antimicrobials (ampicillin, chloramphenicol, ciprofloxacin, cefotaxime, erythromycin, imipenem, kanamycin, and tetracycline) and thermotolerance range were determined. In addition, a screening of all isolates on blood agar media and erythrocytes suspension of bovine and sheep erythrocytes for virulence-linked hemolytic activity was performed. Although antimicrobial resistance profiles varied among the isolates, they were consistent within bacterial families and genera. Interestingly, a high number of isolates (83/104) were resistant to the tested concentration of imipenem (4 mg/L). In addition, one third of the isolates showed hemolytic activity on blood agar, however, in only 5% of the isolates hemolytic activity was also observed in the cell extracts when added to erythrocyte suspensions for 60 min. The observed microbial phenotypes contribute to our understanding of the presence of virulence-associated factors in the Arctic environments, while highlighting the potential risks associated with changes in the polar areas in the light of climate change.
Collapse
Affiliation(s)
- Diana C. Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, Qingdao, China
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Florian H. H. Brill
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Perini L, Gostinčar C, Gunde-Cimerman N. Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 2019; 9:20230. [PMID: 31882659 PMCID: PMC6934841 DOI: 10.1038/s41598-019-56290-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
The composition of fungal and bacterial communities in three polythermal glaciers and associated aquatic environments in Kongsfjorden, Svalbard was analysed using a combination of cultivation and amplicon sequencing. 109 fungal strains belonging to 30 mostly basidiomycetous species were isolated from glacial samples with counts up to 103 CFU/100 ml. Glaciozyma-related taxon and Phenoliferia psychrophenolica were the dominant species. Unexpectedly, amplicon sequencing uncovered sequences of Chytridiomycota in all samples and Rozellomycota in sea water, lake water, and tap water. Sequences of Malassezia restricta and of the extremely halotolerant Hortaea werneckii were also found in subglacial habitats for the first time. Overall, the fungal communities within a glacier and among glaciers were diverse and spatially heterogenous. Contrary to this, there was a large overlap between the bacterial communities of different glaciers, with Flavobacterium sp. being the most frequently isolated. In amplicon sequencing Actinobacteria and Proteobacteria sequences were the most abundant.
Collapse
Affiliation(s)
- L Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555, China
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
25
|
Mainelis G. Bioaerosol Sampling: Classical Approaches, Advances, and Perspectives. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 54:496-519. [PMID: 35923417 PMCID: PMC9344602 DOI: 10.1080/02786826.2019.1671950] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/15/2023]
Abstract
Bioaerosol sampling is an essential and integral part of any bioaerosol investigation. Since bioaerosols are very diverse in terms of their sizes, species, biological properties, and requirements for their detection and quantification, bioaerosol sampling is an active, yet challenging research area. This paper was inspired by the discussions during the 2018 International Aerosol Conference (IAC) (St. Louis, MO) regarding the need to summarize the current state of the art in bioaerosol research, including bioaerosol sampling, and the need to develop a more standardized set of guidelines for protocols used in bioaerosol research. The manuscript is a combination of literature review and perspectives: it discusses the main bioaerosol sampling techniques and then overviews the latest technical developments in each area; the overview is followed by the discussion of the emerging trends and developments in the field, including personal sampling, application of passive samplers, and advances toward improving bioaerosol detection limits as well as the emerging challenges such as collection of viruses and collection of unbiased samples for bioaerosol sequencing. The paper also discusses some of the practical aspects of bioaerosol sampling with particular focus on sampling aspects that could lead to bioaerosol determination bias. The manuscript concludes by suggesting several goals for bioaerosol sampling and development community to work towards and describes some of the grand bioaerosol challenges discussed at the IAC 2018.
Collapse
Affiliation(s)
- Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
26
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
27
|
Domine F. Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? Microorganisms 2019; 7:microorganisms7080260. [PMID: 31416183 PMCID: PMC6723259 DOI: 10.3390/microorganisms7080260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022] Open
Abstract
Since 1999, atmospheric and snow chemists have shown that snow is a very active photochemical reactor that releases reactive gaseous species to the atmosphere including nitrogen oxides, hydrocarbons, aldehydes, halocarbons, carboxylic acids and mercury. Snow photochemistry therefore affects the formation of ozone, a potent greenhouse gas, and of aerosols, which affect the radiative budget of the planet and, therefore, its climate. In parallel, microbiologists have investigated microbes in snow, identified and quantified species, and sometimes discussed their nutrient supplies and metabolism, implicitly acknowledging that microbes could modify snow chemical composition. However, it is only in the past 10 years that a small number of studies have revealed that microbial activity in cold snow (< 0 °C, in the absence of significant amounts of liquid water) could lead to the release of nitrogen oxides, halocarbons, and mercury into the atmosphere. I argue here that microbes may have a significant effect on snow and atmospheric composition, especially during the polar night when photochemistry is shut off. Collaborative studies between microbiologists and snow and atmospheric chemists are needed to investigate this little-explored field.
Collapse
Affiliation(s)
- Florent Domine
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), Québec, QC G1V 0A6, Canada.
- Centre d'Études Nordiques (CEN), Department of Chemistry and Department of Geography, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
28
|
Benefits and Drawbacks of Harboring Plasmid pP32BP2, Identified in Arctic Psychrophilic Bacterium Psychrobacter sp. DAB_AL32B. Int J Mol Sci 2019; 20:ijms20082015. [PMID: 31022896 PMCID: PMC6514802 DOI: 10.3390/ijms20082015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022] Open
Abstract
Psychrobacter sp. DAB_AL32B, originating from Spitsbergen island (Arctic), carries the large plasmid pP32BP2 (54,438 bp). Analysis of the pP32BP2 nucleotide sequence revealed the presence of three predicted phenotypic modules that comprise nearly 30% of the plasmid genome. These modules appear to be involved in fimbriae synthesis via the chaperone-usher pathway (FIM module) and the aerobic and anaerobic metabolism of carnitine (CAR and CAI modules, respectively). The FIM module was found to be functional in diverse hosts since it facilitated the attachment of bacterial cells to abiotic surfaces, enhancing biofilm formation. The CAI module did not show measurable activity in any of the tested strains. Interestingly, the CAR module enabled the enzymatic breakdown of carnitine, but this led to the formation of the toxic by-product trimethylamine, which inhibited bacterial growth. Thus, on the one hand, pP32BP2 can enhance biofilm formation, a highly advantageous feature in cold environments, while on the other, it may prevent bacterial growth under certain environmental conditions. The detrimental effect of harboring pP32BP2 (and its CAR module) seems to be conditional, since this replicon may also confer the ability to use carnitine as an alternative carbon source, although a pathway to utilize trimethylamine is most probably necessary to make this beneficial. Therefore, the phenotype determined by this CAR-containing plasmid depends on the metabolic background of the host strain.
Collapse
|
29
|
Perini L, Gostinčar C, Anesio AM, Williamson C, Tranter M, Gunde-Cimerman N. Darkening of the Greenland Ice Sheet: Fungal Abundance and Diversity Are Associated With Algal Bloom. Front Microbiol 2019; 10:557. [PMID: 30949152 PMCID: PMC6437116 DOI: 10.3389/fmicb.2019.00557] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023] Open
Abstract
Recent studies have highlighted the importance of ice-algal blooms in driving darkening and therefore surface melt of the Greenland Ice Sheet (GrIS). However, the contribution of fungal and bacterial communities to this microbially driven albedo reduction remains unconstrained. To address this significant knowledge gap, fungi were isolated from key GrIS surface habitats (surface ice containing varying abundance of ice algae, supraglacial water, cryoconite holes, and snow), and a combination of cultivation and sequencing methods utilized to characterize the algal-associated fungal and bacterial diversity and abundance. Six hundred and ninety-seven taxa of fungi were obtained by amplicon sequencing and more than 200 fungal cultures belonging to 46 different species were isolated through cultivation approaches. Basidiomycota dominated in surface ice and water samples, and Ascomycota in snow samples. Amplicon sequencing revealed that bacteria were characterized by a higher diversity (883 taxa detected). Results from cultivation as well as ergosterol analyses suggested that surface ice dominated by ice algae and cryoconite holes supported the highest fungal biomass (104-105 CFU/100 ml) and that many fungal taxa recognized as endophytes and plant pathogens were associated with dark ice characterized by a high abundance of ice algae. This paper significantly advances this field of research by investigating for the first time the fungal abundance and diversity associated with algal blooms causing the darkening of the GrIS. There is a strong association between the abundance and diversity of fungal species and the blooming of algae on the surface ice of the Greenland Ice Sheet.
Collapse
Affiliation(s)
- Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Alexandre Magno Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Christopher Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Honeyman AS, Day ML, Spear JR. Regional fresh snowfall microbiology and chemistry are driven by geography in storm-tracked events, Colorado, USA. PeerJ 2018; 6:e5961. [PMID: 30498637 PMCID: PMC6252068 DOI: 10.7717/peerj.5961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023] Open
Abstract
Snowfall is a global phenomenon highly integrated with hydrology and ecology. Forays into studying bioaerosols and their dependence on aeolian movement are largely constrained to either precipitation-independent analyses or in silico models. Though snowpack and glacial microbiological studies have been conducted, little is known about the biological component of meteoric snow. Through culture-independent phylogenetic and geochemical analyses, we show that the geographical location at which snow precipitates determines snowfall’s geochemical and microbiological composition. Storm-tracking, furthermore, can be used as a valuable environmental indicator to trace down what factors are influencing bioaerosols. We estimate annual aeolian snowfall deposits of up to ∼10 kg of bacterial/archaeal biomass per hectare along our study area of the eastern Front Range in Colorado. The dominant kinds of microbiota captured in an analysis of seven snow events at two different locations, one urban, one rural, across the winter of 2016/2017 included phyla Proteobacteria, Bacteroidetes, Firmicutes, and Acidobacteria, though a multitude of different kinds of organisms were found in both. Taxonomically, Bacteroidetes were more abundant in Golden (urban plain) snow while Proteobacteria were more common in Sunshine (rural mountain) samples. Chemically, Golden snowfall was positively correlated with some metals and anions. The work also hints at better informing the “everything is everywhere” hypotheses of the microbial world and that atmospheric transport of microbiota is not only common, but is capable of disseminating vast amounts of microbiota of different physiologies and genetics that then affect ecosystems globally. Snowfall, we conclude, is a significant repository of microbiological material with strong implications for both ecosystem genetic flux and general bio-aerosol theory.
Collapse
Affiliation(s)
| | - Maria L Day
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
31
|
Sanyal A, Antony R, Samui G, Thamban M. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 2018; 208:32-42. [PMID: 29551210 DOI: 10.1016/j.micres.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 02/03/2023]
Abstract
Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica, and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13-60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes. Biodegradation tests of organic compounds such as lactate, acetate, formate, propionate and oxalate that are present in cryoconite hole water show that microbes have good potential to metabolize the compounds tested. Substrate utilization tests on Biolog Ecoplate show that microbial communities in the Himalayan samples are able to oxidize a diverse array of organic substrates including carbohydrates, carboxylic acids, amino acids, amines/amides and polymers, while Antarctic communities generally utilized complex polymers. In addition, as determined by the extracellular enzyme activities, majority of the microbes (82%, total of 355) isolated in this study (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Basidiomycota) had ability to degrade a variety of compounds such as proteins, lipids, carbohydrates, cellulose and lignin that are documented to be present within cryoconite holes. Thus, microbial communities have good potential to metabolize organic compounds found in the cryoconite hole environment, thereby influencing the water chemistry in these holes. Moreover, microbes exported downstream during melting and flushing of cryoconite holes may participate in carbon cycling processes in recipient ecosystems.
Collapse
Affiliation(s)
- Aritri Sanyal
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| | - Runa Antony
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India.
| | - Gautami Samui
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| | - Meloth Thamban
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| |
Collapse
|
32
|
Willis CE, Kirk JL, St Louis VL, Lehnherr I, Ariya PA, Rangel-Alvarado RB. Sources of Methylmercury to Snowpacks of the Alberta Oil Sands Region: A Study of In Situ Methylation and Particulates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:531-540. [PMID: 29198105 DOI: 10.1021/acs.est.7b04096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Snowpacks in the Alberta Oil Sands Region (AOSR) of Canada contain elevated loadings of methylmercury (MeHg; a neurotoxin that biomagnifies through foodwebs) due to oil sands related activities. At sites ranging from 0 to 134 km from the major AOSR upgrading facilities, we examined sources of MeHg by quantifying potential rates of MeHg production in snowpacks and melted snow using mercury stable isotope tracer experiments, as well as quantifying concentrations of MeHg on particles in snowpacks (pMeHg). At four sites, methylation rate constants were low in snowpacks (km = 0.001-0.004 d-1) and nondetectable in melted snow, except at one site (km = 0.0007 d-1). The ratio of methylation to demethylation varied between 0.3 and 1.5, suggesting that the two processes are in balance and that in situ production is unlikely an important net source of MeHg to AOSR snowpacks. pMeHg concentrations increased linearly with distance from the upgraders (R2 = 0.71, p < 0.0001); however, snowpack total particle and pMeHg loadings decreased exponentially over this same distance (R2 = 0.49, p = 0.0002; R2 = 0.56, p < 0.0001). Thus, at near-field sites, total MeHg loadings in snowpacks were high due to high particle loadings, even though particles originating from industrial activities were not MeHg rich compared to those at remote sites. More research is required to identify the industrial sources of snowpack particles in the AOSR.
Collapse
Affiliation(s)
- Chelsea E Willis
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division , Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Igor Lehnherr
- Department of Geography, University of Toronto Mississauga , Mississauga, Ontario L5L 1C6, Canada
| | | | | |
Collapse
|
33
|
Shen L, Liu Y, Wang N, Jiao N, Xu B, Liu X. Variation with depth of the abundance, diversity and pigmentation of culturable bacteria in a deep ice core from the Yuzhufeng Glacier, Tibetan Plateau. Extremophiles 2017; 22:29-38. [PMID: 29071425 DOI: 10.1007/s00792-017-0973-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
It has been suggested that the cryosphere is a new biome uniquely dominated by microorganisms, although the ecological characteristics of these cold-adapted bacteria are not well understood. We investigated the vertical variation with depth of the proportion of pigmented bacteria recovered from an ice core drilled in the Yuzhufeng Glacier, Tibetan Plateau. A total of 25,449 colonies were obtained from 1250 ice core sections. Colonies grew on only one-third of the inoculated Petri dishes, indicating that although the ice core harbored abundant culturable bacteria, bacteria could not be isolated from every section. Four phyla and 19 genera were obtained; Proteobacteria formed the dominant cluster, followed by Actinobacteria, Bacteroidetes and Firmicutes. The proportion of pigmented bacteria increased with depth from 79 to 95% and yellow-colored colonies predominated throughout the ice core, making up 47% of all the colonies. Pigments including α- and β-carotene, diatoxanthin, peridinin, zea/lutein, butanoyloxy, fucoxanthin and fucoxanthin were detected in representative colonies with α-carotene being the dominant carotenoid. To the best of our knowledge, this is the highest resolution study of culturable bacteria in a deep ice core reported to date.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.,Shanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Xiaobo Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Kathmandu Center for Research and Education, CAS-TU, Beijing, China
| |
Collapse
|
34
|
Kozioł K, Kozak K, Polkowska Ż. Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:158-168. [PMID: 28432906 DOI: 10.1016/j.scitotenv.2017.04.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/20/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Glaciers accumulate organic pollutants delivered by snow. However, our understanding of the exact dynamics of organic pollutants in the snowpack relies primarily on laboratory experiments and mathematical models. To fill the gap related to the detailed field data, we have conducted observations of melting snow profiles in two locations and three different stages of melting on one High Arctic glacier, as well as in superimposed ice. We monitored the chemical concentrations of formaldehyde, phenols, short-chain carboxylic acids, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and snow water equivalents to derive chemical loads. The obtained organic contaminant redistribution patterns are compared to the meltwater removal model by Meyer and Wania (2011), in order to link the behaviour of chemicals to their hydrophilic or hydrophobic properties. Both the later snowpits and the superimposed ice layer were generally more abundant in particulate organics and hydrophobic compounds, despite the initial prevalence of hydrophilic organic chemicals. The chemical species with high water solubility also showed less predictable elution patterns, due to their chemical reactivity and possible photochemical reactions in the snowpack. Finally, ice layers in the snowpack showed very different chemical characteristics to the underlying superimposed ice, so one cannot be used as a chemical proxy for another. In order to interpret the ice core records correctly, the temporal changes in concentration of different pollutant types should be considered, as glaciers may preferentially accumulate hydrophobic organics that tarry in the snow cover.
Collapse
Affiliation(s)
- Krystyna Kozioł
- Department of Analytical Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Katarzyna Kozak
- Department of Analytical Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
35
|
Weiland-Bräuer N, Fischer MA, Schramm KW, Schmitz RA. Polychlorinated Biphenyl (PCB)-Degrading Potential of Microbes Present in a Cryoconite of Jamtalferner Glacier. Front Microbiol 2017; 8:1105. [PMID: 28663747 PMCID: PMC5471330 DOI: 10.3389/fmicb.2017.01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Aiming to comprehensively survey the potential pollution of an alpine cryoconite (Jamtalferner glacier, Austria), and its bacterial community structure along with its biodegrading potential, first chemical analyses of persistent organic pollutants, explicitly polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) as well as polycyclic aromatic hydrocarbons (PAHs), revealed a significant contamination. In total, 18 PCB congeners were detected by high resolution gas chromatography/mass spectrometry with a mean concentration of 0.8 ng/g dry weight; 16 PAHs with an average concentration of 1,400 ng/g; and 26 out of 29 OCPs with a mean concentration of 2.4 ng/g. Second, the microbial composition was studied using 16S amplicon sequencing. The analysis revealed high abundances of Proteobacteria (66%), the majority representing α-Proteobacteria (87%); as well as Cyanobacteria (32%), however high diversity was due to 11 low abundant phyla comprising 75 genera. Biodegrading potential of cryoconite bacteria was further analyzed using enrichment cultures (microcosms) with PCB mixture Aroclor 1242. 16S rDNA analysis taxonomically classified 37 different biofilm-forming and PCB-degrading bacteria, represented by Pseudomonas, Shigella, Subtercola, Chitinophaga, and Janthinobacterium species. Overall, the combination of culture-dependent and culture-independent methods identified degrading bacteria that can be potential candidates to develop novel bioremediation strategies.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Martin A. Fischer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Karl-Werner Schramm
- Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München GmbHNeuherberg, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| |
Collapse
|
36
|
Cuthbertson L, Amores-Arrocha H, Malard LA, Els N, Sattler B, Pearce DA. Characterisation of Arctic Bacterial Communities in the Air above Svalbard. BIOLOGY 2017; 6:biology6020029. [PMID: 28481257 PMCID: PMC5485476 DOI: 10.3390/biology6020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
Atmospheric dispersal of bacteria is increasingly acknowledged as an important factor influencing bacterial community biodiversity, biogeography and bacteria–human interactions, including those linked to human health. However, knowledge about patterns in microbial aerobiology is still relatively scarce, and this can be attributed, in part, to a lack of consensus on appropriate sampling and analytical methodology. In this study, three different methods were used to investigate aerial biodiversity over Svalbard: impaction, membrane filtration and drop plates. Sites around Svalbard were selected due to their relatively remote location, low human population, geographical location with respect to air movement and the tradition and history of scientific investigation on the archipelago, ensuring the presence of existing research infrastructure. The aerial bacterial biodiversity found was similar to that described in other aerobiological studies from both polar and non-polar environments, with Proteobacteria, Actinobacteria, and Firmicutes being the predominant groups. Twelve different phyla were detected in the air collected above Svalbard, although the diversity was considerably lower than in urban environments elsewhere. However, only 58 of 196 bacterial genera detected were consistently present, suggesting potentially higher levels of heterogeneity. Viable bacteria were present at all sampling locations, showing that living bacteria are ubiquitous in the air around Svalbard. Sampling location influenced the results obtained, as did sampling method. Specifically, impaction with a Sartorius MD8 produced a significantly higher number of viable colony forming units (CFUs) than drop plates alone.
Collapse
Affiliation(s)
- Lewis Cuthbertson
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Herminia Amores-Arrocha
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Lucie A Malard
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Nora Els
- Institute of Ecology, Austrian Polar Research Institute, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - Birgit Sattler
- Institute of Ecology, Austrian Polar Research Institute, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
37
|
Evidence for a missing source of efficient ice nuclei. Sci Rep 2017; 7:39673. [PMID: 28045124 PMCID: PMC5206747 DOI: 10.1038/srep39673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022] Open
Abstract
It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years’ worth of unprocessed rain samples were greater than −10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7–54% and 2–89%, respectively, of the IN activity at temperatures warmer than −10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as
revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification.
Collapse
|
38
|
Yang GL, Hou SG, Le Baoge R, Li ZG, Xu H, Liu YP, Du WT, Liu YQ. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains. Sci Rep 2016; 6:36548. [PMID: 27811967 PMCID: PMC5109912 DOI: 10.1038/srep36548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.
Collapse
Affiliation(s)
- Guang Li Yang
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Gui Hou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Ri Le Baoge
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhi Guo Li
- Department of Environment and Planning, Shangqiu Normal University, Shangqiu 476000, China
| | - Hao Xu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Ya Ping Liu
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wen Tao Du
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Qin Liu
- Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 2016; 192:192-202. [PMID: 27664737 DOI: 10.1016/j.micres.2016.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
Snow ecosystems represent a large part of the Earth's biosphere and harbour diverse microbial communities. Despite our increased knowledge of snow microbial communities, the question remains as to their functional potential, particularly with respect to their role in adapting to and modifying the specific snow environment. In this work, we investigated the diversity and functional capabilities of microorganisms from 3 regions of East Antarctica, with respect to compounds present in snow and tested whether their functional signature reflected the snow environment. A diverse assemblage of bacteria (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Deinococcus-Thermus, Planctomycetes, Verrucomicrobia), archaea (Euryarchaeota), and eukarya (Basidiomycota, Ascomycota, Cryptomycota and Rhizaria) were detected through culture-dependent and -independent methods. Although microbial communities observed in the three snow samples were distinctly different, all isolates tested produced one or more of the following enzymes: lipase, protease, amylase, β-galactosidase, cellulase, and/or lignin modifying enzyme. This indicates that the snow pack microbes have the capacity to degrade organic compounds found in Antarctic snow (proteins, lipids, carbohydrates, lignin), thus highlighting their potential to be involved in snow chemistry.
Collapse
|
40
|
Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. THE ISME JOURNAL 2016; 10:1625-41. [PMID: 26771926 PMCID: PMC4918445 DOI: 10.1038/ismej.2015.238] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/09/2015] [Accepted: 11/08/2015] [Indexed: 11/09/2022]
Abstract
Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.
Collapse
Affiliation(s)
- Thomas Rime
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
41
|
Wunderlin T, Ferrari B, Power M. Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. FEMS Microbiol Ecol 2016; 92:fiw132. [PMID: 27297721 DOI: 10.1093/femsec/fiw132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome.
Collapse
Affiliation(s)
- Tina Wunderlin
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Zurich, Switzerland
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Randwick, Sydney 2052, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia
| |
Collapse
|
42
|
Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow. Front Microbiol 2016; 7:398. [PMID: 27064693 PMCID: PMC4814470 DOI: 10.3389/fmicb.2016.00398] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.
Collapse
Affiliation(s)
- Anna Lopatina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia; Department of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia; Research Complex of "Nanobiotechnology", Saint-Petersburg State Polytechnical UniversitySaint-Petersburg, Russia
| | - Sofia Medvedeva
- Department of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and TechnologySkolkovo, Russia
| | - Sergey Shmakov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology Skolkovo, Russia
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University Moscow, Russia
| | - Vjacheslav Krylenkov
- Department of Botany, Saint-Petersburg State University Saint-Petersburg, Russia
| | - Konstantin Severinov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia; Research Complex of "Nanobiotechnology", Saint-Petersburg State Polytechnical UniversitySaint-Petersburg, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and TechnologySkolkovo, Russia
| |
Collapse
|
43
|
Liu Q, Zhou YG, Xin YH. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing. Syst Appl Microbiol 2015; 38:578-85. [DOI: 10.1016/j.syapm.2015.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
|
44
|
Maccario L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Res Microbiol 2015; 166:782-95. [PMID: 26408452 DOI: 10.1016/j.resmic.2015.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laura Sanguino
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
45
|
Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles 2015; 19:885-97. [PMID: 26104673 PMCID: PMC4546695 DOI: 10.1007/s00792-015-0764-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/26/2015] [Indexed: 11/28/2022]
Abstract
Surface ice and cryoconite holes of two types of polythermal Svalbard Glaciers (Hans Glacier—grounded tidewater glacier and Werenskiold Glacier—land-based valley glacier) were investigated in terms of chemical composition, microbial abundance and diversity. Gathered data served to describe supraglacial habitats and to compare microbe–environment interactions on those different type glaciers. Hans Glacier samples displayed elevated nutrient levels (DOC, nitrogen and seston) compared to Werenskiold Glacier. Adjacent tundra formations, bird nesting sites and marine aerosol were candidates for allochtonic enrichment sources. Microbial numbers were comparable on both glaciers, with surface ice containing cells in the range of 104 mL−1 and cryoconite sediment 108 g−1 dry weight. Denaturating gradient gel electrophoresis band-based clustering revealed differences between glaciers in terms of dominant bacterial taxa structure. Microbial community on Werenskiold Glacier benefited from the snow-released substances. On Hans Glacier, this effect was not as pronounced, affecting mainly the photoautotrophs. Over-fertilization of Hans Glacier surface was proposed as the major factor, desensitizing the microbial community to the snow melt event. Nitrogen emerged as a limiting factor in surface ice habitats, especially to Eukaryotic algae.
Collapse
|
46
|
Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT, Gokul JK, Schostag M, Zarsky JD, Edwards A, Irvine-Fynn TDL, Jacobsen CS. Microbial abundance in surface ice on the Greenland Ice Sheet. Front Microbiol 2015; 6:225. [PMID: 25852678 PMCID: PMC4371753 DOI: 10.3389/fmicb.2015.00225] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/06/2015] [Indexed: 12/03/2022] Open
Abstract
Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS.
Collapse
Affiliation(s)
- Marek Stibal
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Ecology, Charles University in Prague Prague, Czech Republic
| | - Erkin Gözdereliler
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Karen A Cameron
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Jason E Box
- Geological Survey of Denmark and Greenland Copenhagen, Denmark
| | - Ian T Stevens
- Centre for Glaciology, Aberystwyth University Aberystwyth, UK
| | | | - Morten Schostag
- Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Jakub D Zarsky
- Department of Ecology, Charles University in Prague Prague, Czech Republic ; Centre for Polar Ecology, University of South Bohemia České Budějovice, Czech Republic
| | - Arwyn Edwards
- Centre for Glaciology, Aberystwyth University Aberystwyth, UK
| | | | - Carsten S Jacobsen
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
47
|
Musilova M, Tranter M, Bennett SA, Wadham J, Anesio AM. Stable microbial community composition on the Greenland Ice Sheet. Front Microbiol 2015; 6:193. [PMID: 25852658 PMCID: PMC4367435 DOI: 10.3389/fmicb.2015.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/23/2015] [Indexed: 02/01/2023] Open
Abstract
The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered ‘hot spots’ for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria, and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ13C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers.
Collapse
Affiliation(s)
| | - Martyn Tranter
- School of Geographical Sciences, University of Bristol, Bristol UK
| | - Sarah A Bennett
- NERC Isotope Geosciences Laboratory, British Geological Survey Nottingham, UK
| | - Jemma Wadham
- School of Geographical Sciences, University of Bristol, Bristol UK
| | | |
Collapse
|
48
|
Microbial abundance and community structure in a melting alpine snowpack. Extremophiles 2015; 19:631-42. [PMID: 25783662 DOI: 10.1007/s00792-015-0744-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930-2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L(-1), 5-30 μg NH4 (+)-N L(-1)) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.
Collapse
|
49
|
Freimann R, Bürgmann H, Findlay SEG, Robinson CT. Spatio-temporal patterns of major bacterial groups in alpine waters. PLoS One 2014; 9:e113524. [PMID: 25409508 PMCID: PMC4237416 DOI: 10.1371/journal.pone.0113524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.
Collapse
Affiliation(s)
- Remo Freimann
- Institute of Molecular Health Sciences, Professorship of Genetics, ETH Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland and Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
- * E-mail:
| | - Helmut Bürgmann
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Kastanienbaum, Switzerland
| | - Stuart E. G. Findlay
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America
| | - Christopher T. Robinson
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland and Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 2014; 31:95-108. [DOI: 10.1007/s11274-014-1768-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|