1
|
Adawiah A, Meryandini A, Ridwan R, Fidriyanto R, Sarwono KA, Wiryawan KG. The rumen microbiome and metabolome profile of Ongole crossbreed cattle fed probiotics and protected amino acids. Trop Anim Health Prod 2025; 57:148. [PMID: 40164860 DOI: 10.1007/s11250-025-04400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to investigate the microbial population dynamics and metabolite profiles of Ongole crossbreed cattle (OCC) fed a combination of feed additives using metagenomic and metabolomic analyses. A crossover design was employed, involving four 3-year-old fistulated OCC bulls, each receiving four distinct dietary treatments per experimental period, followed by a washout phase with a basal diet. The treatments consisted of a basal diet (G1) as control, and the addition of feed additives as follows: G2: probiotics (Lactiplantibacillus plantarum); G3: premix; G4: G2 + G3 + amino acids lysine and methionine; and G5: G2 + G3 + amino acids protected with tannin. Rumen fluid was collected for the analysis of microbiome dynamics and metabolite profiles. The bacterial communities in diets G1, G2, G3, and G5 exhibited similar compositions, dominated by Bacteroidota, particularly the genus Prevotella. The G5 diet successfully suppressed the population of archaea, notably Methanosarcinales and Methanobacteriales, which are associated with methane production. A total of 28 significant metabolites (VIP > 1) was identified in rumen fluid, including lipid prenols, phenolic compounds, indoles and derivatives, saturated and unsaturated hydrocarbons, fatty acyls, benzene derivatives, and organooxygen compounds. The volatile compounds profile of rumen fluid showed a marked increase in prenol lipid compounds, especially in the G5 diet. Additionally, Methanosarcinales and Methanobacteriales were negatively correlated with prenol lipid levels. The inclusion of probiotics and protected amino acids alters the microbiome community structure and metabolites, positively affecting ruminant productivity.
Collapse
Affiliation(s)
- Adilah Adawiah
- Study Program of Microbiology, Graduate School of IPB University, Bogor, 16680, Indonesia
| | - Anja Meryandini
- Departemen of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia
- Biotechnology Research Centre, IPB University, Bogor, 16680, Indonesia
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia.
| | - Rusli Fidriyanto
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ki Ageng Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Komang Gede Wiryawan
- Departemen of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Biotechnology Research Centre, IPB University, Bogor, 16680, Indonesia
| |
Collapse
|
2
|
Wang H, Meng L, Mi L. Effects of Leymus chinensis hay and alfalfa hay on growth performance, rumen microbiota, and untargeted metabolomics of meat in lambs. Front Vet Sci 2023; 10:1256903. [PMID: 38033638 PMCID: PMC10687458 DOI: 10.3389/fvets.2023.1256903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Objective The objective of this study was to compare the effects of Leymus chinensis hay and alfalfa hay as the roughage on the rumen bacterial and the meat metabolomics in lambs. Methods Fourteen male lambs were randomly assigned to two dietary treatments (one group was fed with concentrate and Leymus chinensis hay; another was fed with concentrate and alfalfa hay) with seven replicates per treatment. The feeding experiment lasted for 60 days. Lambs were slaughtered at the end of the feeding experiment. Growth performance, carcass performance, and weights of various viscera were determined. The longissimus dorsi and rumen contents were collected for untargeted metabolomics and 16S rDNA amplicon sequencing analysis, respectively. Results The lambs fed with alfalfa hay showed a significantly increased in average daily gain, carcass weight, dressing percentage, loin-eye area, and kidney weight. Feeding Leymus chinensis hay and alfalfa hay diets resulted in different meat metabolite deposition and rumen bacterial communities in the lambs. The relative abundance of phyla Fibrobacteres, Bacteroidetes, and Spirochaetes were greater in the Leymus Chinensis hay group, while, the relative abundance of Firmicutes, Proteobacteria, Fusobacteria, and Verrucomicrobia were greater in the alfalfa hay group. Based on untargeted metabolomics, the main altered metabolic pathways included alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, nitrogen metabolism, and tyrosine metabolism. Several bacteria genera including BF31, Alistipes, Faecalibacterium, Eggerthella, and Anaeroplasma were significantly correlated with growth performance and meat metabolites. Conclusion Alfalfa hay improved growth performance and carcass characteristics in lambs. Leymus chinensis hay and alfalfa hay caused different meat metabolite deposition by modifying the rumen bacterial community. These findings will be beneficial to future forage utilization for sheep growth, carcass performance, and meat quality improvement.
Collapse
Affiliation(s)
| | | | - Lan Mi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
DHA-Rich Aurantiochytrium Biomass, a Novel Dietary Supplement, Resists Degradation by Rumen Microbiota without Disrupting Microbial Activity. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We first sought to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA), on rumen fermentation and the resistance of DHA to degradation and biohydrogenation by rumen microbes through ex vivo fermentation experiments. Subsequently, we sought to quantify the diet-derived DHA content of milk and the impact of AURA on microbial composition and metabolism in a pilot feeding trial with rumen-cannulated dairy cows. To achieve our aims, rumen fluid from cannulated cows was used as inoculum, and the effect of AURA inclusion on fermentation ex vivo was examined. At doses corresponding to the amount of AURA recommended for commercial production animals, only ~10% of DHA was degraded or biohydrogenated by rumen microorganisms. The results show that feeding with AURA had no effect on either total bacterial density or short-chain fatty acid production. Real-time quantitative PCR analysis of the rumen fluid samples collected during a seven-week in vivo trial revealed that microbes related to lactic acid metabolism and methanogenesis were significantly suppressed by the AURA-supplemented diet. The DHA concentration in milk increased over 25-fold with the AURA-supplemented diet and dropped by 30–40% within one week of washout. The addition of A. limacinum biomass to dairy cow diets resulted in positive effects on rumen microbial composition with no adverse effect on fermentation activity. AURA-derived DHA was stable, with only modest degradation in the rumen, and was successfully deposited in milk. This is the first study to investigate the effect of supplementing the diet of dairy cows with a protist-based biomass, namely, on important rumen fermentation parameters and on DHA deposition in milk, using a combination of ex vivo and in vivo approaches.
Collapse
|
4
|
Effects of High-Forage Diets Containing Raw Flaxseeds or Soybean on In Vitro Ruminal Fermentation, Gas Emission, and Microbial Profile. Microorganisms 2021; 9:microorganisms9112304. [PMID: 34835430 PMCID: PMC8621816 DOI: 10.3390/microorganisms9112304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Lipid metabolism plays an important role in the energy economy of ruminants. However, its interactions of fat, rumen fermentation, gas emission, and microorganisms are not yet clear. This study evaluated the effect of adding raw oilseeds to high-forage diets on in vitro ruminal fermentation, gas composition, and microbial profile. Three isoenergetic and isoproteic experimental diets were designed and used as fermentation substrate: control treatment (CON group) was the basal diet lacking oilseeds, the other two treatments were the basal diet supplemented by 100 g/kg dry matter (DM) raw whole soybean (S group) and 50 g/kg DM raw flaxseed (F group), respectively. Data showed that the acetate, butyrate, and total VFA concentration of culture fluids in the S group were lower (p < 0.05) than in the F group. There was a tendency to a higher level (p = 0.094) of propionate concentration in the F group compared with the other two groups. The gas production in the F group was higher (p < 0.05) than in the control group. There was a lower abundance of Sutterella (p < 0.05) and a greater abundance of Butyrivibrio (p < 0.05) in both of the two oilseed treatments. Methanobrevibacter (p = 0.078) in the F group was the lowest. Our results suggested that CH4 emission could be inhibited with flaxseed supplementation by propionate production metabolism, biohydrogenation of unsaturated fatty acid (FA), and toxicity to Methanobrevibacter, while regarding soybean seed supplementation, the emission of CH4 was more likely to be reduced through biohydrogenation of unsaturated FA modulated by Butyrivibrio.
Collapse
|
5
|
The Effect of Forage-to-Concentrate Ratio on Schizochytrium spp.-Supplemented Goats: Modifying Rumen Microbiota. Animals (Basel) 2021; 11:ani11092746. [PMID: 34573711 PMCID: PMC8466047 DOI: 10.3390/ani11092746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The in-depth understanding of rumen functions would be the greatest achievement of animal nutritionists. Hence, plenty of feed additives and various nutritional techniques are studied in modifying and understand the rumen habitat. In our study, we investigated the effect of alteration of the forage: concentrate (F:C) ratio in goats supplemented with the microalgae Schizochytrium spp. on rumen microbiota communities and enzymatic activity. Our results suggested that even though specific microbes’ abundance was altered, their corresponding enzymatic potential did not follow the same trend. Nonetheless, principal ruminal functions such as ammonia accumulation, fibrolytic activity, and degradation rate of specific fatty acids were also modified due to dietary intervention. Abstract The inclusion of feed additives and the implementation of various nutritional strategies are studied to modify the rumen microbiome and consequently its function. Nevertheless, rumen enzymatic activity and its intermediate products are not always matched with the microbiome structure. To further elucidate such differences a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20HF n = 11; high forage and 20HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20HF group consumed a diet with a forage:concentrate (F:C) ratio of 60:40 and the 20HG-diet consisted of a F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40HF n = 11; high forage and 40HG n = 11; high grain). By utilizing a next-generation sequencing technology, we monitored that the high microalgae inclusion level and foremost in combination with a high grains diet increased the unmapped bacteria within the rumen. Bacteroidetes and Prevotella brevis were increased in the 40HG -fed goats as observed by using a qPCR platform. Additionally, methanogens and Methanomassiliicoccales were increased in high microalgae-fed goats, while Methanobrevibacter and Methanobacteriales were decreased. Fibrolytic bacteria were decreased in high microalgae-fed goats, while cellulolytic activity was increased. Ammonia was decreased in high grains-fed goats, while docosapentaenoic and docosahexaenoic acids showed a lower degradation rate in the rumen of high forage-fed goats. The alteration of the F:C ratio in goats supplemented with Schizochytrium spp. levels modified both ruminal microbiota and enzymatic activity. However, there was no significant consistency in the relations between them.
Collapse
|
6
|
Thanh LP, Phakachoed N, Suksombat W, Loor JJ, Hang TTT. Partial substitution of fish oil for linseed oil enhances beneficial fatty acids from rumen biohydrogenation but reduces ruminal fermentation and digestibility in growing goats. Transl Anim Sci 2021; 5:txab116. [PMID: 34377951 PMCID: PMC8345834 DOI: 10.1093/tas/txab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022] Open
Abstract
This study was performed to investigate effects of partial replacement of fish oil (FO) for linseed oil (LO) on digestibility, ruminal fermentation and biohydrogenation in growing goats. Experiment 1 was carried out in four growing male goats aged 6 months in a 4 × 4 Latin square design. Goats were fed a basal diet supplemented with 25 g/kg dry matter either LO alone or in combination with tuna FO. Treatments were developed by replacing FO for LO at ratios of 0, 5, 10 and 15 g/kg DM corresponding to FO-0, FO-5, FO-10 and FO-15, respectively. Experiment 2 was carried out in an in vitro incubation system including 12 fermenters with the same four treatments. Each fermenter consisted of 40 mL goat ruminal fluid, 160 mL warm buffer, 2 g mixed substrates, and 50 mg FO-0, FO-5, FO-10 or FO-15. Fish oil inclusion reduced (P < 0.05) digestibility and nitrogen retention in Experiment 1. Increasing doses of FO in the diet induced a strong drop (P < 0.001) in ruminal total volatile fatty acid (VFA) concentration and protozoa population at 3 h post incubation, but did not affect individual VFA proportions. Substitution of FO for LO decreased mean concentrations of C18:0 (P = 0.057), c-9,c-12 C18:2 and C18:3n-3 (P < 0.001), but increased (P < 0.001) C20:5n-3 and C22:6n-3. Feeding FO-10 enhanced formation of ruminal c-9,t-11 conjugated linoleic acid (CLA) concentration compared with FO-0. Overall, combined data suggest that to improve ruminal concentrations of C20:5n-3, C22:6n-3, and c-9,t-11 CLA for deposition in tissues or milk with minimal risk of affecting digestibility and ruminal fermentation, a dietary supplementation of 15 g/kg LO and 10 g/kg FO would be suitable.
Collapse
Affiliation(s)
- Lam Phuoc Thanh
- Department of Animal Sciences, Can Tho University, Ninh Kieu, Can Tho 94000, Viet Nam
| | - Noppharat Phakachoed
- Department of Animal Production Technology, Kalasin University, Mueang, Kalasin 46000, Thailand
| | - Wisitiporn Suksombat
- Technopolis, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinoi at Urbana Champaign, Urbana, IL 61801, USA
| | - Tran Thi Thuy Hang
- Department of Agricultural Technology, Can Tho University, Phung Hiep, Hau Giang 95000, Viet Nam
| |
Collapse
|
7
|
Mavrommatis A, Skliros D, Flemetakis E, Tsiplakou E. Changes in the Rumen Bacteriome Structure and Enzymatic Activities of Goats in Response to Dietary Supplementation with Schizochytrium spp. Microorganisms 2021; 9:microorganisms9071528. [PMID: 34361963 PMCID: PMC8303384 DOI: 10.3390/microorganisms9071528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
With the aim to produce functional dairy products enriched with polyunsaturated fatty acids (PUFA) by using feed supplements, radical changes could occur in the rumen microbiome. This work investigated the alterations of the rumen bacteriome of goats fed with PUFA-rich marine microalgae Schizochytrium spp. For the trial, twenty-four goats were divided into four homogenous clusters (six goats/treatment) according to their fat-corrected (4%) milk yield, body weight, and age; they were individually fed with alfalfa hay and a concentrate (F/C = 50/50). The concentrate of the control group (CON) contained no microalgae, while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 g (ALG60) of Schizochytrium spp./goat. Rumen fluid samples were collected using a stomach tube during the 20th and 40th days of the experiment. The microbiome analysis using a 16S rRNA sequencing platform revealed that Firmicutes were decreased in microalgae-fed goats, while Bacteroidetes showed a tendency to increase in the ALG40 group due to the enhancement of Prevotellaceae. Cellulolytic bacteria, namely Treponema bryantii, Ruminococcus gauvreauii, R. albus, and R. flavefaciens, were decreased in the ALG40 group, resulting in an overall decrease of cellulase activity. In contrast, the amylolytic potential was significantly enhanced due to an upsurge in Ruminobacter amylophilus, Succinivibrio dextrinosolvens, and Fretibacterium fastidiosum populations. In conclusion, supplementing goats’ diets with 20 g Schizochytrium spp. could be considered a sustainable and efficient nutritional strategy to modulate rumen microbiome towards the development of dairy products enriched with bioactive compounds, while higher levels induced substantial shifts in determinant microbes’ populations.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, GR-11855 Athens, Greece;
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, GR-11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, GR-11855 Athens, Greece; (D.S.); (E.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, GR-11855 Athens, Greece;
- Correspondence: ; Tel.: +30-2105294435
| |
Collapse
|
8
|
Changes in the Rumen Bacteriome Structure and Enzymatic Activities of Goats in Response to Dietary Supplementation with Schizochytrium spp. Microorganisms 2021. [PMID: 34361963 DOI: 10.3390/microorganisms9071528/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With the aim to produce functional dairy products enriched with polyunsaturated fatty acids (PUFA) by using feed supplements, radical changes could occur in the rumen microbiome. This work investigated the alterations of the rumen bacteriome of goats fed with PUFA-rich marine microalgae Schizochytrium spp. For the trial, twenty-four goats were divided into four homogenous clusters (six goats/treatment) according to their fat-corrected (4%) milk yield, body weight, and age; they were individually fed with alfalfa hay and a concentrate (F/C = 50/50). The concentrate of the control group (CON) contained no microalgae, while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 g (ALG60) of Schizochytrium spp./goat. Rumen fluid samples were collected using a stomach tube during the 20th and 40th days of the experiment. The microbiome analysis using a 16S rRNA sequencing platform revealed that Firmicutes were decreased in microalgae-fed goats, while Bacteroidetes showed a tendency to increase in the ALG40 group due to the enhancement of Prevotellaceae. Cellulolytic bacteria, namely Treponema bryantii, Ruminococcus gauvreauii, R. albus, and R. flavefaciens, were decreased in the ALG40 group, resulting in an overall decrease of cellulase activity. In contrast, the amylolytic potential was significantly enhanced due to an upsurge in Ruminobacter amylophilus, Succinivibrio dextrinosolvens, and Fretibacterium fastidiosum populations. In conclusion, supplementing goats' diets with 20 g Schizochytrium spp. could be considered a sustainable and efficient nutritional strategy to modulate rumen microbiome towards the development of dairy products enriched with bioactive compounds, while higher levels induced substantial shifts in determinant microbes' populations.
Collapse
|
9
|
Ahmad AA, Zhang JB, Liang Z, Yang C, Kalwar Q, Shah T, Du M, Muhammad I, Zheng J, Yan P, Ding XZ, Long R. Dynamics of rumen bacterial composition of yak ( Bos grunniens) in response to dietary supplements during the cold season. PeerJ 2021; 9:e11520. [PMID: 34178446 PMCID: PMC8216167 DOI: 10.7717/peerj.11520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to explore the rumen bacterial community of yak in response to dietary supplements during the cold season. In addition, the rumen fermentation products were also analyzed. Twenty-one female domestic yaks were randomly divided into three groups i.e., pure grazing (GG) group, grazing plus oats hay supplement (OG) group, and grazing plus concentrate supplement group (CG). Rumen contents were collected after 90 days to assess rumen fermentation parameters and bacterial community. The GC group presented higher concentrations of ammonia nitrogen (P < 0.001), and total volatile fatty acids (TVFA) (P < 0.001), and lower rumen pH (P < 0.001) compared to other experimental groups. The CG group displayed higher proportions of propionate, butyrate, isobutyrate, and isovalerate while lower A/P ratio compared to other experimental groups. Shannon, Chao1, and ACE values were significantly lower in the OG group compared to GG and CG groups. Anosim test showed significant differences in bacterial community structure between groups but the PCA plot was not very informative to see these differences. Bacteroidetes, Proteobacteria, and Firmicutes were the three dominant phyla in all groups. The genera Oscillospira was more abundant in GG and OG groups. Higher relative abundance of Ruminococcus and Clostridium was observed in the GG group, while Ruminobacter, Corynebacterium, and Selenomonas were more abundant in the CG group. These findings will help in improving our understanding of rumen bacteria in yaks in response to changes in diet.
Collapse
Affiliation(s)
- Anum Ali Ahmad
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Bo Zhang
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan, Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qudratullah Kalwar
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tariq Shah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mei Du
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ishaq Muhammad
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xue-Zhi Ding
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Ngu NT, Anh LH, Nhan NTH, Van Hon N, Thiet N, Liang JB, Hung LT, Xuan NH, Chen WL, Lan LTT. Analysis of bacterial community in rumen fluid of cattle supplemented with different protein and energy sources. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Source and composition of feed influence rumen microbial community, which determines efficiency of feed digestion and thus productivity in ruminants. Therefore, changes in the structure, function and diversity of the rumen microbial populations in response to changes in diet provide an understanding in the rumen fermentation process. Aims The present study, consisting of two experiments, was conducted to determine the effects of supplementing different protein and energy sources on the rumen bacterial community in cattle. Methods The dietary treatments of the first experiment, which evaluated the effect of protein sources, were as follows: (i) Hymenachne acutigluma grass, rice straw and rice bran (1.5 kg/head.day; C1), (ii) C1 plus 120 g urea/head.day (C1 + U), (iii) C1 plus 720 g soybean/head.day (C1 + SM), and (iv) C1 plus 720 g of blood and feather meal (in 1:1 ratio)/head.day (C1 + BFM). The treatments in the second experiment were (i) Hymenachne acutigluma grass, rice straw and concentrate (1.5 kg/head.day; C2), (ii) C2 plus 250 g fish oil/head.day (C2 + FO) and (iii) C2 + 250 g soybean oil/head.day (C2 + SO). At the end of the 90-day feeding trial, rumen fluids were extracted for microbial DNA isolation to identify the microbe species by the polymerase chain reaction–denaturing gradient gel electrophoresis method and sequencing of the 16S rRNA region. Key results The sequences of some DNA bands were closely related to the bacteria strains of the Prevotella, Cytophaga, Capnocytophaga, Cyanobacterium, Catonella, Faecalibacterium, Lachnospiraceae, Ruminococcaceae, Propionivibrio, Galbibacter, Moorellaglycerin, Escherichia coli and Klebsiella alba groups, with similarity levels ranging from 73% to 96%. In addition, the Prevotella species was found in both the protein and the energy supplement trials, and irrespective of diet supplements, the Firmicutes and Bacteroidetes were the prominent groups in the rumen. Conclusions Firmicutes and Bacteroidetes are the two dominant groups of rumen microflora, and Bacteroidia and Clostridia classes together with the Prevotella genus are predominant in the rumen irrespective of protein and energy sources. Implications Our findings provided evidence on the effect of diet on the interaction of rumen microbial community and have important implications in establishing optimal diets for cattle.
Collapse
|
11
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
12
|
Effects of Drinking Water Temperature and Flow Rate during Cold Season on Growth Performance, Nutrient Digestibility and Cecum Microflora of Weaned Piglets. Animals (Basel) 2020; 10:ani10061048. [PMID: 32570726 PMCID: PMC7341523 DOI: 10.3390/ani10061048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Water is an essential nutrient pigs need to sustain life and ensure growth. Determining the appropriate drinking water supply parameters during cold weather are critical for the welfare and growth of pigs, especially vulnerable weaned piglets. This study explored different combinations of drinking water temperature (DWT) and flow rate (DWF) for weaned piglets during winter. It measured their growth performance, nutrient digestibility and cecum microbial diversity, aiming to figure out the optimal water supplying conditions for weaned piglets. The results indicated that a combination of DWT of 30 °C and DWF of 300 mL/min decreased diarrhea occurrence. Furthermore, this increased growth performance and nutrient digestibility, accompanied by improvement of the dominant cecum microflora, mainly manifested in a reduced abundance of Proteobacteria and increased abundance of Bacteroidetes. This study enriches our understanding of the connection between water supply, growth performance and cecum microbiota on weaned piglets during the cold season. Abstract Although water is one of the most important nutrients and is essential for various physiological processes within the body, it does not receive adequate consideration when ensuring optimal nutrition and growth performance in piglets. This study was conducted to investigate the effects of drinking water temperature (DWT) and flow rate (DWF) on growth performance, nutrient digestibility and cecum microflora in weaned piglets during cold weather. Sixty-four piglets with an average body weight of 8.60 ± 0.5 kg were allotted into four groups with four replicates in each group and four pigs in each replicate. The DWT and DWF were set for each group as follows: (1) 13 °C + 300 mL/min, (2) 13 °C + 700 mL/min, (3) 30 °C + 300 mL/min and (4) 30 °C + 700 mL/min, respectively. All groups were fed the same diet during the 28 d trial. The body weight at day 0 and day 29, as well as daily feed intake, were recorded. Diarrhea severity was assessed every day. Fresh fecal samples were collected for four consecutive days at the end of the experiment for the digestibility test. Cecum content was collected after sacrifice for microbial composition analysis. The results indicated that: (1) DWT at 30 °C promoted the average daily gain (ADG) of weaned piglets considerably (p = 0.043) and decreased feed to weight ratio when compared with DWT at 13 °C (p = 0.045). DWF had no substantial effect on the growth performance of piglets (p > 0.05). (2) The 30 °C DWT groups had higher apparent digestibility of crude protein, crude fat and energy than the 13 °C DWT groups (p < 0.05), while DWF had no significant effect on the apparent digestibility of nutrients (p > 0.05). (3) DWT at 30 °C increased the Bacteroidetes abundance and decreased the Proteobacteria abundance in cecum digesta. The change in these two factors may be related to a decrease in diarrhea and the improvement of growth performance. Different DWF had no substantial effect on the cecum microbial structure. To sum up, providing a DWT of 30 °C to weaned piglets in cold weather reduced the abundance of harmful bacteria in the cecum and improved the apparent nutrient digestibility, which is beneficial for maintaining a healthy intestinal microenvironment and promoting growth performance. A lower DWF of 300 mL/min had no adverse effect on growth performance. Therefore, a combination of 30 °C + 300 mL/min is recommended for weaned piglets during cold weather for the consideration of animal welfare and production efficiency.
Collapse
|
13
|
Williams CL, Thomas BJ, McEwan NR, Rees Stevens P, Creevey CJ, Huws SA. Rumen Protozoa Play a Significant Role in Fungal Predation and Plant Carbohydrate Breakdown. Front Microbiol 2020; 11:720. [PMID: 32411103 PMCID: PMC7200989 DOI: 10.3389/fmicb.2020.00720] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
The rumen protozoa, alongside fungi, comprise the eukaryotic portion of the rumen microbiome. Rumen protozoa may account for up to 50% of biomass, yet their role in this ecosystem remains unclear. Early experiments inferred a role in carbohydrate and protein metabolism, but due to their close association with bacteria, definitively attributing these functions to the protozoa was challenging. The advent of ‘omic technologies has created opportunities to broaden our understanding of the rumen protozoa. This study aimed to utilize these methods to further our understanding of the role that protozoa play in the rumen in terms of their metabolic capacities, and in doing so, contribute valuable sequence data to reduce the chance of mis or under-representation of the rumen protozoa in meta’omic datasets. Rumen protozoa were isolated and purified using glucose-based sedimentation and differential centrifugation, extracted RNA was Poly(A) fraction enriched and DNase treated before use in a phage-based, cDNA metatranscriptomic library. Biochemical activity testing of the phage library showed 6 putatively positive plaques in response to carboxymethyl cellulose agar (indicative of cellulose activity), and no positive results for tributyrin (indicative of esterase/lipase activity) or egg yolk agar (indicative of proteolysis). Direct sequencing of the cDNA was also conducted using the Illumina HiSeq 2500. The metatranscriptome identified a wealth of carbohydrate-active enzymes which accounted for 8% of total reads. The most highly expressed carbohydrate-active enzymes were glycosyl hydrolases 5 and 11, polysaccharide lyases and deacetylases, xylanases and enzymes active against pectin, mannan and chitin; the latter likely used to digest rumen fungi which contain a chitin-rich cell membrane. Codon usage analysis of expressed genes also showed evidence of horizontal gene transfer, suggesting that many of these enzymes were acquired from the rumen bacteria in an evolutionary response to the carbohydrate-rich environment of the rumen. This study provides evidence of the significant contribution that the protozoa make to carbohydrate breakdown in the rumen, potentially using horizontally acquired genes, and highlights their predatory capacity.
Collapse
Affiliation(s)
- Cate L Williams
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
| | - Benjamin J Thomas
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J Creevey
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
da Rosa E Silva PIJL, Zervoudakis JT, da Silva Cabral L, Hatamoto-Zervoudakis LK, da Freiria LB, E Silva YRVB, Paulino PVR, Tsuneda PP, Possamai AJ. Effects of rumen-protected oil supplementation on finishing grazing beef cattle. Trop Anim Health Prod 2019; 52:763-769. [PMID: 31754955 DOI: 10.1007/s11250-019-02067-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023]
Abstract
The objective of this study was to evaluate the effects of rumen-protected oil (soybean and palm oil) in supplements for beef cattle during the fattening phase in pastures on the intake and digestibility of nutrients, animal performance, and carcass characteristics. Forty-eight noncastrated male Nellore cattle (15 ± 2 months and 389.5 ± 20 kg of body weight) were used in a completely randomized design to evaluate the following treatments: protein-energy supplement (PES) without rumen-protected oil (control: CO), PES containing palm rumen-protected oil (PRPO), PES containing soybean rumen-protected oil (SRPO), and PES containing a mixture of soybean and palm rumen-protected oil (SPRPO). The study lasted 112 days, and there was a decrease in crude protein intake (P < 0.05) and an increase in ether extract intake (P < 0.05) when rumen-protected oil was included in the supplements. In comparison to the palm rumen-protected oil supplement, the soybean rumen-protected oil supplement promoted a lower average daily gain (ADG) (P < 0.05); however, regardless of the rumen-protected oil source, an increase in the fat thickness of the subcutaneous tissue was observed. In addition, there was no difference in carcass gain (P > 0.05) regardless of oil source. Rumen-protected oil is a tool to increase the finishing of pasture-finished young beef cattle in the dry season.
Collapse
Affiliation(s)
| | | | - Luciano da Silva Cabral
- Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | | | - Lucien Bissi da Freiria
- Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | | | - Pedro Veiga Rodrigues Paulino
- Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso, Brazil.,Technical Consultant/Global Technology Manager - Beef Cattle Cargill Animal Nutrition, Goiania, Goias, Brazil
| | - Pedro Paulo Tsuneda
- Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | - Adriano Jorge Possamai
- Technical Consultant/Global Technology Manager - Beef Cattle Cargill Animal Nutrition, Goiania, Goias, Brazil
| |
Collapse
|
15
|
Carreño D, Toral PG, Pinloche E, Belenguer A, Yáñez-Ruiz DR, Hervás G, McEwan NR, Newbold CJ, Frutos P. Rumen bacterial community responses to DPA, EPA and DHA in cattle and sheep: A comparative in vitro study. Sci Rep 2019; 9:11857. [PMID: 31413283 PMCID: PMC6694141 DOI: 10.1038/s41598-019-48294-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
The role of marine lipids as modulators of ruminal biohydrogenation of dietary unsaturated fatty acids may be explained by the effects of their n-3 polyunsaturated fatty acids (PUFA) on the bacterial community. However, the impact of individual PUFA has barely been examined, and it is uncertain which bacteria are truly involved in biohydrogenation. In addition, despite interspecies differences in rumen bacterial composition, we are not aware of any direct comparison of bovine and ovine responses to dietary PUFA. Therefore, rumen fluid from cannulated cattle and sheep were used as inocula to examine in vitro the effect of 20:5n-3 (EPA), 22:5n-3 (DPA), and 22:6n-3 (DHA) on the bacterial community. Amplicon 16 S rRNA sequencing suggested that EPA and DHA had a greater contribution to the action of marine lipids than DPA both in cattle and sheep. Certain effects were exclusive to each ruminant species, which underlines the complexity of rumen microbial responses to dietary fatty acids. Based on changes in bacterial abundance, Barnesiella, Prevotella, Paraprevotella, Hallela, Anaerovorax, Succiniclasticum, Ruminococcus and Ruminobacter may be involved in the ruminal response in biohydrogenation to the addition of marine lipids, but further research is necessary to confirm their actual role in ruminal lipid metabolism.
Collapse
Affiliation(s)
- D Carreño
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.,Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - E Pinloche
- Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - A Belenguer
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - N R McEwan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.,School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom
| | - C J Newbold
- Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.,Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, United Kingdom
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
16
|
Characterisation of the effect of day length, and associated differences in dietary intake, on the gut microbiota of Soay sheep. Arch Microbiol 2019; 201:889-896. [PMID: 30968220 PMCID: PMC6687699 DOI: 10.1007/s00203-019-01652-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Differences in the rumen bacterial community have been previously reported for Soay sheep housed under different day length conditions. This study extends this previous investigation to other organs of the digestive tract, as well as the analysis of ciliated protozoa and anaerobic fungi. The detectable concentrations of ciliated protozoa and anaerobic fungi decreased with increased day length in both the rumen and large colon, unlike those of bacteria where no effect was observed. Conversely, bacterial community composition was affected by day length in both the rumen and large colon, but the community composition of the detectable ciliated protozoa and anaerobic fungi was not affected. Day length-associated differences in the bacterial community composition extended to all of the organs examined, with the exception of the duodenum and the jejunum. It is proposed that differences in rumen fill and ruminal ‘by-pass’ nutrients together with endocrinological changes cause the observed effects of day length on the different gut microbial communities.
Collapse
|
17
|
Aemiro A, Watanabe S, Suzuki K, Hanada M, Umetsu K, Nishida T. Effect of substituting soybean meal with euglena (Euglena gracilis) on methane emission and nitrogen efficiency in sheep. Anim Sci J 2019; 90:71-80. [PMID: 30362202 PMCID: PMC6587532 DOI: 10.1111/asj.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/03/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022]
Abstract
This study evaluated methane (CH4 ) emission, intake, digestibility, and nitrogen efficiency in sheep fed diets containing replacement levels (0%, 33%, 50%, and 67% of soybean meal with euglena). In this experiment, four Corriedale wether sheep with an initial body weight of 53.8 ± 4.6 were arranged in a 4 × 4 Latin square design. This experiment lasted 84 days, divided into four experimental periods. Each period lasted 21 days, which consists of 14 days of adaptation to the diets, 5 days to collect samples, and 2 days to collect gas emission from sheep. Methane emission expressed as L/kg DM intake or g/kg DM intake reduced by up to 37% and the energy loss via CH4 (% of GE intake) reduced by up to 34%. No differences (p > 0.05) were observed in DM and OM intake and whole tract apparent DM digestibility due to substitution of soybean meal with euglena. The total CP loss reduced significantly (linear, p < 0.001) and CP efficiency increased linearly (p = 0.03) with increasing concentration of euglena. As a result, nitrogen balance and average daily weight gain remained unchanged despite higher nitrogen concentration in soybean supplemented group. In conclusion, substitution of soybean meal with euglena reduced methane emission without affecting the performance of animals.
Collapse
Affiliation(s)
- Ashagrie Aemiro
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| | | | | | - Masaaki Hanada
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| | - Kazutaka Umetsu
- Department of Agro‐environmental ScienceObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| | - Takehiro Nishida
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| |
Collapse
|
18
|
Lee MRF, Fychan R, Tweed JKS, Gordon N, Theobald V, Yadav R, Marshall A. Nitrogen and fatty acid rumen metabolism in cattle offered high or low polyphenol oxidase red clover silage. Animal 2018; 13:1623-1634. [PMID: 30565534 PMCID: PMC6639759 DOI: 10.1017/s1751731118003294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
Polyphenol oxidase (PPO) in red clover (RC) has been shown to reduce both lipolysis and proteolysis in silo and implicated (in vitro) in the rumen. However, all in vivo comparisons have compared RC with other forages, typically with lower levels of PPO, which brings in other confounding factors as to the cause for the greater protection of dietary nitrogen (N) and C18 polyunsaturated fatty acids (PUFA) on RC silage. This study compared two RC silages which when ensiled had contrasting PPO activities (RC+ and RC-) against a control of perennial ryegrass silage (PRG) to ascertain the effect of PPO activity on dietary N digestibility and PUFA biohydrogenation. Two studies were performed the first to investigate rumen and duodenal flow with six Hereford×Friesian steers, prepared with rumen and duodenal cannulae, and the second investigating whole tract N balance using six Holstein-Friesian non-lactating dairy cows. All diets were offered at a restricted level based on animal live weight with each experiment consisting of two 3×3 Latin squares using big bale silages ensiled in 2010 and 2011, respectively. For the first experiment digesta flow at the duodenum was estimated using a dual-phase marker system with ytterbium acetate and chromium ethylenediaminetetraacetic acid as particulate and liquid phase markers, respectively. Total N intake was higher on the RC silages in both experiments and higher on RC- than RC+. Rumen ammonia-N reflected intake with ammonia-N per unit of N intake lower on RC+ than RC-. Microbial N duodenal flow was comparable across all silage diets with non-microbial N higher on RC than the PRG with no difference between RC+ and RC-, even when reported on a N intake basis. C18 PUFA biohydrogenation was lower on RC silage diets than PRG but with no difference between RC+ and RC-. The N balance trial showed a greater retention of N on RC+ over RC-; however, this response is likely related to the difference in N intake over any PPO driven protection. The lack of difference between RC silages, despite contrasting levels of PPO, may reflect a similar level of protein-bound-phenol complexing determined in each RC silage. Previously this complexing has been associated with PPOs protection mechanism; however, this study has shown that protection is not related to total PPO activity.
Collapse
Affiliation(s)
- M. R. F. Lee
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| | - R. Fychan
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| | - J. K. S. Tweed
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| | - N. Gordon
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| | - V. Theobald
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| | - R. Yadav
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| | - A. Marshall
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Gogerddan Campus, Aberystwyth, CeredigionSY23 2EB, UK
| |
Collapse
|
19
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
20
|
Freitas DS, Terry SA, Ribeiro RS, Pereira LGR, Tomich TR, Machado FS, Campos MM, Corrêa PS, Abdalla AL, Maurício RM, Chaves AV. Unconventional Vegetable Oils for a Reduction of Methanogenesis and Modulation of Ruminal Fermentation. Front Vet Sci 2018; 5:201. [PMID: 30234132 PMCID: PMC6133986 DOI: 10.3389/fvets.2018.00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the use of vegetable oils from plants grown in Brazil, first using the in vitro batch culture, and then evaluating the oil with methane (CH4) reducing potential in an in vivo experiment. The in vitro experiment was conducted as a completely randomized design using the seven contrasting oils. Treatments consisted of a control and 3 increasing concentrations (0, 1, 2, and 5% v/v) of oil added to a tifton 85 hay samples. All vegetable oils linearly decreased (P < 0.01) gas production after 24 h of incubation, with the greatest reduction when 5% of oil was included into the diet. Açaí and buriti had no effect of CH4 (% or mL/g DM incubated) however carrot, macaúba, basil, passionflower, and pequi oil all linearly decreased (P < 0.01) CH4 production with increasing inclusion rate of oil. Pequi oil resulted in the largest decrease in CH4 production (mL/g DM incubated) after 24 h of in vitro incubation. The objective of the in vivo experiment was to evaluate the effects of pequi oil on nutrient digestibility, CH4 production, and rumen fermentation parameters in wethers fed a hay-based diet. The experiment was conducted as a 2 × 2 Latin Square design using 4 Dorper wethers (63.4 ± 1.46 kg body weight). There were 2 experimental periods of 21 d each, with d 1-14 used for diet adaptation and d 15-21 for measurements and collections. The treatments consisted of a control diet and pequi oil fed at 70 g per animal per day. The addition of pequi oil to the diet had no effect on feed intake or the digestibility of nutrients, however there was a numerical decrease in the population of cellulolytic bacteria. There was a tendency (P = 0.06) for pequi oil addition to decrease CH4 production (g/d) by 17.5%. From this study, we can conclude that pequi oil may be used as a suitable oil for reducing CH4 production from ruminants, with no negative effects on intake or digestibility.
Collapse
Affiliation(s)
- Danielle S Freitas
- Bioengineering Department, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Stephanie A Terry
- School of Life and Environment Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Rafael S Ribeiro
- Bioengineering Department, Federal University of São João del-Rei, São João del-Rei, Brazil
| | | | | | | | | | - Patricia S Corrêa
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Adibe L Abdalla
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Rogério M Maurício
- Bioengineering Department, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Alexandre V Chaves
- School of Life and Environment Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Elliott CL, Edwards JE, Wilkinson TJ, Allison GG, McCaffrey K, Scott MB, Rees-Stevens P, Kingston-Smith AH, Huws SA. Using 'Omic Approaches to Compare Temporal Bacterial Colonization of Lolium perenne, Lotus corniculatus, and Trifolium pratense in the Rumen. Front Microbiol 2018; 9:2184. [PMID: 30283417 PMCID: PMC6156263 DOI: 10.3389/fmicb.2018.02184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding rumen plant-microbe interactions is central for development of novel methodologies allowing improvements in ruminant nutrient use efficiency. This study investigated rumen bacterial colonization of fresh plant material and changes in plant chemistry over a period of 24 h period using three different fresh forages: Lolium perenne (perennial ryegrass; PRG), Lotus corniculatus (bird's foot trefoil; BFT) and Trifolium pratense (red clover; RC). We show using 16S rRNA gene ion torrent sequencing that plant epiphytic populations present pre-incubation (0 h) were substantially different to those attached post incubations in the presence of rumen fluid on all forages. Thereafter primary and secondary colonization events were evident as defined by changes in relative abundances of attached bacteria and changes in plant chemistry, as assessed using Fourier transform infrared (FTIR) spectroscopy. For PRG colonization, primary colonization occurred for up to 4 h and secondary colonization from 4 h onward. The changes from primary to secondary colonization occurred significantly later with BFT and RC, with primary colonization being up to 6 h and secondary colonization post 6 h of incubation. Across all 3 forages the main colonizing bacteria present at all time points post-incubation were Prevotella, Pseudobutyrivibrio, Ruminococcus, Olsenella, Butyrivibrio, and Anaeroplasma (14.2, 5.4, 1.9, 2.7, 1.8, and 2.0% on average respectively), with Pseudobutyrivibrio and Anaeroplasma having a higher relative abundance during secondary colonization. Using CowPI, we predict differences between bacterial metabolic function during primary and secondary colonization. Specifically, our results infer an increase in carbohydrate metabolism in the bacteria attached during secondary colonization, irrespective of forage type. The CowPI data coupled with the FTIR plant chemistry data suggest that attached bacterial function is similar irrespective of forage type, with the main changes occurring between primary and secondary colonization. These data suggest that the sward composition of pasture may have major implications for the temporal availability of nutrients for animal.
Collapse
Affiliation(s)
- Christopher L Elliott
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Toby J Wilkinson
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Gordon G Allison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Kayleigh McCaffrey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark B Scott
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Pauline Rees-Stevens
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon A Huws
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Petri RM, Vahmani P, Yang HE, Dugan MER, McAllister TA. Changes in Rumen Microbial Profiles and Subcutaneous Fat Composition When Feeding Extruded Flaxseed Mixed With or Before Hay. Front Microbiol 2018; 9:1055. [PMID: 29887841 PMCID: PMC5981202 DOI: 10.3389/fmicb.2018.01055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
Extruded flaxseed (25%) and ground hay (75%) were each fed (DM basis) either together in a total mixed ration (TMR) or as flaxseed first followed by hay (non-TMR) to three pens of eight crossbred steers (n = 24 per diet) for 240 days. Compared to TMR, feeding non-TMR enriched subcutaneous fat with α-linolenic acid (ALA, 18:3n-3) and its biohydrogenation intermediates including vaccenic acid [trans(t)11-18:1], rumenic acid [cis(c)9,t11-conjugated linoleic acid] and conjugated linolenic acid (CLnA). Rumen microbial analysis using QIIME indicated that 14 genera differed (P ≤ 0.05) between TMR and the non-TMR. Azoarcus and Streptococcus were the only genera which increased in relative abundance in the TMR fed steers, whereas Methanimicrococcus, Moryella, Prevotella, Succiniclasticum, Succinivibrio, Suttenella, and TG5 decreased as compared to steers fed the non-TMR. Among these, Moryella, Succiniclasticum, and Succinivibrio, spp. were correlated with fatty acid profiles, specifically intermediates believed to be components of the major biohydrogenation pathway for ALA (i.e., t11, c15-18:2, c9, t11, c15-18:3, and total CLnA). In addition, negative correlations were found between the less abundant Ruminoccocus-like OTU60 and major ALA biohydrogenation intermediates, as well as positive correlations with several intermediates from alternative pathways that did not involve the formation of trans 11 double bonds. The present results suggest a number of pathways for ALA biohydrogenation are operating concurrently in the rumen, with their balance being influenced by diet and driven by less abundant species rather than members of the core bacterial population.
Collapse
Affiliation(s)
- Renee M Petri
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Payam Vahmani
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Hee Eun Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Michael E R Dugan
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
23
|
Hartinger T, Gresner N, Südekum KH. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol 2018; 9:33. [PMID: 29721317 PMCID: PMC5911377 DOI: 10.1186/s40104-018-0249-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds (NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | - Nina Gresner
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
24
|
Dewanckele L, Vlaeminck B, Hernandez-Sanabria E, Ruiz-González A, Debruyne S, Jeyanathan J, Fievez V. Rumen Biohydrogenation and Microbial Community Changes Upon Early Life Supplementation of 22:6 n-3 Enriched Microalgae to Goats. Front Microbiol 2018; 9:573. [PMID: 29636742 PMCID: PMC5880937 DOI: 10.3389/fmicb.2018.00573] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Dietary supplementation of docosahexaenoic acid (DHA)-enriched products inhibits the final step of biohydrogenation in the adult rumen, resulting in the accumulation of 18:1 isomers, particularly of trans(t)-11 18:1. Occasionally, a shift toward the formation of t10 intermediates at the expense of t11 intermediates can be triggered. However, whether similar impact would occur when supplementing DHA-enriched products during pregnancy or early life remains unknown. Therefore, the current in vivo study aimed to investigate the effect of a nutritional intervention with DHA in the early life of goat kids on rumen biohydrogenation and microbial community. Delivery of DHA was achieved by supplementing DHA-enriched microalgae (DHA Gold) either to the maternal diet during pregnancy (prenatal) or to the diet of the young offspring (postnatal). At the age of 12 weeks, rumen fluid was sampled for analysis of long-chain fatty acids and microbial community based on bacterial 16S rRNA amplicon sequencing. Postnatal supplementation with DHA-enriched microalgae inhibited the final biohydrogenation step, as observed in adult animals. This resulted particularly in increased ruminal proportions of t11 18:1 rather than a shift to t10 intermediates, suggesting that both young and adult goats might be less prone to dietary induced shifts toward the formation of t10 intermediates, in comparison with cows. Although Butyrivibrio species have been identified as the most important biohydrogenating bacteria, this genus was more abundant when complete biohydrogenation, i.e. 18:0 formation, was inhibited. Blautia abundance was positively correlated with 18:0 accumulation, whereas Lactobacillus spp. Dialister spp. and Bifidobacterium spp. were more abundant in situations with greater t10 accumulation. Extensive comparisons made between current results and literature data indicate that current associations between biohydrogenation intermediates and rumen bacteria in young goats align with former observations in adult ruminants.
Collapse
Affiliation(s)
- Lore Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emma Hernandez-Sanabria
- Center for Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alexis Ruiz-González
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sieglinde Debruyne
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Iqbal MW, Zhang Q, Yang Y, Zou C, Li L, Liang X, Wei S, Lin B. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:100-108. [PMID: 30167491 PMCID: PMC6112341 DOI: 10.1016/j.aninu.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 01/26/2023]
Abstract
The present study evaluated the effects of 4 typical subtropical forages on ruminal microbial community composition to formulate a better diet for buffalo. Corn straw silage, elephant grass, cassava residues and sugarcane tail silage were used as substrates for in vitro fermentation. Eight replicates were set up for every substrate, and fermentation was carried out in a 100-mL glass syringe, using buffalo rumen inoculum. Every replicate was anaerobically dispensed with 10 mL of rumen inoculum, 20 mL of McDougall's buffer and 200 mg of dried substrate, and placed in a water bath at 39 °C. Gas production was recorded at 0, 2, 6, 12, 24, 36, 48 and 72 h of incubation. After 24 h, fermentation was ceased for 4 replicates and samples were collected. Volatile fatty acids (VFA) concentrations were measured using gas chromatography. Microbial populations were quantified using quantitative real-time PCR (qRT-PCR), and microbial community was analyzed using high throughput sequencing technology. The results showed, cassava residues as substrate had the highest gas production, acetate, propionate and total VFA concentrations (P < 0.05), and corn straw silage had the lowest acetate:propionate ratio (P < 0.05). The lowest numbers of fungi, Ruminococcus albus and Fibrobacter succinogenes, and the highest number of protozoa were observed with cassava residues (P < 0.05). The least abundances of bacterial phyla Firmicutes, Bacteroidetes and genus Prevotella, and substantially higher abundance of phylum proteobacteria (56%) and genus Succinivibrio (52%) were observed with cassava residues. The most abundances of Methanobrevibacter gottschalkii and Entodinium were observed with cassava residues. Spearman's correlations analysis showed, Succinivibrio had strong positive correlations with propionate, butyrate, Metadinium and M. gottschalkii, indicating fermentation products were related to microbial community. In conclusion, incubation with cassava residues resulted in lower number of fiber degrading microbes but higher protozoal population because of its low fiber contents. The microbial community was highly altered by in vitro incubation with cassava residues, whereas remained similar for the other 3 high fiber containing substrates.
Collapse
Affiliation(s)
- Muhammad W. Iqbal
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Qin Zhang
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Yingbai Yang
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Caixia Zou
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Lili Li
- Buffalo Research Institute, The Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Xin Liang
- Buffalo Research Institute, The Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Shengju Wei
- Buffalo Research Institute, The Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Bo Lin
- College of Animal Science, Guangxi University, Nanning 530000, China
| |
Collapse
|
26
|
Vargas JE, Andrés S, Snelling TJ, López-Ferreras L, Yáñez-Ruíz DR, García-Estrada C, López S. Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile. Front Microbiol 2017; 8:1124. [PMID: 28676798 PMCID: PMC5476686 DOI: 10.3389/fmicb.2017.01124] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil–supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
Collapse
Affiliation(s)
- Julio E Vargas
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de LeónLeón, Spain.,Grupo CIENVET, Facultad de Ciencias Agropecuarias, Universidad de CaldasManizales, Colombia
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de LeónLeón, Spain
| | - Timothy J Snelling
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de LeónLeón, Spain.,Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, United Kingdom
| | - Lorena López-Ferreras
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de LeónLeón, Spain.,Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburg, Sweden
| | | | | | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de LeónLeón, Spain
| |
Collapse
|
27
|
Duarte AC, Holman DB, Alexander TW, Durmic Z, Vercoe PE, Chaves AV. The Type of Forage Substrate Preparation Included as Substrate in a RUSITEC System Affects the Ruminal Microbiota and Fermentation Characteristics. Front Microbiol 2017; 8:704. [PMID: 28473826 PMCID: PMC5397515 DOI: 10.3389/fmicb.2017.00704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
In vitro fermentation systems such as the rumen simulation technique (RUSITEC) are frequently used to assess dietary manipulations in livestock, thereby limiting the use of live animals. Despite being in use for nearly 40 years, improvements are continually sought in these systems to better reflect and mimic natural processes in ruminants. The aim of this study was to evaluate the effect of forage preparation, i.e., frozen minced (FM) and freeze-dried and ground (FDG), on the ruminal microbiota and on fermentation characteristics when included as a substrate in a RUSITEC system. A completely randomized design experiment was performed over a 15-day period, with 7 days of adaptation and an 8-day experimental period. Fermentation parameters (total gas, CH4, and volatile fatty acid production) were analyzed on a daily basis over the experimental period and the archaeal and bacterial microbiota (liquid-associated microbes [LAM] and solid-associated microbes [SAM] was assessed at 0, 5, 10, and 15 days using high-throughput sequencing of the 16S rRNA gene. Results from this study suggested a tendency (P = 0.09) of FM treatment to increase daily CH4 (mg/d) production by 16.7% when compared with FDG treatment. Of the major volatile fatty acids (acetate, propionate, and butyrate), only butyrate production was greater (P = 0.01) with FM treatment compared with FDG substrate. The archaeal and bacterial diversity and richness did not differ between the forage preparations, although feed particle size of the forage had a significant effect on microbial community structure in the SAM and LAM samples. The Bacteroidetes phylum was more relatively abundant in the FM substrate treatment, while Proteobacteria was enriched in the FDG treatment. At the genus-level, Butyrivibrio, Prevotella, and Roseburia were enriched in the FM substrate treatment and Campylobacter and Lactobacillus in the FDG substrate treatment. Evidence from this study suggests that forage preparation affects CH4 production, butyrate production, and the structure of the rumen microbiota during in vitro fermentation.
Collapse
Affiliation(s)
- Andrea C Duarte
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW, Australia
| | - Devin B Holman
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| | - Trevor W Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| | - Zoey Durmic
- The University of Western Australia, School of Agriculture and Environment, CrawleyWA, Australia
| | - Philip E Vercoe
- The University of Western Australia, School of Agriculture and Environment, CrawleyWA, Australia
| | - Alexandre V Chaves
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW, Australia
| |
Collapse
|
28
|
Liu K, Xu Q, Wang L, Wang J, Guo W, Zhou M. The impact of diet on the composition and relative abundance of rumen microbes in goat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:531-537. [PMID: 27507180 PMCID: PMC5394839 DOI: 10.5713/ajas.16.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Objective This experiment was conducted to explore the impact of diet on the ruminal microbial community in goats. Methods Twelve goats were divided into two groups and fed complete feed (CF) or all forage (AF) diet. The total microbial DNAs in the rumen liquid were extracted. The V4 region of microbial 16S rRNA genes was amplified and sequenced using high-throughput. Information of sequences was mainly analyzed by QIIME 1.8.0. Results The results showed that Bacteroidetes and Firmicutes were the most predominant microbial phyla in the rumen of all goats. At genus level, the abundance of fiber-digesting bacteria such as Ruminococcus and Lachnospiracea incertae sedis was significantly higher in AF than that in CF, while the levels of fat-degrading bacterium Anaerovibrio and protein-degrading bacterium Pseudomonas were opposite. The core shared genera, Prevotella and Butyrivibrio were widespread in the rumen of goats and no significant difference was observed in relative abundance between groups. Conclusion We concluded that the richness of fiber-, protein-, and fat-digesting bacteria was affected by diet and tended to increase with the rise of their corresponding substrate contents in the ration; some bacteria shared by all goats maintained stable despite the difference in the ration, and they might be essential in maintaining the normal function of rumen.
Collapse
Affiliation(s)
- Kaizhen Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiwen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Wei Guo
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Meili Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
29
|
Jeyanathan J, Escobar M, Wallace RJ, Fievez V, Vlaeminck B. Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18. BMC Microbiol 2016; 16:104. [PMID: 27283157 PMCID: PMC4901502 DOI: 10.1186/s12866-016-0720-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3. Results Butyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32 μg/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20 μg/mL) whereas increasing concentrations of 22:6n-3 (40 and 80 μg/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration. Conclusions For the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0.
Collapse
Affiliation(s)
- Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium
| | - Marlene Escobar
- Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium
| | - Robert John Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, AB21 9SB, UK
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium.
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium
| |
Collapse
|
30
|
Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl Microbiol Biotechnol 2015; 99:5475-85. [PMID: 25575887 PMCID: PMC4464377 DOI: 10.1007/s00253-014-6355-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
Abstract
Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78 % following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.
Collapse
|
31
|
Huws SA, Kim EJ, Cameron SJS, Girdwood SE, Davies L, Tweed J, Vallin H, Scollan ND. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil. Microb Biotechnol 2014; 8:331-41. [PMID: 25223749 PMCID: PMC4353346 DOI: 10.1111/1751-7915.12164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/03/2022] Open
Abstract
Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg−1 silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera Butyrivibrio, Howardella, Oribacterium, Pseudobutyrivibrio and Roseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus Succinovibrio and Roseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study.
Collapse
Affiliation(s)
- Sharon Ann Huws
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3DA, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pectin induces an in vitro rumen microbial population shift attributed to the pectinolytic Treponema group. Curr Microbiol 2014; 70:67-74. [PMID: 25178631 DOI: 10.1007/s00284-014-0672-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/22/2014] [Indexed: 10/24/2022]
Abstract
Pectin is a non-fiber carbohydrate (NFC) that exists in forages, but it is not clear how pectin exerts its effect on populations of either known microbial species or uncultured ruminal bacteria. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR analysis were used in the present study to investigate the effects of pectin on microbial communities in an in vitro rumen fermentation system. The fermentations were conducted using forage (corn stover or alfalfa), an NFC source (pectin or corn starch), or their combination as the substrates. Addition of pectin increased acetate (P < 0.05), whereas inclusion of starch increased butyrate production (P < 0.05). The pectate lyase activity was higher with alfalfa than with corn straw, or with pectin than with corn starch (P < 0.05), while the amylase activity was higher in corn starch-included treatments than the others (P < 0.05). The cluster analysis of the bacterial 16S rRNA gene showed that the DGGE banding patterns differed significantly between the treatments and led to the identification of three groups that were highly associated with the NFC sources. The specific bands associated with pectin-rich treatments were identified to be dominated by members of the Treponema genus. The growth of the Treponema genus was remarkably supported by the inclusion of pectin, highlighting their specific ability to degrade pectin. The results from the present study expand our knowledge of the microbial populations associated with pectin digestion, which may not only facilitate future research on utilization of pectin in feeds, but also improve our understanding of pectin digestion with respect to the rumen micro-ecosystem.
Collapse
|
33
|
Zhu Z, Hang S, Mao S, Zhu W. Diversity of butyrivibrio group bacteria in the rumen of goats and its response to the supplementation of garlic oil. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:179-86. [PMID: 25049941 PMCID: PMC4093207 DOI: 10.5713/ajas.2013.13373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/26/2013] [Accepted: 08/25/2013] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.
Collapse
Affiliation(s)
- Zhi Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suqin Hang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Lee MRF. Forage polyphenol oxidase and ruminant livestock nutrition. FRONTIERS IN PLANT SCIENCE 2014; 5:694. [PMID: 25538724 PMCID: PMC4259006 DOI: 10.3389/fpls.2014.00694] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/21/2014] [Indexed: 05/09/2023]
Abstract
Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of the forage and therefore not related to PPO activity.
Collapse
Affiliation(s)
- Michael R. F. Lee
- School of Veterinary Sciences, University of BristolBristol, UK
- Rothamsted Research – North WykeOkehampton, UK
- *Correspondence: Michael R. F. Lee, School of Veterinary Sciences, University of Bristol, Langford House, Langford, Somerset BS40 5DU, Bristol, UK e-mail:
| |
Collapse
|
35
|
Privé F, Kaderbhai NN, Girdwood S, Worgan HJ, Pinloche E, Scollan ND, Huws SA, Newbold CJ. Identification and characterization of three novel lipases belonging to families II and V from Anaerovibrio lipolyticus 5ST. PLoS One 2013; 8:e69076. [PMID: 23950883 PMCID: PMC3741291 DOI: 10.1371/journal.pone.0069076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Following the isolation, cultivation and characterization of the rumen bacterium Anaerovibrio lipolyticus in the 1960s, it has been recognized as one of the major species involved in lipid hydrolysis in ruminant animals. However, there has been limited characterization of the lipases from the bacterium, despite the importance of understanding lipolysis and its impact on subsequent biohydrogenation of polyunsaturated fatty acids by rumen microbes. This study describes the draft genome of Anaerovibrio lipolytica 5ST, and the characterization of three lipolytic genes and their translated protein. The uncompleted draft genome was 2.83 Mbp and comprised of 2,673 coding sequences with a G+C content of 43.3%. Three putative lipase genes, alipA, alipB and alipC, encoding 492-, 438- and 248- amino acid peptides respectively, were identified using RAST. Phylogenetic analysis indicated that alipA and alipB clustered with the GDSL/SGNH family II, and alipC clustered with lipolytic enzymes from family V. Subsequent expression and purification of the enzymes showed that they were thermally unstable and had higher activities at neutral to alkaline pH. Substrate specificity assays indicated that the enzymes had higher hydrolytic activity against caprylate (C8), laurate (C12) and myristate (C14).
Collapse
Affiliation(s)
- Florence Privé
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Naheed N. Kaderbhai
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Susan Girdwood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Hilary J. Worgan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Eric Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Nigel D. Scollan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Sharon A. Huws
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - C. Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Sukharnikov LO, Alahuhta M, Brunecky R, Upadhyay A, Himmel ME, Lunin VV, Zhulin IB. Sequence, structure, and evolution of cellulases in glycoside hydrolase family 48. J Biol Chem 2012; 287:41068-77. [PMID: 23055526 DOI: 10.1074/jbc.m112.405720] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Currently, the cost of cellulase enzymes remains a key economic impediment to commercialization of biofuels. Enzymes from glycoside hydrolase family 48 (GH48) are a critical component of numerous natural lignocellulose-degrading systems. Although computational mining of large genomic data sets is a promising new approach for identifying novel cellulolytic activities, current computational methods are unable to distinguish between cellulases and enzymes with different substrate specificities that belong to the same protein family. We show that by using a robust computational approach supported by experimental studies, cellulases and non-cellulases can be effectively identified within a given protein family. Phylogenetic analysis of GH48 showed non-monophyletic distribution, an indication of horizontal gene transfer. Enzymatic function of GH48 proteins coded by horizontally transferred genes was verified experimentally, which confirmed that these proteins are cellulases. Computational and structural studies of GH48 enzymes identified structural elements that define cellulases and can be used to computationally distinguish them from non-cellulases. We propose that the structural element that can be used for in silico discrimination between cellulases and non-cellulases belonging to GH48 is an ω-loop located on the surface of the molecule and characterized by highly conserved rare amino acids. These markers were used to screen metagenomics data for "true" cellulases.
Collapse
Affiliation(s)
- Leonid O Sukharnikov
- BioEnergy Science Center, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhu Z, Mao S, Zhu W. Effects of ruminal infusion of garlic oil on fermentation dynamics, Fatty Acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:962-70. [PMID: 25049651 PMCID: PMC4092973 DOI: 10.5713/ajas.2011.11442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/19/2012] [Accepted: 01/25/2012] [Indexed: 01/26/2023]
Abstract
This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents collected before (0 h) and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05). Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05), while increasing the proportions of C18, t11-18:1 (TVA), c9,t11-conjugated linoleic acid (c9,t11-CLA), t10,c12-CLA, and polyunsaturated FA (p<0.05). The values of TVA/(c9,t11-CLA+TVA) and C18:0/(TVA+ C18:0) were reduced by GO (p<0.05). Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058), whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0) (p = 0.910). The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a relatively modest change of ruminal environment. The inhibitory effects of GO on the final step of biohydrogenation may be related to its antibacterial activity against B. proteoclasticus and other unknown bacteria involved.
Collapse
Affiliation(s)
| | | | - Weiyun Zhu
- Corresponding Author: Weiyun Zhu. Tel: +86-025-84395523, Fax: +86-025-84395314, E-mail:
| |
Collapse
|
38
|
Gudla P, Ishlak A, AbuGhazaleh AA. The Effect of Forage Level and Oil Supplement on Butyrivibrio fibrisolvens and Anaerovibrio lipolytica in Continuous Culture Fermenters. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:234-9. [PMID: 25049556 PMCID: PMC4093135 DOI: 10.5713/ajas.2011.11242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/27/2011] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effects of forage level and oil supplement on selected strains of rumen bacteria believed to be involved in biohydrogenation (BH). A continuous culture system consisting of four fermenters was used in a 4×4 Latin square design with a factorial arrangement of treatments, with four 10 d consecutive periods. Treatment diets were: i) high forage diet (70:30 forage to concentrate (dry matter basis); HFC), ii) high forage plus oil supplement (HFO), iii) low forage diet (30:70 forage to concentrate; LFC), and iv) low forage plus oil supplement (LFO). The oil supplement was a blend of fish oil and soybean oil added at 1 and 2 g/100 g dry matter, respectively. Treatment diets were fed for 10 days and samples were collected from each fermenter on the last day of each period 3 h post morning feeding. The concentrations of vaccenic acid (t11C18:1; VA) and c9t11 conjugated linoleic acid (CLA) were greater with the high forage diet while the concentrations of t10 C18:1 and t10c12 CLA were greater with the low forage diet and addition of oil supplement increased their concentrations at both forage levels. The DNA abundance of Anaerovibrio lipolytica, and Butyrivibrio fibrisolvens vaccenic acid subgroup (Butyrivibrio VA) were lower with the low forage diets but not affected by oil supplement. The DNA abundance of Butyrivibrio fibrisolvens stearic acid producer subgroup (Butyrivibrio SA) was not affected by forage level or oil supplement. In conclusion, oil supplement had no effects on the tested rumen bacteria and forage level affected Anaerovibrio lipolytica and Butyrivibrio VA.
Collapse
|
39
|
Wu S, Baldwin RL, Li W, Li C, Connor EE, Li RW. The Bacterial Community Composition of the Bovine Rumen Detected Using Pyrosequencing of 16S rRNA Genes. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/mg/235571] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|