1
|
Velimirov B, Velimirov BA. Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development. Life (Basel) 2024; 14:1584. [PMID: 39768292 PMCID: PMC11678573 DOI: 10.3390/life14121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens. However, under specific conditions, some of the inner membrane proteins can be exported into the outer membrane layer and perform as antigens. A key information was that the used purification procedures for OMVs, the induction methods to increase the production of OMVs as well as the specific mutant strains obtained via genetic engineering affect the composition of potential antigens on the surface and in the lumen of the OMVs. The available literature allowed us to list the major antigens that could be defined on OMVs. The functions of the antigens within the source bacterium are discussed for a better understanding of the various available hypotheses on the biogenesis of vesicle formation. Also, the impacts of OMV antigens on the immune system using animal models are assessed. Furthermore, information on the pathways of OMVs entering the host cell is presented. An example of a bacterial infection that causes epidemic diseases, namely via Neisseria meningitidis, is used to demonstrate that OMVs derived from this pathogen elicit protective immune responses when administered as a vaccine. Furthermore, information on OMV vaccines under development is presented. The assembled knowledge allowed us to formulate a number of reasons why OMVs are attractive as vaccine platforms, as their undesirable side effects remain small, and to provide an outlook on the potential use of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Branko Velimirov
- Division of Microbiology and Molecular Biology, Medical Faculty, Private Sigmund Freud University, Freudplatz 3, 1020 Wien, Austria;
| | | |
Collapse
|
2
|
Rudnicka M, Noszczyńska M, Malicka M, Kasperkiewicz K, Pawlik M, Piotrowska-Seget Z. Outer Membrane Vesicles as Mediators of Plant-Bacterial Interactions. Front Microbiol 2022; 13:902181. [PMID: 35722319 PMCID: PMC9198584 DOI: 10.3389/fmicb.2022.902181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/05/2022] Open
Abstract
Plants have co-evolved with diverse microorganisms that have developed different mechanisms of direct and indirect interactions with their host. Recently, greater attention has been paid to a direct "message" delivery pathway from bacteria to plants, mediated by the outer membrane vesicles (OMVs). OMVs produced by Gram-negative bacteria play significant roles in multiple interactions with other bacteria within the same community, the environment, and colonized hosts. The combined forces of innovative technologies and experience in the area of plant-bacterial interactions have put pressure on a detailed examination of the OMVs composition, the routes of their delivery to plant cells, and their significance in pathogenesis, protection, and plant growth promotion. This review synthesizes the available knowledge on OMVs in the context of possible mechanisms of interactions between OMVs, bacteria, and plant cells. OMVs are considered to be potential stimulators of the plant immune system, holding potential for application in plant bioprotection.
Collapse
Affiliation(s)
| | | | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | | | | |
Collapse
|
3
|
Sun R, Yu P, Zuo P, Alvarez PJ. Bacterial Concentrations and Water Turbulence Influence the Importance of Conjugation Versus Phage-Mediated Antibiotic Resistance Gene Transfer in Suspended Growth Systems. ACS ENVIRONMENTAL AU 2022; 2:156-165. [PMID: 37101581 PMCID: PMC10114721 DOI: 10.1021/acsenvironau.1c00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the abundance of phage-borne antibiotic resistance genes (ARGs) in the environment, the frequency of ARG propagation via phage-mediated transduction (relative to via conjugation) is poorly understood. We investigated the influence of bacterial concentration and water turbulence level [quantified as Reynold's number (Re)] in suspended growth systems on the frequency of ARG transfer by two mechanisms: delivery by a lysogenic phage (phage λ carrying gentamycin-resistance gene, genR) and conjugation mediated by the self-transmissible plasmid RP4. Using Escherichia coli (E. coli) as the recipient, phage delivery had a comparable frequency (1.2 ± 0.9 × 10-6) to that of conjugation (1.1 ± 0.9 × 10-6) in suspensions with low cell concentration (104 CFU/mL) and moderate turbulence (Re = 5 × 104). Turbulence affected cell (or phage)-to-cell contact rates and detachment (due to shear force), and thus, it affected the relative importance of conjugation versus phage delivery. At 107 CFU/mL, no significant difference was observed between the frequencies of ARG transfer by the two mechanisms under quiescent water conditions (2.8 ± 0.3 × 10-5 for conjugation vs 2.2 ± 0.5 × 10-5 for phage delivery, p = 0.19) or when Re reached 5 × 105 (3.4 ± 1.5 × 10-5 for conjugation vs 2.9 ± 1.0 × 10-5 for phage delivery, p = 0.52). Transcriptomic analysis of genes related to conjugation and phage delivery and simulation of cell (or phage)-to-cell collisions at different Re values corroborate that the importance of phage delivery relative to conjugation increases under either quiescent or turbulent conditions. This finding challenges the prevailing view that conjugation is the dominant ARG transfer mechanism and underscores the need to consider and mitigate potential ARG dissemination via transduction.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J.J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Borodovich T, Shkoporov AN, Ross RP, Hill C. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac012. [PMID: 35425613 PMCID: PMC9006064 DOI: 10.1093/gastro/goac012] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Horizontal gene transfer (HGT) in the microbiome has profound consequences for human health and disease. The spread of antibiotic resistance genes, virulence, and pathogenicity determinants predominantly occurs by way of HGT. Evidence exists of extensive horizontal transfer in the human gut microbiome. Phage transduction is a type of HGT event in which a bacteriophage transfers non-viral DNA from one bacterial host cell to another. The abundance of tailed bacteriophages in the human gut suggests that transduction could act as a significant mode of HGT in the gut microbiome. Here we review in detail the known mechanisms of phage-mediated HGT, namely specialized and generalized transduction, lateral transduction, gene-transfer agents, and molecular piracy, as well as methods used to detect phage-mediated HGT, and discuss its potential implications for the human gut microbiome.
Collapse
Affiliation(s)
- Tatiana Borodovich
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Corresponding author. APC Microbiome Ireland, Biosciences Institute, University College Cork, Room 3.63, College Road, Cork, T12 YT20, Ireland.
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Collins SM, Brown AC. Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles. Front Immunol 2021; 12:733064. [PMID: 34616401 PMCID: PMC8488215 DOI: 10.3389/fimmu.2021.733064] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are nanometer-scale, spherical vehicles released by Gram-negative bacteria into their surroundings throughout growth. These OMVs have been demonstrated to play key roles in pathogenesis by delivering certain biomolecules to host cells, including toxins and other virulence factors. In addition, this biomolecular delivery function enables OMVs to facilitate intra-bacterial communication processes, such as quorum sensing and horizontal gene transfer. The unique ability of OMVs to deliver large biomolecules across the complex Gram-negative cell envelope has inspired the use of OMVs as antibiotic delivery vehicles to overcome transport limitations. In this review, we describe the advantages, applications, and biotechnological challenges of using OMVs as antibiotic delivery vehicles, studying both natural and engineered antibiotic applications of OMVs. We argue that OMVs hold great promise as antibiotic delivery vehicles, an urgently needed application to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
6
|
Outer membrane vesicles mediated horizontal transfer of an aerobic denitrification gene between Escherichia coli. Biodegradation 2021; 32:435-448. [PMID: 33886019 DOI: 10.1007/s10532-021-09945-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Bacterial genetic material can be horizontally transferred between microorganisms via outer membrane vesicles (OMVs) released by bacteria. Up to now, the application of vesicle-mediated horizontal transfer of "degrading genes" in environmental remediation has not been reported. In this study, the nirS gene from an aerobic denitrification bacterium, Pseudomonas stutzeri, was enclosed in a pET28a plasmid, transformed into Escherichia coli (E. coli) DH5α and expressed in E. coli BL21. The E. coli DH5α released OMVs containing the recombination plasmid pET28a-nirS-EGFP. When compared with the free pET28a-nirS-EGFP plasmid's inability to transform, nirS in OMVs could be transferred into E. coli BL21 with the transformation frequency of 2.76 × 106 CFU/g when the dosage of OMVs was 200 µg under natural conditions, and nirS could express successfully in recipient bacteria. Furthermore, the recipient bacteria that received OMVs containing pET28a-nirS-EGFP could produce 18.16 U/mL activity of nitrite reductase.
Collapse
|
7
|
Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:5766226. [PMID: 32109282 PMCID: PMC7189800 DOI: 10.1093/femsec/fiaa031] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms in water environments are thought to be hot spots for horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). ARGs can be spread via HGT, though mechanisms are known and have been shown to depend on the environment, bacterial communities and mobile genetic elements. Classically, HGT mechanisms include conjugation, transformation and transduction; more recently, membrane vesicles (MVs) have been reported as DNA reservoirs implicated in interspecies HGT. Here, we review the current knowledge on the HGT mechanisms with a focus on the role of MVs and the methodological innovations in the HGT research.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577 Japan
| |
Collapse
|
8
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
9
|
Zhao Z, Zhang K, Wu N, Li W, Xu W, Zhang Y, Niu Z. Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes: A high-throughput analysis in Haihe Estuary in China. ENVIRONMENT INTERNATIONAL 2020; 135:105385. [PMID: 31855802 DOI: 10.1016/j.envint.2019.105385] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 05/25/2023]
Abstract
Estuaries lie between terrestrial/freshwater and marine ecosystems, receive considerable pollutant input from land-based sources, and are considerably influenced by human activities. However, little attention has been paid to combined research on extracellular antibiotic resistance genes (eARGs) and intracellular ARGs (iARGs) in the estuarine environment. In this study, we profiled eARGs and iARGs in sediments from Haihe Estuary, China by adopting high-throughput quantitative PCR and investigated their relationship with mobile genetic elements (MGEs), the bacterial community and environmental factors. The results showed that the abundance of eARGs ranged from 9.06 × 106 to 1.32 × 108 copies/g and that of iARGs ranged from 3.31 × 107 to 2.93 × 108 copies/g, indicating that estuarine sediments were key hotspots of eARGs and iARGs. Additionally, multidrug resistance genes were both highly diverse and abundant in Haihe Estuary, especially in coastal samples. The high abundance of vancomycin and carbapenemase resistance genes may pose a potential health risk to human. Salinity altered the composition and structure of the bacterial community. Partial redundancy analysis showed that the bacterial community and MGEs appeared to be the major drivers of ARG variance in estuarine sediment. This study provides an overview of the distribution of eARG and iARG along the Haihe Estuary and draws attention to the need to control pollutants in estuary ecosystems.
Collapse
Affiliation(s)
- Ze Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kai Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Nan Wu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenjie Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Weian Xu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
Grüll MP, Mulligan ME, Lang AS. Small extracellular particles with big potential for horizontal gene transfer: membrane vesicles and gene transfer agents. FEMS Microbiol Lett 2019; 365:5067299. [PMID: 30085064 DOI: 10.1093/femsle/fny192] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022] Open
Abstract
Bacteria are known to release different types of particles that serve various purposes such as the processing of metabolites, communication, and the transfer of genetic material. One of the most interesting aspects of the production of such particles is the biogenesis and trafficking of complex particles that can carry DNA, RNA, proteins or toxins into the surrounding environment to aid in bacterial survival or lead to gene transfer. Two important bacterial extracellular complexes are membrane vesicles and gene transfer agents. In this review, we will discuss the production, contents and functions of these two types of particles as related to their abilities to facilitate horizontal gene transfer.
Collapse
Affiliation(s)
| | - M E Mulligan
- Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada
| | | |
Collapse
|
11
|
Tashiro Y, Takaki K, Futamata H. Targeted delivery using membrane vesicles in prokaryotes. Biophys Physicobiol 2019; 16:114-120. [PMID: 31131182 PMCID: PMC6530884 DOI: 10.2142/biophysico.16.0_114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Membrane vesicles (MVs) are lumen-containing spheres of lipid bilayers secreted by all prokaryotes into the extracellular milieu. They have multifunctional roles in stress response, virulence transfer, biofilm formation, and microbial interactions. Remarkably, MVs contain various components, including lytic enzymes, genetic materials, and hydrophobic signals, at high concentrations and transfer them effectively to the target microbial cells. Therefore, MVs act as carriers for bactericidal effects, horizontal gene transfer, and quorum sensing. Although the purpose of secreted MVs remains unclear, recent reports have provided evidence that MVs selectively interact with microbial cells in order to transfer their content to the target species. Herein, we review microbial interactions using MVs and discuss MV-mediated selective delivery of their content to target microbial cells.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kotaro Takaki
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Hiroyuki Futamata
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
12
|
Johnson TB, Mach C, Grove R, Kelly R, Van Cott K, Blum P. Secretion and fusion of biogeochemically active archaeal membrane vesicles. GEOBIOLOGY 2018; 16:659-673. [PMID: 30019522 DOI: 10.1111/gbi.12306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Microbes belonging to the genus Metallosphaera oxidize sulfidic minerals. These organisms thrive at temperature extremes and are members of the archaeal phylum Crenarchaeota. Because they can employ a lithoautotrophic metabolism, energy availability likely limits their activity raising questions about how they conduct biogeochemical activity. Vesicles are membrane encapsulated structures produced by all biological lineages but using very different mechanisms. Across the Crenarchaeota, it has been proposed that a eukaryotic-like Endosomal Sorting Complex Required for Transport system promotes formation of these structures but in response to unknown signals and for undefined purposes. To address such questions, Metallosphaera sedula vesicle formation and function were studied under lithoautotrophic conditions. Energy deprivation was evaluated and found to stimulate vesicle synthesis while energy excess repressed vesicle formation. Purified vesicles adhered rapidly to the primary copper ore, chalcopyrite, and formed compact monolayers. These vesicle monolayers catalyzed iron oxidation and solubilization of mineralized copper in a time-dependent process. As these activities were membrane associated, their potential transfer by vesicle fusion to M. sedula cells was examined. Fluorophore-loaded vesicles rapidly transferred fluorescence under environmentally relevant conditions. Vesicles from a related archaeal species were also capable of fusion; however, this process was species-specific as vesicles from different species were incapable of fusion. In addition, vesicles produced by a copper-resistant M. sedula cell line transferred copper extrusion capacity along with improved viability over mutant M. sedula cells lacking copper transport proteins. Membrane vesicles may therefore play a role in modulating energy-related traits in geochemical environments by fusion-mediated protein delivery.
Collapse
Affiliation(s)
- Tyler B Johnson
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Collin Mach
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Ryan Grove
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Robert Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Kevin Van Cott
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Paul Blum
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| |
Collapse
|
13
|
Unexpected aspects in the dynamics of horizontal gene transfer of prokaryotes: the impact of outer membrane vesicles. Wien Med Wochenschr 2018; 168:307-313. [PMID: 30084090 PMCID: PMC6132559 DOI: 10.1007/s10354-018-0642-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
Horizontal gene transfer (HGT) was observed by incubation of an amino acid-deficient strain of Escherichia coli (AB1157) with particles gained from an oligotrophic environment, when all deficiencies were restored with frequencies up to 1.94 × 10−5 and no preference for a single marker. Hence, the DNA transfer to the revertant cells was carried out by generalized transduction. Those particles display structural features of outer membrane vesicles (OMVs) but contain high amounts of DNA. Due to a process called serial transduction, the revertant’s particles were likewise transferring genetic information to deficient E. coli AB1157 cells. These results indicate a new way of HGT, in which mobilized DNA is transferred in particles from the donor to the recipient. Extracted OMV-associated DNA of known alpha-, and gamma-proteobacterials, Ahrensia kielensis and Pseudoalteromonas marina, respectively, was larger than 30 kbp with all sequences in single copy and identified as prokaryotic sequences. Inserted viral sequences were not found.
Collapse
|
14
|
Membrane vesicles and horizontal gene transfer in prokaryotes. Curr Opin Microbiol 2017; 38:16-21. [DOI: 10.1016/j.mib.2017.03.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022]
|
15
|
Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, Futamata H. Interaction of Bacterial Membrane Vesicles with Specific Species and Their Potential for Delivery to Target Cells. Front Microbiol 2017; 8:571. [PMID: 28439261 PMCID: PMC5383704 DOI: 10.3389/fmicb.2017.00571] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/20/2017] [Indexed: 12/01/2022] Open
Abstract
Membrane vesicles (MVs) are secreted from a wide range of microbial species and transfer their content to other cells. Although MVs play critical roles in bacterial communication, whether MVs selectively interact with bacterial cells in microbial communities is unclear. In this study, we investigated the specificity of the MV-cell interactions and evaluated the potential of MVs to target bacterial cells for delivery. MV association with bacterial cells was examined using a fluorescent membrane dye to label MVs. MVs derived from the enterobacterium Buttiauxella agrestis specifically interacted with cells of the parent strain but interacted less specifically with those of other genera tested in this study. Electron microscopic analyses showed that MVs were not only attached on B. agrestis cells but also fused to them. The interaction energy, which was characterized by hydrodynamic diameter and zeta potential based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, was significant low between MVs and cells in B. agrestis, compared to those between B. agrestis MVs and cells of other genera. Similar specific interaction was also occurred between B. agrestis MVs and cells of six other species belonging to Buttiauxella spp. B. agrestis harboring plasmid pBBR1MCS-1 secreted plasmid-containing MVs (p-MVs), and plasmid DNA in p-MVs was transferred to the same species. Moreover, antibiotic-associated MVs enabled effective killing of target species; the survival rate of B. agrestis was lower than those of Escherichia coli and Pseudomonas aeruginosa in the presence of gentamicin-associated MVs derived from B. agrestis. Altogether, we provide the evidence that MVs selectively interact with target bacterial cells and offer a new avenue for controlling specific bacterial species using bacterial MVs in microbial communities.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan
| | - Yusuke Hasegawa
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Japan Collection of Microorganisms, RIKEN BioResource CenterTsukuba, Japan
| | - Kotaro Takaki
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka UniversityHamamatsu, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource CenterTsukuba, Japan
| | - Kazuhide Kimbara
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka UniversityHamamatsu, Japan
| | - Hiroyuki Futamata
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Research Institute of Green Science and Technology, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
16
|
Jahed Z, Shahsavan H, Verma MS, Rogowski JL, Seo BB, Zhao B, Tsui TY, Gu FX, Mofrad MRK. Bacterial Networks on Hydrophobic Micropillars. ACS NANO 2017; 11:675-683. [PMID: 28045495 DOI: 10.1021/acsnano.6b06985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria have evolved as intelligent microorganisms that can colonize and form highly structured and cooperative multicellular communities with sophisticated singular and collective behaviors. The initial stages of colony formation and intercellular communication are particularly important to understand and depend highly on the spatial organization of cells. Controlling the distribution and growth of bacterial cells at the nanoscale is, therefore, of great interest in understanding the mechanisms of cell-cell communication at the initial stages of colony formation. Staphyloccocus aureus, a ubiquitous human pathogen, is of specific clinical importance due to the rise of antibiotic resistant strains of this species, which can cause life-threatening infections. Although several methods have attempted to pattern bacterial cells onto solid surfaces at single cell resolution, no study has truly controlled the 3D architectures of growing colonies. Herein, we present a simple, low-cost method to pattern S. aureus bacterial colonies and control the architecture of their growth. Using the wetting properties of micropatterened poly(dimethyl siloxane) platforms, with help from the physiological activities of the S. aureus cells, we fabricated connected networks of bacterial microcolonies of various sizes. Unlike conventional heterogeneous growth of biofilms on surfaces, the patterned S. aureus microcolonies in this work grow radially from nanostrings of a few bacterial cells, to form micrometer-thick rods when provided with a nutrient rich environment. This simple, efficient, and low-cost method can be used as a platform for studies of cell-cell communication phenomena, such as quorum sensing, horizontal gene transfer, and metabolic cross-feeding especially during initial stages of colony formation.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley , 208A Stanley Hall, Berkeley, California 94720-1762, United States
| | - Hamed Shahsavan
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mohit S Verma
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jacob L Rogowski
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Brandon B Seo
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Frank X Gu
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley , 208A Stanley Hall, Berkeley, California 94720-1762, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
17
|
Hasegawa Y, Futamata H, Tashiro Y. Complexities of cell-to-cell communication through membrane vesicles: implications for selective interaction of membrane vesicles with microbial cells. Front Microbiol 2015; 6:633. [PMID: 26191043 PMCID: PMC4490254 DOI: 10.3389/fmicb.2015.00633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yusuke Hasegawa
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Hiroyuki Futamata
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Yosuke Tashiro
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| |
Collapse
|
18
|
Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 2015; 6:6238. [PMID: 25703793 DOI: 10.1038/ncomms7238] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bacteria frequently exchange metabolites by diffusion through the extracellular environment, yet it remains generally unclear whether bacteria can also use cell-cell connections to directly exchange nutrients. Here we address this question by engineering cross-feeding interactions within and between Acinetobacter baylyi and Escherichia coli, in which two distant bacterial species reciprocally exchange essential amino acids. We establish that in a well-mixed environment E. coli, but likely not A. baylyi, can connect to other bacterial cells via membrane-derived nanotubes and use these to exchange cytoplasmic constituents. Intercellular connections are induced by auxotrophy-causing mutations and cease to establish when amino acids are externally supplied. Electron and fluorescence microscopy reveal a network of nanotubular structures that connects bacterial cells and enables an intercellular transfer of cytoplasmic materials. Together, our results demonstrate that bacteria can use nanotubes to exchange nutrients among connected cells and thus help to distribute metabolic functions within microbial communities.
Collapse
|
19
|
Kharina A, Podolich O, Faidiuk I, Zaika S, Haidak A, Kukharenko O, Zaets I, Tovkach F, Reva O, Kremenskoy M, Kozyrovska N. Temperate bacteriophages collected by outer membrane vesicles inKomagataeibacter intermedius. J Basic Microbiol 2015; 55:509-13. [DOI: 10.1002/jobm.201400711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/07/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Alla Kharina
- Institute of Biology of Taras Shevchenko National University of Kyiv; Kyiv Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Iuliia Faidiuk
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Sergiy Zaika
- Institute of Biology of Taras Shevchenko National University of Kyiv; Kyiv Ukraine
| | - Andriy Haidak
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Fedor Tovkach
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Oleg Reva
- Department of Biochemistry; Bioinformatics and Computational Biology Unit; University of Pretoria; Pretoria South Africa
| | | | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| |
Collapse
|
20
|
Velimirov B, Hagemann S. Mobilizable bacterial DNA packaged into membrane vesicles induces serial transduction. Mob Genet Elements 2014; 1:80-81. [PMID: 22016850 DOI: 10.4161/mge.1.1.15724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 11/19/2022] Open
Abstract
Experiments where the amino acid deficient strain E. coli AB1157 was exposed to a particle fraction harvested from a marine oligotrophic environment, ranging in diameter size between 100-130 nm indicated evidence for horizontal gene transfer resulting in revertant cells with restoration of all genetic deficiencies with frequencies up to 1.94 × 10(-5). None of the markers was preferentially transferred indicating that the DNA-transfer is performed by generalized transduction. The highest transfer frequency obtained for single markers was 1.04 × 10(-2). All revertant strains were able to produce particles of comparable size that were again infectious, appearing at the beginning of the stationary phase. Ultra structural investigation showed a structural resemblance with membrane vesicles, however, Field Gel Electrophoresis indicated that the DNA content of some of the particles was 370 kbp; much higher than that of the so far known previously described membrane vesicles providing evidence of a new mechanism for horizontal gene transfer.
Collapse
Affiliation(s)
- Branko Velimirov
- Centre of Anatomy and Cell Biology; A.G. Microbiology, Molecular Biology and Virology; Medical University of Vienna; Vienna, Austria
| | | |
Collapse
|
21
|
Frohlich KM, Hua Z, Quayle AJ, Wang J, Lewis ME, Chou CW, Luo M, Buckner LR, Shen L. Membrane vesicle production by Chlamydia trachomatis as an adaptive response. Front Cell Infect Microbiol 2014; 4:73. [PMID: 24959424 PMCID: PMC4050530 DOI: 10.3389/fcimb.2014.00073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023] Open
Abstract
Bacteria have evolved specific adaptive responses to cope with changing environments. These adaptations include stress response phenotypes with dynamic modifications of the bacterial cell envelope and generation of membrane vesicles (MVs). The obligate intracellular bacterium, Chlamydia trachomatis, typically has a biphasic lifestyle, but can enter into an altered growth state typified by morphologically aberrant chlamydial forms, termed persistent growth forms, when induced by stress in vitro. How C. trachomatis can adapt to a persistent growth state in host epithelial cells in vivo is not well understood, but is an important question, since it extends the host-bacterial relationship in vitro and has thus been indicated as a survival mechanism in chronic chlamydial infections. Here, we review recent findings on the mechanistic aspects of bacterial adaptation to stress with a focus on how C. trachomatis remodels its envelope, produces MVs, and the potential important consequences of MV production with respect to host-pathogen interactions. Emerging data suggest that the generation of MVs may be an important mechanism for C. trachomatis intracellular survival of stress, and thus may aid in the establishment of a chronic infection in human genital epithelial cells.
Collapse
Affiliation(s)
- Kyla M Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Ziyu Hua
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorder, The Children's Hospital, Chongqing Medical University Chongqing, China
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Maria E Lewis
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Chau-wen Chou
- Department of Chemistry, University of Georgia Athens, GA, USA
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Lyndsey R Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
22
|
Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol 2014; 80:3469-83. [PMID: 24657872 PMCID: PMC4018862 DOI: 10.1128/aem.04248-13] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) are continually released from a range of bacterial species. Numerous functions of OMVs, including the facilitation of horizontal gene transfer (HGT) processes, have been proposed. In this study, we investigated whether OMVs contribute to the transfer of plasmids between bacterial cells and species using Gram-negative Acinetobacter baylyi as a model system. OMVs were extracted from bacterial cultures and tested for the ability to vector gene transfer into populations of Escherichia coli and A. baylyi, including naturally transformation-deficient mutants of A. baylyi. Anti-double-stranded DNA (anti-dsDNA) antibodies were used to determine the movement of DNA into OMVs. We also determined how stress affected the level of vesiculation and the amount of DNA in vesicles. OMVs were further characterized by measuring particle size distribution (PSD) and zeta potential. Transmission electron microscopy (TEM) and immunogold labeling were performed using anti-fluorescein isothiocyanate (anti-FITC)-conjugated antibodies and anti-dsDNA antibodies to track the movement of FITC-labeled and DNA-containing OMVs. Exposure to OMVs isolated from plasmid-containing donor cells resulted in HGT to A. baylyi and E. coli at transfer frequencies ranging from 10(-6) to 10(-8), with transfer efficiencies of approximately 10(3) and 10(2) per μg of vesicular DNA, respectively. Antibiotic stress was shown to affect the DNA content of OMVs as well as their hydrodynamic diameter and zeta potential. Morphological observations suggest that OMVs from A. baylyi interact with recipient cells in different ways, depending on the recipient species. Interestingly, the PSD measurements suggest that distinct size ranges of OMVs are released from A. baylyi.
Collapse
Affiliation(s)
- Shweta Fulsundar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, India
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Klaus Harms
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Gøril E. Flaten
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Pål J. Johnsen
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | | | - Kaare M. Nielsen
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
- Genøk-Center for Biosafety, Research Park, Tromsø, Norway
| |
Collapse
|
23
|
Jansen G, Barbosa C, Schulenburg H. Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance. Drug Resist Updat 2014; 16:96-107. [PMID: 24594007 DOI: 10.1016/j.drup.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic treatments increasingly fail due to rapid dissemination of drug resistance. Comparative genomics of clinical isolates highlights the role of de novo adaptive mutations and horizontal gene transfer (HGT) in the acquisition of resistance. Yet it cannot fully describe the selective pressures and evolutionary trajectories that yielded today's problematic strains. Experimental evolution offers a compelling addition to such studies because the combination of replicated experiments under tightly controlled conditions with genomics of intermediate time points allows real-time reconstruction of evolutionary trajectories. Recent studies thus established causal links between antibiotic deployment therapies and the course and timing of mutations, the cost of resistance and the likelihood of compensating mutations. They particularly underscored the importance of long-term effects. Similar investigations incorporating horizontal gene transfer (HGT) are wanting, likely because of difficulties associated with its integration into experiments. In this review, we describe current advances in experimental evolution of antibiotic resistance and reflect on ways to incorporate horizontal gene transfer into the approach. We contend it provides a powerful tool for systematic and highly controlled dissection of evolutionary paths to antibiotic resistance that needs to be taken into account for the development of sustainable anti-bacterial treatment strategies.
Collapse
Affiliation(s)
- Gunther Jansen
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany.
| | - Camilo Barbosa
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
24
|
Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science 2014; 343:183-6. [PMID: 24408433 DOI: 10.1126/science.1243457] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many heterotrophic bacteria are known to release extracellular vesicles, facilitating interactions between cells and their environment from a distance. Vesicle production has not been described in photoautotrophs, however, and the prevalence and characteristics of vesicles in natural ecosystems is unknown. Here, we report that cultures of Prochlorococcus, a numerically dominant marine cyanobacterium, continuously release lipid vesicles containing proteins, DNA, and RNA. We also show that vesicles carrying DNA from diverse bacteria are abundant in coastal and open-ocean seawater samples. Prochlorococcus vesicles can support the growth of heterotrophic bacterial cultures, which implicates these structures in marine carbon flux. The ability of vesicles to deliver diverse compounds in discrete packages adds another layer of complexity to the flow of information, energy, and biomolecules in marine microbial communities.
Collapse
Affiliation(s)
- Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hagemann S, Stöger L, Kappelmann M, Hassl I, Ellinger A, Velimirov B. DNA-bearing membrane vesicles produced byAhrensia kielensisandPseudoalteromonas marina. J Basic Microbiol 2013; 54:1062-72. [DOI: 10.1002/jobm.201300376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sylvia Hagemann
- Center of Pathobiochemistry and Genetics; Medical University of Vienna; Vienna Austria
| | - Lisa Stöger
- Center of Anatomy and Cell Biology; Medical University of Vienna; Vienna Austria
| | - Melanie Kappelmann
- Center of Anatomy and Cell Biology; Medical University of Vienna; Vienna Austria
| | - Ingrid Hassl
- Center of Pathobiochemistry and Genetics; Medical University of Vienna; Vienna Austria
| | - Adolf Ellinger
- Center of Anatomy and Cell Biology; Medical University of Vienna; Vienna Austria
| | - Branko Velimirov
- Center of Pathobiochemistry and Genetics; Medical University of Vienna; Vienna Austria
| |
Collapse
|
26
|
Amábile-Cuevas CF. Antibiotic resistance: from Darwin to Lederberg to Keynes. Microb Drug Resist 2012; 19:73-87. [PMID: 23046150 DOI: 10.1089/mdr.2012.0115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence and spread of antibiotic-resistant bacteria reflects both, a gradual, completely Darwinian evolution, which mostly yields slight decreases in antibiotic susceptibility, along with phenotypes that are not precisely characterized as "resistance"; and sudden changes, from full susceptibility to full resistance, which are driven by a vast array of horizontal gene transfer mechanisms. Antibiotics select for more than just antibiotic resistance (i.e., increased virulence and enhanced gene exchange abilities); and many non-antibiotic agents or conditions select for or maintain antibiotic resistance traits as a result of a complex network of underlying and often overlapping mechanisms. Thus, the development of new antibiotics and thoughtful, integrated anti-infective strategies is needed to address the immediate and long-term threat of antibiotic resistance. Since the biology of resistance is complex, these new drugs and strategies will not come from free-market forces, or from "incentives" for pharmaceutical companies.
Collapse
|
27
|
Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 2012; 10:472-82. [PMID: 22683880 DOI: 10.1038/nrmicro2802] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell's genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador A1B 3X9, Canada.
| | | | | |
Collapse
|