1
|
Imfeld G, Meite F, Ehrhart L, Fournier B, Heger TJ. Dissipation of pesticides and responses of bacterial, fungal and protistan communities in a multi-contaminated vineyard soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116994. [PMID: 39236652 DOI: 10.1016/j.ecoenv.2024.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions. Pesticide dissipation half-lives ranged from 27 to over 300 days, depending on the physicochemical properties of the pesticides and the soil conditions. In both autoclaved and non-autoclaved soil experiments, over 50 % of hydrophobic pesticides (dimethomorph > isoxaben > simazine = atrazine = carbendazim) dissipated within 200 days at 20°C and 30°C. However, the contribution of biodegradation to the overall dissipation of soluble pesticides (rac-metalaxyl > isoproturon = pyrimethanil > S-metolachlor) increased to over 75 % at 30°C and 40 % water content. This suggests that soluble pesticides became more bioavailable, with degradation activity increasing with higher temperature and soil water content. In contrast, the primary process contributing to the dissipation of hydrophobic pesticides was sequestration to soil. High-throughput amplicon sequencing analysis indicated that water content, temperature, and pesticides had domain-specific effects on the diversity and taxonomic composition of bacterial, fungal, and protistan communities. Soil physicochemical properties had a more significant effect than pesticides on the various microbial domains in the vineyard soil. However, pesticide exposure emerged as a secondary factor explaining the variations in microbial communities, with a more substantial effect on protists compared to bacterial and fungal communities. Overall, our results highlight the variability in the dissipation kinetics and processes of pesticides in a multi-contaminated vineyard soil, as well as their effects on bacterial, fungal, and protistan communities.
Collapse
Affiliation(s)
- Gwenaël Imfeld
- Earth & Environment Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Fatima Meite
- Earth & Environment Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, 5 rue Descartes, Strasbourg F-67084, France
| | - Lucas Ehrhart
- Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland
| | - Bertrand Fournier
- Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland; Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany
| | - Thierry J Heger
- Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland
| |
Collapse
|
2
|
Karpouzas DG, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pesticides constitute an integral part of modern agriculture. However, there are still concerns about their effects on non-target organisms. To address this the European Commission has imposed a stringent regulatory scheme for new pesticide compounds. Assessment of the aquatic toxicity of pesticides is based on a range of advanced tests. This does not apply to terrestrial ecosystems, where the toxicity of pesticides on soil microorganisms, is based on an outdated and crude test (N mineralization). This regulatory gap is reinforced by the recent methodological and standardization advances in soil microbial ecology. The inclusion of such standardized tools in a revised risk assessment scheme will enable the accurate estimation of the toxicity of pesticides on soil microorganisms and on associated ecosystem services. In this review we (i) summarize recent work in the assessment of the soil microbial toxicity of pesticides and point to ammonia-oxidizing microorganisms (AOM) and arbuscular mycorrhizal fungi (AMF) as most relevant bioindicator groups (ii) identify limitations in the experimental approaches used and propose mitigation solutions, (iii) identify scientific gaps and (iv) propose a new risk assessment procedure to assess the effects of pesticides on soil microorganisms.
Collapse
Affiliation(s)
- Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology , Laboratory of Plant and Environmental Biotechnology, University of Thessaly , Viopolis 41500 , Larissa , Greece
| | - Zisis Vryzas
- Department of Agricultural Development , Democritus University of Thrace , Orestiada , Greece
| | | |
Collapse
|
3
|
Sim JXF, Doolette CL, Vasileiadis S, Drigo B, Wyrsch ER, Djordjevic SP, Donner E, Karpouzas DG, Lombi E. Pesticide effects on nitrogen cycle related microbial functions and community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150734. [PMID: 34606862 DOI: 10.1016/j.scitotenv.2021.150734] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of pesticides in agriculture raises concerns about their potential negative impact on soil microorganisms, being the key drivers of nutrient cycling. Most studies have investigated the effect of a single pesticide on a nutrient cycling in single soil type. We, for the first time, investigated the effect of 20 commercial pesticides with different mode of actions, applied at their recommended dose and five times their recommended dose, on nitrogen (N) microbial cycling in three different agricultural soils from southern Australian. Functional effects were determined by measuring soil enzymatic activities of β-1,4-N-acetyliglucosaminidase (NAG) and l-leucine aminopeptidase (LAP), potential nitrification (PN), and the abundance of functional genes involved in N cycling (amoA and nifH). Effects on nitrifiers diversity were determined with amplicon sequencing. Overall, the pesticides effect on N microbial cycling was dose-independent and soil specific. The fungicides flutriafol and azoxystrobin, the herbicide chlorsulfuron and the insecticide fipronil induced a significant reduction in PN and β-1,4-N-acetylglucosaminidase activity (P < 0.05) (NAG) in the alkaline loam soil with low organic carbon content i.e. a soil with properties which typically favors pesticide bioavailability and therefore potential toxicity. For the nitrifier community, the greatest pesticide effects were on the most dominant Nitrososphaeraceae (ammonia-oxidizing archaea; AOA) whose abundance increased significantly compared to the less dominant AOA and other nitrifiers. The inhibiting effects were more evident in the soil samples treated with fungicides. By testing multiple pesticides in a single study, our findings provide crucial information that can be used for pesticide hazard assessment.
Collapse
Affiliation(s)
- Jowenna X F Sim
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Casey L Doolette
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Viopolis 41500, Greece
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ethan R Wyrsch
- iThree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Viopolis 41500, Greece
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; University of South Australia, UniSA STEM, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
4
|
Jia W, Li N, Yang T, Dai W, Jiang J, Chen K, Xu X. Bioaugmentation of Atrazine-Contaminated Soil With Paenarthrobacter sp. Strain AT-5 and Its Effect on the Soil Microbiome. Front Microbiol 2021; 12:771463. [PMID: 34956132 PMCID: PMC8692732 DOI: 10.3389/fmicb.2021.771463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Atrazine, a triazine herbicide, is widely used around the world. The residue of atrazine due to its application in the fore-rotating crop maize has caused phytotoxicity to the following crop sweet potato in China. Bioaugmentation of atrazine-contaminated soil with atrazine-degrading strains is considered as the most potential method to remove atrazine from soil. Nevertheless, the feasibility of bioaugmentation and its effect on soil microbiome still need investigation. In this study, Paenarthrobacter sp. AT-5, an atrazine-degrading strain, was inoculated into agricultural soils contaminated with atrazine to investigate the bioaugmentation process and the reassembly of the soil microbiome. It was found that 95.9% of 5 mg kg−1 atrazine was removed from the soils when inoculated with strain AT-5 with 7 days, and the phytotoxicity of sweet potato caused by atrazine was significantly alleviated. qRT-PCR analysis revealed that the inoculated strain AT-5 survived well in the soils and maintained a relatively high abundance. The inoculation of strain AT-5 significantly affected the community structure of the soil microbiome, and the abundances of bacteria associated with atrazine degradation were improved.
Collapse
Affiliation(s)
- Weibin Jia
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ning Li
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tunan Yang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weixian Dai
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Chen
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Bravo G, Vega-Celedón P, Gentina JC, Seeger M. Bioremediation by Cupriavidus metallidurans Strain MSR33 of Mercury-Polluted Agricultural Soil in a Rotary Drum Bioreactor and Its Effects on Nitrogen Cycle Microorganisms. Microorganisms 2020; 8:E1952. [PMID: 33316980 PMCID: PMC7763483 DOI: 10.3390/microorganisms8121952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
Nitrogen cycle microorganisms are essential in agricultural soils and may be affected by mercury pollution. The aims of this study are to evaluate the bioremediation of mercury-polluted agricultural soil using Cupriavidus metallidurans MSR33 in a rotary drum bioreactor (RDB) and to characterize the effects of mercury pollution and bioremediation on nitrogen cycle microorganisms. An agricultural soil was contaminated with mercury (II) (20-30 ppm) and subjected to bioremediation using strain MSR33 in a custom-made RDB. The effects of mercury and bioremediation on nitrogen cycle microorganisms were studied by qPCR. Bioremediation in the RDB removed 82% mercury. MSR33 cell concentrations, thioglycolate, and mercury concentrations influence mercury removal. Mercury pollution strongly decreased nitrogen-fixing and nitrifying bacterial communities in agricultural soils. Notably, after soil bioremediation process nitrogen-fixing and nitrifying bacteria significantly increased. Diverse mercury-tolerant strains were isolated from the bioremediated soil. The isolates Glutamicibacter sp. SB1a, Brevundimonas sp. SB3b, and Ochrobactrum sp. SB4b possessed the merG gene associated with the plasmid pTP6, suggesting the horizontal transfer of this plasmid to native gram-positive and gram-negative bacteria. Bioremediation by strain MSR33 in an RDB is an attractive and innovative technology for the clean-up of mercury-polluted agricultural soils and the recovery of nitrogen cycle microbial communities.
Collapse
Affiliation(s)
- Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Juan Carlos Gentina
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile;
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
6
|
Fan X, Chang W, Sui X, Liu Y, Song G, Song F, Feng F. Changes in rhizobacterial community mediating atrazine dissipation by arbuscular mycorrhiza. CHEMOSPHERE 2020; 256:127046. [PMID: 32438129 DOI: 10.1016/j.chemosphere.2020.127046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Although it was well known that arbuscular mycorrhizal fungus (AMF) inoculation significantly increased atrazine dissipation in the soil, the effect of AMF on bacterial community, especially potential atrazine-degrading bacteria mediating atrazine dissipation has been overlooked. In the present study, there were four different treatments: Funnelliformis mosseae inoculation with or without atrazine; and non-AMF inoculation with or without atrazine. F. mosseae significantly increased atrazine dissipation rate from 28.7% to 53.3%. Then 16S rRNA gene sequencing results indicated that bacteria community differed significantly by F. mosseae inoculation and atrazine addition. The Shannon index decreased significantly with AMF and atrazine at phylum and family level, and significant inhibition of atrazine on evenness was also observed. LEFSe analysis revealed that Terrimonas and Arthrobacter were significantly associated with F. mosseae, as well as unidentified_Nitrospiraceae associated with atrazine addition. There are several bacterial taxa associated with both F. mosseae inoculation and atrazine addition. Totally, twelve atrazine-degrading bacterial genera (>0.10%) were identified. When atrazine was added, the abundance of Arthrobacter, Burkholderia, Mycobacterium and Streptomyces increased in F. mosseae inoculation treatment, but Nocardioides, Pseudomonas, Bradyrhizobium, Rhizobium, Rhodobacter, Methylobacterium, Bosea and Shinella decreased. In the presence of atrazine, activities of dehydrogenase, urease, acid and alkaline phosphatase in F. mosseae inoculation treatment were significantly higher than those in non-inoculation. However, there was no significant relationship between bacterial community and any soil enzyme activity in four treatments. Our findings reveal the potential relationship between soil bacterial community and AMF inoculation during atrazine dissipation.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Northeast Forestry University, Harbin, 150040, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yufei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Ge Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Fujuan Feng
- Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
7
|
Kumari A, Singh N, Ramakrishnan B. Parameters affecting azoxystrobin and imidacloprid degradation in biobed substrates in the North Indian tropical environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:843-857. [PMID: 31271332 DOI: 10.1080/03601234.2019.1633857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study reports degradation of azoxystrobin (AZOXY) and imidacloprid (IMIDA) in the rice straw (RS)/corn cob (CC) and peat (P)/compost (C)-based biomixtures. The effect of biomixture preconditioning (10 days incubation prior to pesticide application), pesticide concentration and moisture content was evaluated. Results suggested that conditioning of biomixture greatly affected IMIDA degradation where half-life (t1/2) was reduced by 5-9 times. This was attributed to higher microbial biomass carbon content and dehydrogenase activity in the conditioned biomixtures. Pesticide application in the conditioned biomixture did not show any negative impact on soil microbial parameters. Both pesticides degraded at faster rate in the rice straw-based biomixtures than in the corn cob-based biomixtures. Degradation slowed down with increase in initial concentration of pesticides in biomixture and 1.6-3.0 (AZOXY) and 2.4-3.6 (IMIDA) times increase in t1/2 values was observed. The moisture content of biomixture showed positive effect on degradation which increased when moisture content was increased from 60 to 80% water holding capacity. The effect was significant for IMIDA degradation in the corn cob-based biomixtures and AZOXY degradation in the peat biomixtures. The rice straw-based biomixtures were better in degrading AZOXY and IMIDA and can be used in biopurification systems.
Collapse
Affiliation(s)
- Anu Kumari
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
8
|
Du Z, Zhu Y, Zhu L, Zhang J, Li B, Wang J, Wang J, Zhang C, Cheng C. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:571-578. [PMID: 30149356 DOI: 10.1016/j.ecoenv.2018.08.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Mesotrione (2-[4-(methylsulfonyl)-2-nithobenzoyl]-1, 3-cyclohexanedione) is a selective triketone herbicide that has been widely used in corn production for the past 15 years. However, its potential for risk to soil ecosystems is poorly documented. The present study investigated the soil enzyme activity and soil microbial community responses to a 20 days' mesotrione exposure at doses of 0.1, 1.0 and 5.0 mg/kg. On days 2, 5, 10 and 20, activities of soil β-glucosidase, urease and acid phosphatase, soil microbe abundances, soil microbial community structure and abundance of the AOA-amoA and AOB-amoA genes were measured. Results showed that activities of urease and acid phosphatase were relatively stable, with no difference found between the mesotrione-treated group and control at the end of exposure. But β-glucosidase activity was reduced in the 5.0 mg/kg mesotrione treatment. In the 1.0 and 5.0 mg/kg mesotrione-treated soil, abundance of bacteria, fungi and actinomycetes all were reduced. In the 0.1 mg/kg mesotrione-treated soil, only fungi abundance was reduced by the end of the exposure. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed soil microbial community structure could be affected by mesotrione at all experimental doses, and microbial diversity declined slightly after mesotrione exposure. Abundance of AOA-amoA and AOB-amoA genes were reduced markedly in 1.0 and 5.0 mg/kg mesotrione-treated soil. The present study suggests that mesotrione at higher doses might induce negative impacts on soil microbes, a finding which merits additional research and which should be accounted for when application of this herbicide is considered.
Collapse
Affiliation(s)
- Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Yanyan Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Ji Zhang
- College of Mechanical and Electronic Engineering, Key Laboratory of Horticultural Machinery and Equipment of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Chao Cheng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| |
Collapse
|
9
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
10
|
Ju C, Xu J, Wu X, Dong F, Liu X, Tian C, Zheng Y. Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:655-663. [PMID: 28763662 DOI: 10.1016/j.scitotenv.2017.07.146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
The ecological risks of widely used hexaconazole on soil microbes remain obscure. Thus, a 3-month-long experiment using two typical paddy soils in China (red soil and black soil) was conducted to assess the effects of hexaconazole (0.6 (T1) and 6 (T10) mgkg-1 soil) on the overall microbial biomass, respiratory activity, bacterial abundance and community structure, and nitrogen transformations. Soil was sampled after 7, 15, 30, 60, and 90days of incubation. The half-lives of the two doses of hexaconazole varied from 122 to 135d in the black soil and from 270 to 845d in the red soil. Both dosages of hexaconazole did not affect NH+4-N content, N2-fixing bacterial populations, total bacterial diversity, and community structure, but transitorily decreased the populations of total bacteria in both soil types. In the black soil, T10 negatively affected microbial biomass carbon (MBC) and soil basal respiration (RB), but transitorily increased NO-3-N concentration and ammonia-oxidizing bacteria populations, while T1 had almost no effect on most of the indicators. As for red soil, both concentrations of fungicide significantly, but transitorily, inhibited MBC and RB, while only T10 had a relatively long stimulatory effect on NO-3-N concentration and ammonia-oxidizing archaea populations. This study showed that over application of hexaconazole is indeed harmful to soil microorganisms and may reduce soil quality and increase the risk of nitrogen loss in paddy soils.
Collapse
Affiliation(s)
- Chao Ju
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyan Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
12
|
Shao H, Zhang Y. Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci Rep 2017; 7:5521. [PMID: 28717209 PMCID: PMC5514074 DOI: 10.1038/s41598-017-05923-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022] Open
Abstract
Considering the fact that biopesticides are increasingly used to replace synthetic pesticides in pest control, it is necessary to assess their ecotoxicity and especially their non-target effects on soil microorganisms, which is largely unknown. In this study, the effects of the synthetic pesticide carbendazim and the biopesticides (cantharidin and norcantharidin) on soil microbial parameters in a silt loam soil were evaluated. By using commercial formulations at the recommended and higher rates, both cantharidin and norcantharidin induced adverse effects on soil invertase, phosphatase activities and fungal gene structure, but these changes were transient. After about two weeks, the harmful effects owing to the application of pesticides phased out and eventually became comparable with non-treated samples. The degradation of cantharidin and norcantharidin was rapid and can be completed within a few days in the soil. None of the three pesticides caused significant shifts in urease activity. This study provides a comprehensive assessment of the soil microbial toxicity of these biopesticides for reasonable and efficient usage.
Collapse
Affiliation(s)
- Hainan Shao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Mauffret A, Baran N, Joulian C. Effect of pesticides and metabolites on groundwater bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:879-887. [PMID: 27838578 DOI: 10.1016/j.scitotenv.2016.10.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
We assessed the effect of pesticides, especially commonly detected herbicides, on bacterial communities in groundwater. To this end, we used a combined approach with i) triazine-spiked experiments at environmentally relevant concentrations (1 and 10μg/L) in waters with contrasting contamination histories, and ii) in situ monitoring in a rural aquifer, where many additional biotic and abiotic parameters also affect the community. Microbial community was characterized by fingerprinting techniques (CE-SSCP), gene presence (atzA/B/C/D/E/F and amoA genes) and abundance (16S RNA, napA and narG genes). During triazine-spiked experiments, the bacterial community structure in reference water was modified following an exposure to atrazine (ATZ) and/or its metabolite desethylatrazine (DEA) at 1μg/L; in historically-contaminated water, the bacterial community structure was modified following an exposure to 10μg/L ATZ/DEA. Similarly, biodiversity indices and biomass in the reference water appeared affected at lower triazine concentrations than in the historically-contaminated water, though these end-points are less sensitive than the community structure. Our results thus suggest that the history of contamination induced a community tolerance to the tested triazines. ATZ and DEA were not degraded during the experiment and this was consistent with the absence of atz genes involved in their degradation in none of the tested conditions. In field monitoring, triazines that represent a historical and diffuse contamination of groundwater, participate in the microbial community structure, confirming the triazine effect observed under laboratory conditions. Other herbicides, such as chloroacetanilides that are applied today, did not appear to affect the whole community structure; they however induced a slight, but significant, increase in the abundance of nitrate-reducing bacteria. To our best knowledge, this is the first study on the microbial ecotoxicology of pesticides and their metabolites at environmentally relevant concentrations in groundwater.
Collapse
Affiliation(s)
| | - Nicole Baran
- The French Geological Survey (BRGM), Orléans, France
| | | |
Collapse
|
14
|
Scheurer M, Brauch HJ, Schmidt CK, Sacher F. Occurrence and fate of nitrification and urease inhibitors in the aquatic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:999-1010. [PMID: 27058057 DOI: 10.1039/c6em00014b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nitrification and urease inhibitors (NUIs) decelerate the bacterial oxidation of nitrogen species by suppressing the activity of soil microorganisms. Thus, nitrogen losses can be limited and the efficiency of nitrogen fertilizers can be increased. After application NUI transfers to surface water may occur through leaching or surface run-off. In order to assess the occurrence of nitrification and urease inhibitors in the aquatic environment a multi-analyte high-performance liquid chromatography-mass spectrometry method was developed. 1H-1,2,4-Triazole and dicyandiamide (DCD) were detected for the first time in German surface waters. Only at a few sites 1H-1,2,4-triazole has been episodically detected with concentrations up to the μg L(-1)-range. DCD was ubiquitously present in German surface waters. An industrial site was identified as the point source of DCD being responsible for exceptionally high DCD concentrations of up to 7.2 mg L(-1) in close proximity to the point of discharge. Both compounds were also detected in at least one wastewater treatment plant effluent, but their concentrations in surface waters did not correlate with those of typical markers for domestic wastewater. Other NUIs were not detected in any of the samples. Laboratory-scale batch tests proved that 1H-1,2,4-triazole and DCD are not readily biodegradable, are not prone to hydrolysis and do not tend to adsorb onto soil particles. Ozonation and activated carbon filtration proved to be ineffective for their removal.
Collapse
Affiliation(s)
- Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Heinz-Jürgen Brauch
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | | | - Frank Sacher
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
15
|
Zabaloy MC, Carné I, Viassolo R, Gómez MA, Gomez E. Soil ecotoxicity assessment of glyphosate use under field conditions: microbial activity and community structure of Eubacteria and ammonia-oxidising bacteria. PEST MANAGEMENT SCIENCE 2016; 72:684-91. [PMID: 25960311 DOI: 10.1002/ps.4037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/03/2015] [Accepted: 05/04/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND A plot-scale experiment was conducted to assess the impact of field application rates of glyphosate on soil microbial communities by taking measurements of microbial activity (in terms of substrate-induced respiration and enzyme activity) in parallel with culture-independent approaches to assessing both bacterial abundance and diversity. Two rates of glyphosate, alone or in a mixture with 2,4-dichlorophenoxyacetic acid, were applied directly onto the soil surface, simulating normal use in chemical fallow in no-till systems. RESULTS No consistent rate-dependent responses were observed in the microbial activity parameters investigated in the field plots that were exposed to glyphosate. Denaturant gradient gel electrophoresis (DGGE) of the overall bacterial community (Eubacteria) and ammonia-oxidising bacteria (AOB) revealed no effects of the high rate of glyphosate on the structure of the communities in comparison with the control. No treatment effects were observed on the abundance of Eubacteria shortly after treatment in 2010, while a small but significant difference between the high rate and the control was detected in the first sampling in 2011. The abundance of AOB was relatively low during the study, and treatment effects were undetectable. CONCLUSIONS The absence of negative effects on soil microbial communities in this study suggests that glyphosate use at recommended rates poses low risk to the microbiota.
Collapse
Affiliation(s)
- María C Zabaloy
- Microbial Ecology Laboratory, Departamento de Agronomía (UNS), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Bahía Blanca, Argentina
| | - Ignacio Carné
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 2125, Zavalla, Argentina
| | - Rodrigo Viassolo
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 2125, Zavalla, Argentina
| | - Marisa A Gómez
- Microbial Ecology Laboratory, Departamento de Agronomía (UNS), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Bahía Blanca, Argentina
| | - Elena Gomez
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 2125, Zavalla, Argentina
| |
Collapse
|
16
|
Crouzet O, Poly F, Bonnemoy F, Bru D, Batisson I, Bohatier J, Philippot L, Mallet C. Functional and structural responses of soil N-cycling microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4207-4217. [PMID: 26122568 DOI: 10.1007/s11356-015-4797-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Microbial communities driving the nitrogen cycle contribute to ecosystem services such as crop production and air, soil, and water quality. The responses to herbicide stress of ammonia-oxidizing and ammonia-denitrifying microbial communities were investigated by an analysis of changes in structure-function relationships. Their potential activities, abundances (quantitative PCR), and genetic structure (denaturing gradient gel electrophoresis) were assessed in a microcosm experiment. The application rate (1 × FR, 0.45 μg g(-1) soil) of the mesotrione herbicide did not strongly affect soil N-nutrient dynamics or microbial community structure and abundances. Doses of the commercial product Callisto® (10 × FR and 100 × FR) or pure mesotrione (100 × FR) exceeding field rates induced short-term inhibition of nitrification and a lasting stimulation of denitrification. These effects could play a part in the increase in soil ammonium content and decrease in nitrate contents observed in treated soils. These functional impacts were mainly correlated with abundance shifts of ammonia-oxidizing Bacteria (AOB) and Archaea (AOA) or denitrifying bacteria. The sustained restoration of nitrification activity, from day 42 in the 100 × FR-treated soils, was likely promoted by changes in the community size and composition of AOB, which suggests a leading role, rather than AOA, for soil nitrification restoration after herbicide stress. This ecotoxicological community approach provides a nonesuch multiparameter assessment of responses of N-cycling microbial guilds to pesticide stress.
Collapse
Affiliation(s)
- Olivier Crouzet
- INRA UR 251 PESSAC, Centre Versailles-Grignon, RD 10, 78026, Versailles cedex, France.
| | - Franck Poly
- Ecologie Microbienne, INRA USC 1193 - CNRS UMR 5557, 69622, Villeurbanne, France
- Ecologie Microbienne, Université de Lyon, Université Lyon 1, 69622, Villeurbanne, France
| | - Frédérique Bonnemoy
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | - David Bru
- Agroécologie, INRA, UMR 1347, 17 rue Sully, BP 86510, 21065, Dijon cedex, France
| | - Isabelle Batisson
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | - Jacques Bohatier
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | - Laurent Philippot
- Agroécologie, INRA, UMR 1347, 17 rue Sully, BP 86510, 21065, Dijon cedex, France
| | - Clarisse Mallet
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| |
Collapse
|
17
|
Papadopoulou ES, Tsachidou B, Sułowicz S, Menkissoglu-Spiroudi U, Karpouzas DG. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers. Appl Environ Microbiol 2016; 82:747-55. [PMID: 26590271 PMCID: PMC4711131 DOI: 10.1128/aem.03437-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
Abstract
Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed.
Collapse
Affiliation(s)
- Evangelia S Papadopoulou
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Pesticide Science, Thessaloniki, Greece University of Thessaly, Department of Biochemistry and Biotechnology, Larisa, Greece
| | - Bella Tsachidou
- University of Thessaly, Department of Biochemistry and Biotechnology, Larisa, Greece
| | | | - Urania Menkissoglu-Spiroudi
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Pesticide Science, Thessaloniki, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Larisa, Greece
| |
Collapse
|
18
|
Fuentes S, Ding GC, Cárdenas F, Smalla K, Seeger M. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile. FEMS Microbiol Ecol 2015; 91:fiv110. [PMID: 26362923 DOI: 10.1093/femsec/fiv110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2015] [Indexed: 11/14/2022] Open
Abstract
Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Guo-Chun Ding
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Franco Cárdenas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
19
|
Feld L, Hjelmsø MH, Nielsen MS, Jacobsen AD, Rønn R, Ekelund F, Krogh PH, Strobel BW, Jacobsen CS. Pesticide Side Effects in an Agricultural Soil Ecosystem as Measured by amoA Expression Quantification and Bacterial Diversity Changes. PLoS One 2015; 10:e0126080. [PMID: 25938467 PMCID: PMC4418756 DOI: 10.1371/journal.pone.0126080] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/29/2015] [Indexed: 11/26/2022] Open
Abstract
Background and Methods Assessing the effects of pesticide hazards on microbiological processes in the soil is currently based on analyses that provide limited insight into the ongoing processes. This study proposes a more comprehensive approach. The side effects of pesticides may appear as changes in the expression of specific microbial genes or as changes in diversity. To assess the impact of pesticides on gene expression, we focused on the amoA gene, which is involved in ammonia oxidation. We prepared soil microcosms and exposed them to dazomet, mancozeb or no pesticide. We hypothesized that the amount of amoA transcript decreases upon pesticide application, and to test this hypothesis, we used reverse-transcription qPCR. We also hypothesized that bacterial diversity is affected by pesticides. This hypothesis was investigated via 454 sequencing and diversity analysis of the 16S ribosomal RNA and RNA genes, representing the active and total soil bacterial communities, respectively. Results and Conclusion Treatment with dazomet reduced both the bacterial and archaeal amoA transcript numbers by more than two log units and produced long-term effects for more than 28 days. Mancozeb also inhibited the numbers of amoA transcripts, but only transiently. The bacterial and archaeal amoA transcripts were both sensitive bioindicators of pesticide side effects. Additionally, the numbers of bacterial amoA transcripts correlated with nitrate production in N-amended microcosms. Dazomet reduced the total bacterial numbers by one log unit, but the population size was restored after twelve days. The diversity of the active soil bacteria also seemed to be re-established after twelve days. However, the total bacterial diversity as reflected in the 16S ribosomal RNA gene sequences was largely dominated by Firmicutes and Proteobacteria at day twelve, likely reflecting a halt in the growth of early opportunists and the re-establishment of a more diverse population. We observed no effects of mancozeb on diversity.
Collapse
Affiliation(s)
- Louise Feld
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Copenhagen, Denmark
- * E-mail:
| | - Mathis Hjort Hjelmsø
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Copenhagen, Denmark
| | - Morten Schostag Nielsen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Copenhagen, Denmark
| | - Anne Dorthe Jacobsen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Copenhagen, Denmark
| | - Regin Rønn
- University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, Copenhagen, Denmark
| | - Flemming Ekelund
- University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, Copenhagen, Denmark
| | - Paul Henning Krogh
- University of Aarhus, Department of Bioscience, Section of Soil Fauna Ecology and Ecotoxicology, Silkeborg, Denmark
| | - Bjarne Westergaard Strobel
- University of Copenhagen, Department of Plant and Environmental Sciences, Section of Environmental Chemistry and Physics, Frederiksberg, Denmark
| | - Carsten Suhr Jacobsen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Copenhagen, Denmark
| |
Collapse
|
20
|
Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AAF, Demiate IM, Pileggi SAV, Azevedo RA, Sadowsky MJ, Pileggi M. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α. PLoS One 2014; 9:e99960. [PMID: 24924203 PMCID: PMC4055684 DOI: 10.1371/journal.pone.0099960] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate), and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.
Collapse
Affiliation(s)
- Luiz R. Olchanheski
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Manuella N. Dourado
- Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Flávio L. Beltrame
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Ciências Farmacêuticas, Ponta Grossa, PR, Brazil
| | - Acácio A. F. Zielinski
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ivo M. Demiate
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Engenharia de Alimentos, Ponta Grossa, PR, Brazil
| | - Sônia A. V. Pileggi
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Ricardo A. Azevedo
- Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| |
Collapse
|
21
|
Fuentes S, Méndez V, Aguila P, Seeger M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 2014; 98:4781-94. [PMID: 24691868 DOI: 10.1007/s00253-014-5684-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/22/2023]
Abstract
Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología & Center of Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | |
Collapse
|
22
|
Wan R, Wang Z, Xie S. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:502-508. [PMID: 24317158 DOI: 10.1016/j.scitotenv.2013.11.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 06/02/2023]
Abstract
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils.
Collapse
Affiliation(s)
- Rui Wan
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Zhao Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Wan R, Yang Y, Sun W, Wang Z, Xie S. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3175-3181. [PMID: 24194418 DOI: 10.1007/s11356-013-2268-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
The objective of the present study was to investigate the impact of ammonia and nitrate nitrogen sources on simazine biodegradation by Arthrobacter sp. strain SD1 and the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in non-agricultural soil. Soil microcosms with different treatments were constructed for herbicide biodegradation test. The relative abundance of the strain SD1 and the structures of AOA and AOB communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. The co-existence of two inorganic nitrogen sources (ammonia and nitrate) had certain impact on simazine dissipation by the strain SD1. Bioaugmentation could induce a shift in the community structures of both AOA and AOB, but AOA were more responsive. Nitrogen application had significant impacts on AOA and AOB communities in bioaugmented soils. Moreover, in non-bioaugmented soil, the community structure of AOA, instead of AOB, could be quickly recovered after herbicide application. This study could add some new insights towards the impacts of nitrogen sources on s-triazine bioremediation and ammonia-oxidizing microorganisms in soil ecosystem.
Collapse
Affiliation(s)
- Rui Wan
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
24
|
Guo Q, Wan R, Xie S. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:337-343. [PMID: 23771408 DOI: 10.1007/s11356-013-1914-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.
Collapse
Affiliation(s)
- Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | | | | |
Collapse
|
25
|
Puglisi E, Vasileiadis S, Demiris K, Bassi D, Karpouzas DG, Capri E, Cocconcelli PS, Trevisan M. Impact of fungicides on the diversity and function of non-target ammonia-oxidizing microorganisms residing in a litter soil cover. MICROBIAL ECOLOGY 2012; 64:692-701. [PMID: 22584298 DOI: 10.1007/s00248-012-0064-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/22/2012] [Indexed: 05/31/2023]
Abstract
Litter soil cover constitutes an important micro-ecosystem in sustainable viticulture having a key role in nutrient cycling and serving as a habitat of complex microbial communities. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are known to regulate nitrification in soil while little is known regarding their function and diversity in litter. We investigated the effects of two fungicides, penconazole and cyprodinil, commonly used in vineyards, on the function and diversity of total and active AOB and AOA in a microcosm study. Functional changes measured via potential nitrification and structural changes assessed via denaturating gradient gel electrophoresis (DGGE) at the DNA and RNA levels were contrasted with pesticide dissipation in the litter layer. The latter was inversely correlated with potential nitrification, which was temporarily inhibited at the initial sampling dates (0 to 21 days) when nearly 100 % of the applied pesticide amounts was still present in the litter. Fungicides induced changes in AOB and AOA communities with RNA-DGGE analysis showing a higher sensitivity. AOA were more responsive to pesticide application compared to AOB. Potential nitrification was less sensitive to the fungicides and was restored faster than structural changes, which persisted. These results support the theory of microbial redundancy for nitrification in a stressed litter environment.
Collapse
Affiliation(s)
- Edoardo Puglisi
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 2012; 12:193. [PMID: 22950448 PMCID: PMC3496636 DOI: 10.1186/1471-2180-12-193] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022] Open
Abstract
Background Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. Results DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. Conclusions This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates showed high copper resistance and additional resistance to other heavy metals. Detection of copA gene in plasmids of four Cu-resistant isolates indicates that mobile genetic elements are involved in the spreading of Cu genetic determinants in polluted environments.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center of Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|