1
|
Kumagai K, Ishikawa S, Iino M, Edamatsu K, Okuyama N, Yusa K, Shimizu Y, Aoki R, Masuda C, Ohashi Y, Horie A, Hoshi K, Hamada Y. Characterization of Salivary Microbiota in Japanese Patients with Oral Cancer. Int J Mol Sci 2025; 26:2339. [PMID: 40076957 PMCID: PMC11900280 DOI: 10.3390/ijms26052339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to characterize salivary microbiota in patients with oral cancer using 16S rRNA amplicon sequencing. DNA was extracted from saliva samples of 23 patients with oral cancer and 95 age-matched controls. A metagenomic analysis was performed using 16S rRNA amplicon sequencing. Patients with oral cancer exhibited lower α-diversity, as indicated by the Chao-1 index, compared to the control group, and significant differences in β-diversity were observed between the two groups. At the genus level, 25 bacterial species such as Lautropia, Megasphaera, Lactobacillus, Kingella, Gemella, Staphylococcus, and Propionibacterium were identified in patients with oral cancer, with more than half being Gram-positive facultative anaerobes or anaerobes. The reduced bacterial diversity in saliva of patients with oral cancer suggests dysbiosis during oral carcinogenesis may contribute to changes in bacterial distribution within the oral cavity.
Collapse
Affiliation(s)
- Kenichi Kumagai
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Tokyo 113-8655, Japan;
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Mitsuyoshi Iino
- Department of Oral and Maxillofacial Surgery, Shinjo Tokushukai Hospital, 1-1, 4623, Shinjo, Yamagata 996-0041, Japan
| | - Kaoru Edamatsu
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Oral and Maxillofacial Surgery, Shinjo Tokushukai Hospital, 1-1, 4623, Shinjo, Yamagata 996-0041, Japan
| | - Naoki Okuyama
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kazuyuki Yusa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yudai Shimizu
- Department of Oral and Maxillofacial Surgery, Kanto Rosai Hospital, 1-1, Kizukisumiyoshi, Nakahara-ku, Kawasaki 211-8510, Japan; (Y.S.); (R.A.); (C.M.); (Y.O.)
| | - Reo Aoki
- Department of Oral and Maxillofacial Surgery, Kanto Rosai Hospital, 1-1, Kizukisumiyoshi, Nakahara-ku, Kawasaki 211-8510, Japan; (Y.S.); (R.A.); (C.M.); (Y.O.)
| | - Chieko Masuda
- Department of Oral and Maxillofacial Surgery, Kanto Rosai Hospital, 1-1, Kizukisumiyoshi, Nakahara-ku, Kawasaki 211-8510, Japan; (Y.S.); (R.A.); (C.M.); (Y.O.)
| | - Yoshihiro Ohashi
- Department of Oral and Maxillofacial Surgery, Kanto Rosai Hospital, 1-1, Kizukisumiyoshi, Nakahara-ku, Kawasaki 211-8510, Japan; (Y.S.); (R.A.); (C.M.); (Y.O.)
| | - Akihisa Horie
- Department of Oral and Maxillofacial Surgery, Kanto Rosai Hospital, 1-1, Kizukisumiyoshi, Nakahara-ku, Kawasaki 211-8510, Japan; (Y.S.); (R.A.); (C.M.); (Y.O.)
| | - Kazuto Hoshi
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Tokyo 113-8655, Japan;
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| |
Collapse
|
2
|
Devaraja K, Aggarwal S. Dysbiosis of Oral Microbiome: A Key Player in Oral Carcinogenesis? A Critical Review. Biomedicines 2025; 13:448. [PMID: 40002861 PMCID: PMC11852717 DOI: 10.3390/biomedicines13020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The oral cavity is known to harbor hundreds of microorganisms, belonging to various genera, constituting a peculiar flora called the oral microbiome. The change in the relative distribution of the constituents of this microbial flora, due to any reason, leads to oral dysbiosis. For centuries, oral dysbiosis has been linked to the etiopathogenesis of several medical illnesses, both locally and systemically-. However, aided by the recent advent of bio-technological capabilities, several reports have re-emerged that link oral dysbiosis to oral carcinogenesis, and numerous studies are currently exploring their association and plausible mechanisms. Some of the proposed mechanisms of oral dysbiosis-induced carcinogenesis (ODIC) include-a bacteria-induced chronic inflammatory state leading to direct cellular damage, inflammatory-cytokine-mediated promotion of cellular proliferation and invasion, release of bacterial products that are carcinogenic, and suppression of local immunity by alteration of the tumor microenvironment. However, the actual interactions between these cellular mechanisms and their role in carcinogenesis are not yet fully understood. This review provides a comprehensive overview of the various hypotheses and mechanisms implicated in the ODIC, along with the corresponding molecular aberrations. Apart from discussing the usual constituents of the oral microbiome profile, the review also summarizes the various dysbiosis profiles implicated in ODIC. The review also sheds light on the potential clinical implications of the research on oral microbiome in the prevention and management of oral cancer.
Collapse
Affiliation(s)
- K. Devaraja
- Department of Head and Neck Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sadhna Aggarwal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Muñoz-Grez CP, Vidal MA, Rojas TB, Ferrada LE, Zuñiga FA, Vera AA, Sanhueza SA, Quiroga RA, Cabrera CD, Antilef BE, Cartes RA, Acevedo MP, Fraga MA, Alarcón-Zapata PF, Hernández MA, Salas-Burgos AM, Tapia-Belmonte F, Yáñez ML, Riquelme EM, González WA, Rivera CA, Oñate AA, Lamperti LI, Nova-Lamperti E. Host-microbe computational proteomic landscape in oral cancer revealed key functional and metabolic pathways between Fusobacterium nucleatum and cancer progression. Int J Oral Sci 2025; 17:1. [PMID: 39743544 PMCID: PMC11693762 DOI: 10.1038/s41368-024-00326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 01/04/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from Fusobacterium nucleatum (F. nucleatum) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that F. nucleatum modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that F. nucleatum and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, F. nucleatum promotes pro-tumoral mechanism in oral cancer.
Collapse
Affiliation(s)
- Camila Paz Muñoz-Grez
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Concepción, Chile
| | - Mabel Angélica Vidal
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
- Department of Computer Science, Universidad de Concepción, Concepción, Chile
| | | | | | - Felipe Andrés Zuñiga
- BIOTER Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Agustin Andrés Vera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Sergio Andrés Sanhueza
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Romina Andrea Quiroga
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Camilo Daniel Cabrera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Barbara Evelyn Antilef
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Ricardo Andrés Cartes
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Milovan Paolo Acevedo
- BIOTER Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Marco Andrés Fraga
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Pedro Felipe Alarcón-Zapata
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | | | - Alexis Marcelo Salas-Burgos
- Cancer Molecular Dynamics Laboratory, Pharmacology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Tapia-Belmonte
- Cancer Molecular Dynamics Laboratory, Pharmacology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Milly Loreto Yáñez
- Anatomy Pathology Unit and Dental Service, Oral Pathology Department, Hospital Las Higueras, Talcahuano, Chile
| | - Erick Marcelo Riquelme
- Respiratory diseases Department, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Wilfredo Alejandro González
- Dentistry Faculty, Universidad de los Andes, Santiago, Chile
- Center for Research and Innovation in Biomedicine, Universidad de Los Andes, Santiago, Chile
| | - Cesar Andrés Rivera
- Oral Medicine and Pathology Research Group, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Angel Alejandro Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Liliana Ivonne Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Deo PN, Deshmukh RS, Gaike AH, Christopher A, Gujare M, Inamdar M. Oral microbiome profiles in oral potentially malignant disorders and oral cancer - A diagnostic perspective. J Oral Maxillofac Pathol 2025; 29:87-97. [PMID: 40248614 PMCID: PMC12002586 DOI: 10.4103/jomfp.jomfp_140_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 04/19/2025] Open
Abstract
Background Dysregulation of the oral microbiome has been correlated with many diseases, but oral microbiome in the etiopathogenesis of oral cancer remains a grey area and needs to be explored. It is imperative to understand the oral microbiome profiles so as to know the variations in the composition from normal to pre-cancer to cancer. Aim To profile the oral microbiome of normal, oral potentially malignant disorders (leukoplakia - Leu, oral submucous fibrosis - OSMF) and oral squamous cell carcinoma (OSCC) by Next-Generation Sequencing of the 16S ribosomal rRNA gene. Material and Methods This is an observational cross-sectional study. A total of 50 subjects were selected for this study, which included the the normal, Leukoplakia, OSMF, and OSCC groups. Bacterial genomic DNA was extracted, and 16S rRNA gene sequencing of the V4 region was carried out using the Illumina MiSeq system. Bio-informatics data analysis was carried out using the DADA2 pipeline and phyloseq R package, and the t-test was used for statistical analysis. Results and Conclusion Variations in the composition of the oral microbiome were identified across all study groups, and significant differences were noted in certain microbial taxa across normal, pre-cancer, and cancer. Certain bacterial taxa were detected only in OSCC. An increase in relative abundance of Gram-negative bacteria as well as an increasing trend in the abundance of periodontal taxa was observed in OSCC. This study generated a baseline data which may provide a guideline for future functional and integrative oral microbiome studies. Variations in oral microbiome composition may be used as biomarkers and provide signatures during the progression from normal to pre-cancer to cancer.
Collapse
Affiliation(s)
- Priya N. Deo
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Revati S. Deshmukh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Akshay H. Gaike
- National Centre for Cell Science, Pune, Maharashtra, India
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anu Christopher
- Department of Pathology, Bharati Hospital and Research Centre, Pune, Maharashtra, India
| | - Mohak Gujare
- National Centre for Cell Science, Pune, Maharashtra, India
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Mitali Inamdar
- National Centre for Cell Science, Pune, Maharashtra, India
| |
Collapse
|
5
|
Wang X, Song X, Gao J, Ma Y, Wang T, Chang X, Shi S, Liu Y, Song G. Impact of oral flora in tongue coating and saliva on oral cancer risk and the regulatory role of Interleukin-8. Cytokine 2025; 185:156821. [PMID: 39631259 DOI: 10.1016/j.cyto.2024.156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Oral flora and inflammatory factors play a crucial role in oral cancer, but the relationship between them and oral cancer has not been clearly established. METHODS Oral flora served as exposure factor, oral cancer as outcome factor, and inflammatory factors as mediating factor. Mendelian randomization (MR) analysis was used to analyze the relationship between oral flora and oral cancer, and the potential mediating effect of inflammatory factors was explored through mediation analysis. RESULTS 29 kinds of oral flora in tongue coating and 22 kinds of oral flora in saliva were associated with increased risk of oral cancer. 18 species of oral flora in tongue coating and 25 species in saliva were associated with a reduced risk of oral cancer. Interleukin-8 (IL8) played a mediating role in the relationship between oral flora and oral cancer, and it was associated with an increased risk of oral cancer. Granulicatella, Streptococcus mitis, Saccharimonadaceae and Haemophilus in oral flora caused oral cancer indirectly through IL8. IL8 expression increased in oral cancer, which has good diagnostic value. IL8-related genes in oral cancer are closely associated with immune cell infiltration. What's more, IL8 has potential medicinal properties. CONCLUSION Oral flora of tongue coating and saliva is closely related to oral cancer, and IL8 plays a mediating role in the causal relationship between oral flora and oral cancer.
Collapse
Affiliation(s)
- Xiaotang Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaona Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yunhui Ma
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tian Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqi Chang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Shuxuan Shi
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yaqi Liu
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
6
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
7
|
Lee YH, Jung J, Hong JY. Oral Microbial Changes in Oral Squamous Cell Carcinoma: Focus on Treponema denticola, Lactobacillus casei, and Candida albicans. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1753. [PMID: 39596938 PMCID: PMC11596053 DOI: 10.3390/medicina60111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: In this study, we aimed to explore the oral bacteria and fungi that can help discern oral squamous cell carcinoma (OSCC) and investigate the correlations between multiple key pathogens. Materials and Methods: Twelve participants (8 females and 4 males; mean age, 54.33 ± 20.65 years) were prospectively recruited into three groups: Group 1: healthy control, Group 2: patients with stomatitis, and Group 3: patients with OSCC, with 4 individuals in each group. Unstimulated whole saliva samples from these participants were analyzed using real-time PCR to assess the presence and abundance of 14 major oral bacterial species and Candida albicans. Results: The analysis revealed significant differences for certain microorganisms, namely, Treponema denticola (T. denticola), Lactobacillus casei (L. casei), and Candida albicans. T. denticola was most abundant in the OSCC group (5,358,692.95 ± 3,540,767.33), compared to the stomatitis (123,355.54 ± 197,490.86) and healthy control (9999.21 ± 11,998.40) groups. L. casei was undetectable in the healthy control group but was significantly more abundant in the stomatitis group (1653.94 ± 2981.98) and even higher in the OSCC group (21,336.95 ± 9258.79) (p = 0.001). A similar trend was observed for C. albicans, with DNA copy numbers rising from the healthy control (464.29 ± 716.76) to the stomatitis (1861.30 ± 1206.15) to the OSCC group (9347.98 ± 5128.54) (p = 0.006). The amount of T. denticola was positively correlated with L. casei (r = 0.890, p < 0.001) and C. albicans (r = 0.724, p = 0.008). L. casei's DNA copy number was strongly correlated with C. albicans (r = 0.931, p < 0.001). These three oral microbes exhibited strong positive correlations with each other and had various direct or indirect relationships with other species. Conclusions: In the OSCC group, T. denticola, L. casei, and C. albicans exhibited strong positive correlations with one another, further emphasizing the need for a deeper understanding of the complex microbial interactions in the OSCC environment.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Junho Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Ji-Youn Hong
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| |
Collapse
|
8
|
AlHarbi SG, Almushayt AS, Bamashmous S, Abujamel TS, Bamashmous NO. The oral microbiome of children in health and disease-a literature review. FRONTIERS IN ORAL HEALTH 2024; 5:1477004. [PMID: 39502321 PMCID: PMC11534731 DOI: 10.3389/froh.2024.1477004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
The oral microbiome is a complex community of microorganisms residing in the oral cavity interacting with each other and with the host in a state of equilibrium. Disruptions in this balance can result in both oral and systemic conditions. Historically, studying the oral microbiome faced limitations due to culture-dependent techniques that could not capture the complexity and diversity of the microbial community. The emergence of advanced genomic technologies and the ease of sample collection from the oral cavity has revolutionized the understanding of the oral microbiome, providing valuable insights into the bacterial community in both health and disease. This review explores the oral microbiome in children, discussing its formation and dynamics in both states of health and disease, its role in various conditions such as dental caries, periodontal disease, oral cancer, cleft lip and palate, and explores its connection to several systemic consequences.
Collapse
Affiliation(s)
- Salma G. AlHarbi
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Dental Department, Ministry of Health, Yanbu, Saudi Arabia
| | - Abdullah S. Almushayt
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shatha Bamashmous
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Makkah, Saudi Arabia
| | - Turki S. Abujamel
- Division of Vaccines and Immunotherapy, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Makkah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Makkah, Saudi Arabia
| | - Nada Othman Bamashmous
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
10
|
Yuanbo Z, Tianyi L, Xuejing S, Xinpeng L, Jianqun W, Wenxia X, Jingshu G. Using formalin fixed paraffin embedded tissue to characterize the microbiota in p16-positive and p16-negative tongue squamous cell carcinoma: a pilot study. BMC Oral Health 2024; 24:283. [PMID: 38419008 PMCID: PMC10900712 DOI: 10.1186/s12903-024-04051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is the most common oral cavity cancer, and p16 immunohistochemistry is an exact and available tool in the prognostic and predictive characterization of squamous cell cancers in the head and neck. Microorganisms have a close relationship with the development of TSCC. However, the association between oral bacteria and p16 status has not been well defined in the case of TSCC. Compared with traditional clinical microbial collection methods, formalin-fixed paraffin-embedded (FFPE) tissue samples have several advantages. METHODS To compare the microbiota compositions between p16-positive and p16-negative patients with TSCC, we performed a small pilot study of microbiological studies of TSCC by paraffin tissue. DNA from FFPE tissue blocks were extracted and microbiomes were profiled by sequencing the 16 S-rRNA-encoding gene (V1-V2/V3-V4/V4 regions). Alterations in the functional potential of the microbiome were predicted using PICRUSt, Tax4Fun, and BugBase. RESULTS A total of 60 patients with TSCC were enrolled in the study, however, some challenges associated with DNA damage in FFPE tissues existed, and only 27 (15 p16-positive and 12 p16-negative) passed DNA quality control. Nevertheless, we have tentatively found some meaningful results. The p16 status is associated with microbiota diversity, which is significantly increased in p16-positive patients compared with p16-negative patients. Desulfobacteria, Limnochordia, Phycisphaerae, Anaerolineae, Saccharimonadia and Kapabacteria had higher abundances among participants with p16-positive. Moreover, functional prediction revealed that the increase of these bacteria may enhance viral carcinogenesis in p16-positive TSCC. CONCLUSIONS Bacterial profiles showed a significant difference between p16-positive TSCC and p16-negative TSCC. These findings may provide insights into the relationship between p16 status and the microbial taxa in TSCC, and these bacteria may provide new clues for developing therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Zhan Yuanbo
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Heilongjiang, Harbin, China
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liu Tianyi
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song Xuejing
- Harbin Institute of Technology Hospital, Harbin, China
| | - Liu Xinpeng
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wang Jianqun
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wenxia
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Geng Jingshu
- Department of pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Heilongjiang, Harbin, China.
| |
Collapse
|
11
|
Sukmana BI, Saleh RO, Najim MA, AL-Ghamdi HS, Achmad H, Al-Hamdani MM, Taher AAY, Alsalamy A, Khaledi M, Javadi K. Oral microbiota and oral squamous cell carcinoma: a review of their relation and carcinogenic mechanisms. Front Oncol 2024; 14:1319777. [PMID: 38375155 PMCID: PMC10876296 DOI: 10.3389/fonc.2024.1319777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common type of head and neck cancer worldwide. Emerging research suggests a strong association between OSCC and the oral microbiota, a diverse community of bacteria, fungi, viruses, and archaea. Pathogenic bacteria, in particular Porphyromonas gingivalis and Fusobacterium nucleatum, have been closely linked to OSCC. Moreover, certain oral fungi, such as Candida albicans, and viruses, like the human papillomavirus, have also been implicated in OSCC. Despite these findings, the precise mechanisms through which the oral microbiota influences OSCC development remain unclear and necessitate further research. This paper provides a comprehensive overview of the oral microbiota and its relationship with OSCC and discusses potential carcinogenic pathways that the oral microbiota may activate or modulate are also discussed.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Hasan S. AL-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia (Lecture of Pediatric Dentistry), Makassar, Indonesia
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Al‐Muthanna, Iraq
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
12
|
Kumar P, Gupta S, Das BC. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl Oncol 2024; 40:101827. [PMID: 38042138 PMCID: PMC10701368 DOI: 10.1016/j.tranon.2023.101827] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the most devastating diseases in India and southeast Asia. It is a preventable and curable disease if detected early. Tobacco and alcohol consumption are the two major risk-factors but infection of high-risk HPVs are also associated with development of predominantly oral and oropharyngeal carcinomas. Interestingly, unlike cervical cancer, HPV-induced HNSCCs show good prognosis and better survival in contrast, majority of tobacco-associated HPV-ve HNSCCs are highly aggressive with poor clinical outcome. Biomarker analysis in circulatory body-fluids for early cancer diagnosis, prognosis and treatment monitoring are becoming important in clinical practice. Early diagnosis using non-invasive saliva for oral or other diseases plays an important role in successful treatment and better prognosis. Saliva mirrors the body's state of health as it comes into direct contact with oral lesions and needs no trained manpower to collect, making it a suitable bio-fluid of choice for screening. Saliva can be used to detect not only virus, bacteria and other biomarkers but variety of molecular and genetic markers for an early detection, treatment and monitoring cancer and other diseases. The performance of saliva-based diagnostics are reported to be highly (≥95 %) sensitive and specific indicating the test's ability to correctly identify true positive or negative cases. This review focuses on the potentials of saliva in the early detection of not only HPV or other pathogens but also identification of highly reliable gene mutations, oral-microbiomes, metabolites, salivary cytokines, non-coding RNAs and exosomal miRNAs. It also discusses the importance of saliva as a reliable, cost-effective and an easy alternative to invasive procedures.
Collapse
Affiliation(s)
- Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
13
|
Oyeyemi BF, Kaur US, Paramraj A, Chintamani, Tandon R, Kumar A, Bhavesh NS. Microbiome analysis of saliva from oral squamous cell carcinoma (OSCC) patients and tobacco abusers with potential biomarkers for oral cancer screening. Heliyon 2023; 9:e21773. [PMID: 38034672 PMCID: PMC10685184 DOI: 10.1016/j.heliyon.2023.e21773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer and accounts for about 95% of all head and neck cancers with high mortality, usually at a late stage. Dysbiosis in the oral microbiome can lead to chronic inflammatory responses and may predispose to the development and progression of OSCC. Tobacco abuse plays an essential role in oral microbiome dysregulation and OSCC pathogenesis. We used 16S rRNA gene amplicon next-generation sequencing to examine microbial signatures unique to saliva from OSCC patients, tobacco abusers (TA) and controls (n = 10 for each group) to elucidate oral microbiome changes associated with tobacco abuse and OSCC. Overall, the oral microbiome compositions of class Betaproteobacteria and Epsilonproteobacteria, order Neisseriales, Burkholderiales and Campylobacterales, family Burkholderiaceae and Campylobacteraceae and genera Campylobacter and Leptotrichia revealed significant differences among OSCC patients, TA and control. Our preliminary pilot study not only serves as a basis for future studies with large sample size but also gives an indication of microbiome-based potential non-invasive biomarkers for early screening and monitoring of oral carcinogenesis transition due to tobacco abuse.
Collapse
Affiliation(s)
- Bolaji Fatai Oyeyemi
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Science Technology, The Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, Nigeria
| | - Urvinder S. Kaur
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Paramraj
- Department of Surgery, Vardhman Mahavir Medical College (VMMC)-Safdarjung Hospital, New Delhi, 110058, India
| | - Chintamani
- Department of Surgery, Vardhman Mahavir Medical College (VMMC)-Safdarjung Hospital, New Delhi, 110058, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Kumar
- Department of Surgery, Vardhman Mahavir Medical College (VMMC)-Safdarjung Hospital, New Delhi, 110058, India
- Division of Trauma Surgery and Critical Care, Department of Surgical Disciplines, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
14
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
15
|
Dahlstrom KR, Sikora AG, Liu Y, Chang CC, Wei P, Sturgis EM, Li G. Characterization of the oral microbiota among middle-aged men with and without human papillomavirus infection. Oral Oncol 2023; 142:106401. [PMID: 37178654 PMCID: PMC10330617 DOI: 10.1016/j.oraloncology.2023.106401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES To characterize the oral microbiota among middle-aged men and identify differences between men with a prevalent oral high-risk (oncogenic) HPV infection and those without. MATERIALS AND METHODS This was a case-control study nested within a prospective screening study for HPV-related cancers among middle-aged men. 16S rRNA sequencing was used to characterize the oral microbiota and the cobas HPV Test was used to detect presence of oral high-risk HPV types. We determined the overall composition of the oral microbiota and assessed differences in relative abundance of bacterial taxa as well as alpha and beta diversity among men with a prevalent oral high-risk HPV infection compared to men who were HPV-negative. RESULTS Among 13 high-risk HPV-positive and 30 HPV-negative men, we found significant differences in beta diversity but not alpha diversity. Fretibacterium, F0058, Kingella, Treponema, and Prevotella were more abundant among the high-risk HPV-positive men while Neisseria and Lactobacillus were more abundant among the HPV-negative men. CONCLUSION This study adds to the evidence that the oral microbiota varies according to oral HPV infection status and may be associated with the natural history of oral HPV infection.
Collapse
Affiliation(s)
- Kristina R Dahlstrom
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erich M Sturgis
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Wright RJ, Pewarchuk ME, Marshall EA, Murrary B, Rosin MP, Laronde DM, Zhang L, Lam WL, Langille MGI, Rock LD. Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression. BMC Oral Health 2023; 23:206. [PMID: 37024828 PMCID: PMC10080811 DOI: 10.1186/s12903-023-02911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
A growing body of research associates the oral microbiome and oral cancer. Well-characterized clinical samples with outcome data are required to establish relevant associations between the microbiota and disease. The objective of this study was to characterize the community variations and the functional implications of the microbiome in low-grade oral epithelial dysplasia (OED) using 16S rRNA gene sequencing from annotated archival swabs in progressing (P) and non-progressing (NP) OED. We characterised the microbial community in 90 OED samples - 30 swabs from low-grade OED that progressed to cancer (cases) and 60 swabs from low-grade OED that did not progress after a minimum of 5 years of follow up (matched control subjects). There were small but significant differences between P and NP samples in terms of alpha diversity as well as beta diversity in conjunction with other clinical factors such as age and smoking status for both taxa and functional predictions. Across all samples, the most abundant genus was Streptococcus, followed by Haemophilus, Rothia, and Neisseria. Taxa and predicted functions were identified that were significantly differentially abundant with progression status (all Ps and NPs), when samples were grouped broadly by the number of years between sampling and progression or in specific time to progression for Ps only. However, these differentially abundant features were typically present only at low abundances. For example, Campylobacter was present in slightly higher abundance in Ps (1.72%) than NPs (1.41%) and this difference was significant when Ps were grouped by time to progression. Furthermore, several of the significantly differentially abundant functions were linked to the Campylobacteraceae family in Ps and may justify further investigation. Larger cohort studies to further explore the microbiome as a potential biomarker of risk in OED are warranted.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Dalhousie University, Halifax, Canada.
| | - Michelle E Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Benjamin Murrary
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Miriam P Rosin
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Denise M Laronde
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, Canada
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lewei Zhang
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Oral Biopsy Service, Vancouver General Hospital, Vancouver, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Morgan G I Langille
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Canada
| | - Leigha D Rock
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Canada
- Faculty of Dentistry, Dalhousie University, Halifax, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Canada
- Department of Anatomical Pathology, QEII Hospital, Nova Scotia Health, Halifax, Canada
| |
Collapse
|
17
|
Jiang W, He Z, Zhang Y, Ran S, Sun Z, Chen W. Variations in protein expression associated with oral cancer. Technol Health Care 2023; 31:145-167. [PMID: 37038789 DOI: 10.3233/thc-236014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Differential protein expression of the oral microbiome is related to human diseases, including cancer. OBJECTIVE In order to reveal the potential relationship between oral bacterial protein expression in oral squamous cell carcinoma (OSCC), we designed this study. METHODS We obtained samples of the same patient from cancer lesion and anatomically matched normal site. Then, we used the label free quantitative technique based on liquid chromatography tandem mass spectrometry (LC-MS/MS) to analyze the bacteria in the samples of oral squamous cell carcinoma at the protein level, so as to detect the functional proteins. RESULTS Protein diversity in the cancer samples was significantly greater than in the normal samples. We identified a substantially higher number of the taxa than those detected in previous studies, demonstrating the presence of a remarkable number of proteins in the groups. In particular, proteins involved in energy production and conversion, proton transport, hydrogen transport and hydrogen ion transmembrane transport, ATP-binding cassette (ABC) transporter, PTS system, and L-serine dehydratase were enriched significantly in the experimental group. Moreover, some proteins associated with Actinomyces and Fusobacterium were highly associated with OSCC and provided a good diagnostic outcome. CONCLUSION The present study revealed considerable changes in the expression of bacterial proteins in OSCC and enrich our understanding in this point.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Youmeng Zhang
- Department of Stomatology, Eye & Ent Hospital of Fudan University, Shanghai, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhe Sun
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Weixu Chen
- Department of Stomatology, Eye & Ent Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Galvin S, Moran GP, Healy CM. Influence of site and smoking on malignant transformation in the oral cavity: Is the microbiome the missing link? FRONTIERS IN ORAL HEALTH 2023; 4:1166037. [PMID: 37035251 PMCID: PMC10076759 DOI: 10.3389/froh.2023.1166037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
The tongue and floor of the mouth are high-risk sites for oral squamous cell carcinoma (OSCC), while smoking is its most significant risk factor. Recently, questions have been raised as to the role of the oral microbiome in OSCC because of a wealth of evidence demonstrating that the microbiome of OSCC differs from that of healthy mucosa. However, oral site and smoking also have a significant impact on oral microbial communities, and to date, the role these factors play in influencing the dysbiotic microbial communities of OSCC and precursor lesions has not been considered. This review aims to examine the influence of site and smoking on the oral microbiome and, in turn, whether these microbiome changes could be involved in oral carcinogenesis.
Collapse
Affiliation(s)
- Sheila Galvin
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
- Correspondence: Sheila Galvin
| | - Gary P. Moran
- Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Claire M. Healy
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Setthawongsin C, Khunbutsri D, Pisamai S, Raksajit W, Ngamkala S, Jarudecha T, Meekhanon N, Rungsipipat A. Isolation of Oral Bacteria, Measurement of the C-Reactive Protein, and Blood Clinical Parameters in Dogs with Oral Tumor. Vet Med Int 2023; 2023:2582774. [PMID: 37009523 PMCID: PMC10060073 DOI: 10.1155/2023/2582774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 04/04/2023] Open
Abstract
Canine oral cancers have a poor prognosis and are related to chronic inflammation. This may pose a risk of secondary bacterial infection. This study aimed to compare the bacteria isolated from oral swab samples, values of C-reactive proteins (CRPs), and clinical blood profiles of dogs with and without oral mass. A total of 36 dogs were divided in three groups: no oral mass (n = 21), oral mass (n = 8), and metastasis groups (n = 7). Significantly, both the clinical groups (the oral mass group and metastasis group) showed anemia, a decrease in the albumin-to-globulin ratio (AGR), and an increase in the neutrophil-to-lymphocyte ratio (NLR), globulin-to-albumin ratio (GAR), CRP, and CRP-to-albumin ratio (CAR) compared to the normal group. CAR showed an increasing trend in the oral mass and metastasis groups (10 times and 100 times, respectively) compared to the no oral mass group (P < 0.001). Neisseria spp. (20.78%) was the main isolated bacteria in all groups. The main genera in the no oral mass group were Neisseria spp. (28.26%), Pasteurella spp. (19.57%), and Staphylococcus spp. (19.57%). Neisseria spp., Staphylococcus spp., Klebsiella spp., and Escherichia spp. were found equally (12.5%) in the oral mass group. Escherichia spp. (26.67%), Pseudomonas spp. (13.33%), and Staphylococcus spp. (13.33%) were the main genera in the metastasis group. Interestingly, Neisseria spp. decreased in the clinical groups (Fisher's exact = 6.39, P=0.048), and Escherichia spp. increased in the metastasis group (Fisher's exact = 14.00, P=0.002). The difference of oral bacteria in clinical dogs compared to healthy dogs may be related to microbiome alterations, and both the clinical groups showed the increment of inflammatory biomarkers. This suggested that further studies should be conducted on the correlation between the specific bacteria, CRP, blood clinical parameters, and type of canine oral mass.
Collapse
Affiliation(s)
- Chanokchon Setthawongsin
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Duangdaow Khunbutsri
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen40002, Thailand
| | - Sirinun Pisamai
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Wuttinun Raksajit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Suchanit Ngamkala
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Thitichai Jarudecha
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Nattakan Meekhanon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
20
|
Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol 2022; 13:911623. [PMID: 36406433 PMCID: PMC9668886 DOI: 10.3389/fmicb.2022.911623] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a symbiotic fungus that commonly colonizes on oral mucosal surfaces and mainly affects immuno-compromised individuals. Polymicrobial interactions between C. albicans and oral microbes influence the cellular and biochemical composition of the biofilm, contributing to change clinically relevant outcomes of biofilm-related oral diseases, such as pathogenesis, virulence, and drug-resistance. Notably, the symbiotic relationships between C. albicans and oral bacteria have been well-documented in dental caries, oral mucositis, endodontic and periodontal diseases, implant-related infections, and oral cancer. C. albicans interacts with co-existing oral bacteria through physical attachment, extracellular signals, and metabolic cross-feeding. This review discusses the bacterial-fungal interactions between C. albicans and different oral bacteria, with a particular focus on the underlying mechanism and its relevance to the development and clinical management of oral diseases.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Yuan M, Xu Y, Guo Z. Association of oral microbiome and pancreatic cancer: a systematic review and meta-analysis. Therap Adv Gastroenterol 2022; 15:17562848221123980. [PMID: 36171810 PMCID: PMC9511312 DOI: 10.1177/17562848221123980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Oral microbiota reported to be associated with pancreatic diseases, including pancreatic cancer. However, the association of oral microbiome and pancreatic cancer has not been reviewed systematically. OBJECTIVES To systematically investigate the association between the oral microbiome and pancreatic cancer risk. DESIGN A systematic review and meta-analysis. DATA SOURCES AND METHODS Systemic searches were conducted using PubMed, Medline, Cochrane Library, and Embase databases without any language restriction from conception to August 29, 2020. The studies that evaluated the association of oral microbiome and pancreatic cancer risk were included in this meta-analysis. RESULTS The six included studies encompassed a total of 863 pancreatic cancer cases and 906 controls. Four studies reported the overall oral microbiome in pancreatic cancer cases. A total of 12-17 species/clusters were correlated with pancreatic cancer. Three studies reported the odds ratios (ORs) or relative abundance of several oral microbiomes pieces/clusters, and the majority were associated with pancreatic cancer. CONCLUSIONS Overall, this study supports the hypothesis of associations of variations of patients' oral microbiota to pancreatic cancer. Nonetheless, due to all included studies were conducted in USA or Europe, additional original studies and meta-analysis particular studies from other countries are essential for an in-depth investigation into the role of oral bacteria in pancreatic cancer.
Collapse
Affiliation(s)
- Mengyao Yuan
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | | |
Collapse
|
22
|
Michikawa C, Gopalakrishnan V, Harrandah AM, Karpinets TV, Garg RR, Chu RA, Park YP, Chukkapallia SS, Yadlapalli N, Erikson-Carter KC, Gleber-Netto FO, Sayour E, Progulske-Fox A, Chan EKL, Wu X, Zhang J, Jobin C, Wargo JA, Pickering CR, Myers JN, Silver N. Fusobacterium is enriched in oral cancer and promotes induction of programmed death-ligand 1 (PD-L1). Neoplasia 2022; 31:100813. [PMID: 35834946 PMCID: PMC9287628 DOI: 10.1016/j.neo.2022.100813] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Recently, increased number of studies have demonstrated a relationship between the oral microbiome and development of head and neck cancer, however, there are few studies to investigate the role of oral bacteria in the context of the tumor microenvironment in a single head and neck subsite. Here, paired tumor and adjacent normal tissues from thirty-seven oral tongue squamous cell carcinoma (SCC) patients were subjected to 16S rRNA gene sequencing and whole exome sequencing (WES), in addition to RNA sequencing for tumor samples. We observed that Fusobacterium was significantly enriched in oral tongue cancer and that Rothia and Streptococcus were enriched in adjacent normal tissues. A decrease in alpha diversity was found in tumor when compared to adjacent normal tissues. While increased Fusobacterium in tumor samples was not associated with changes in immune cell infiltration, it was associated with increased PD-L1 mRNA expression. Therefore, we examined the effects of Fusobacterium on PD-L1 expression in head and neck SCC cell lines. We demonstrated that infection with Fusobacterium species can increase both PD-L1 mRNA and surface PD-L1 protein expression on head and neck cancer cell lines. The correlation between Fusobacterium and PD-L1 expression in oral tongue SCC, in conjunction with the ability of the bacterium to induce PD-L1 expression in vitro suggests a potential role for Fusobacterium on modulation of the tumor immune microenvironment in head and neck cancer.
Collapse
Affiliation(s)
- Chieko Michikawa
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Amani M Harrandah
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA; Department of Oral Biology, Umm AlQura University, Makkah, Saudi Arabia
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rekha Rani Garg
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Randy A Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Sasanka S Chukkapallia
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Nikhita Yadlapalli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Kelly C Erikson-Carter
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Elias Sayour
- Department of Pediatrics and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Edward K L Chan
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christian Jobin
- Department of Internal Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalie Silver
- Cleveland Clinic, Head and Neck Institute/Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
23
|
Ren X, Shu J, Wang J, Guo Y, Zhang Y, Yue L, Yu H, Chen W, Zhang C, Ma J, Li Z. Machine learning reveals salivary glycopatterns as potential biomarkers for the diagnosis and prognosis of papillary thyroid cancer. Int J Biol Macromol 2022; 215:280-289. [PMID: 35660041 DOI: 10.1016/j.ijbiomac.2022.05.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
The diagnosis of thyroid cancer, especially papillary thyroid cancer (PTC), is increasing rapidly worldwide. In this study, we aimed to study the glycosylation of salivary proteins associated with PTC and assess the likelihood that salivary glycopatterns may be a potential biomarker of PTC diagnosis. Firstly, 22 benign thyroid nodule (BTN) samples, 27 PTC samples, and 30 healthy volunteers (HV) samples were collected to probe the difference of salivary glycopatterns associated with PTC using lectin microarrays. Then, five machine learning models including K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) were established to distinguish HV, BTN and PTC based on the changes of salivary glycopatterns. As a result, SVM had the best diagnostic effect with an accuracy rate of 92 % in testing set. Besides, lectin microarrays were used to explore the differences in salivary glycopatterns of 26 paired salivary samples of PTC patients before and after operation in order to probe into salivary glycopatterns as potential biomarkers for prognosis of PTC patients. The results showed that the levels of salivary glycopatterns recognized by 6 different lectins in patients after the operation almost convergenced with HVs. This study could help to screen and assess patients with PTC and their prognosis based on precise changes of salivary glycopatterns.
Collapse
Affiliation(s)
- Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Junhong Wang
- Department of Endocrine, Shanghai Gongli Hospital of Pudong New Area, Shanghai, China; Department of Endocrine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yonghong Guo
- Department of Infectious Disease, Shanghai Gongli Hospital of Pudong New area, Shanghai, China; Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Lixin Yue
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
24
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
25
|
Comprehensive Review on Development of Early Diagnostics on Oral Cancer with a Special Focus on Biomarkers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
One of the most frequent head and neck cancers is oral cancer, with less than half of those diagnosed surviving five years. Despite breakthroughs in the treatment of many other cancers, the prognosis for people with OSCC remains dismal. The conventional methods of detection include a thorough clinical examination, biochemical investigations, and invasive biopsies. Early identification and treatment are important for a better chance of extending a patient’s life. Early diagnosis may be possible by identifying biomarkers in biological fluids. Currently, the primary method for diagnosing oral lesions is a visual oral examination; however, such a technique has certain drawbacks, as individuals are recognized after their cancer has advanced to a severe degree. The first section of this review discusses several diagnostic techniques for cancer detection, while the second section discusses the present state of knowledge about known existing predictive markers for the timely identification of malignant lesions, as well as disease activity tracking. The aim of the paper is to conduct a critical review of existing oral cancer diagnostic processes and to consider the possible application of innovative technology for early detection. This might broaden our diagnostic choices and enhance our capacity to identify and treat oral malignant tumors more effectively.
Collapse
|
26
|
Patel A, Patel S, Patel P, Tanavde V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We From the Clinic? Front Oncol 2022; 12:828434. [PMID: 35387114 PMCID: PMC8977527 DOI: 10.3389/fonc.2022.828434] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) remains to be a major cause of mortality worldwide because of confounding factors such as late-stage tumor diagnosis, loco-regional aggressiveness and distant metastasis. The current standardized diagnostic regime for HNC is tissue biopsy which fails to determine the thorough tumor dynamics. Therefore, due to the ease of collection, recent studies have focused on the utility of saliva based liquid biopsy approach for serial sampling, early diagnosis, prognosis, longitudinal monitoring of disease progression and treatment response in HNC patients. Saliva collection is convenient, non-invasive, and pain-free and offers repetitive sampling along with real time monitoring of the disease. Moreover, the detection, isolation and analysis of tumor-derived components such as Circulating Tumor Nucleic Acids (CTNAs), Extracellular Vesicles (EVs), Circulating Tumor Cells (CTCs) and metabolites from saliva can be used for genomic and proteomic examination of HNC patients. Although, these circulatory biomarkers have a wide range of applications in clinical settings, no validated data has yet been established for their usage in clinical practice for HNC. Improvements in isolation and detection technologies and next-generation sequencing analysis have resolved many technological hurdles, allowing a wide range of saliva based liquid biopsy application in clinical backgrounds. Thus, in this review, we discussed the rationality of saliva as plausible biofluid and clinical sample for diagnosis, prognosis and therapeutics of HNC. We have described the molecular components of saliva that could mirror the disease status, recent outcomes of salivaomics associated with HNC and current technologies which have the potential to improve the clinical value of saliva in HNC.
Collapse
Affiliation(s)
- Aditi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Shanaya Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Parina Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Vivek Tanavde
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India.,Bioinformatics Institute, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
27
|
Hwang G. In it together: Candida-bacterial oral biofilms and therapeutic strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:183-196. [PMID: 35218311 PMCID: PMC8957517 DOI: 10.1111/1758-2229.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
Under natural environmental settings or in the human body, the majority of microorganisms exist in complex polymicrobial biofilms adhered to abiotic and biotic surfaces. These microorganisms exhibit symbiotic, mutualistic, synergistic, or antagonistic relationships with other species during biofilm colonization and development. These polymicrobial interactions are heterogeneous, complex and hard to control, thereby often yielding worse outcomes than monospecies infections. Concerning fungi, Candida spp., in particular, Candida albicans is often detected with various bacterial species in oral biofilms. These Candida-bacterial interactions may induce the transition of C. albicans from commensal to pathobiont or dysbiotic organism. Consequently, Candida-bacterial interactions are largely associated with various oral diseases, including dental caries, denture stomatitis, periodontitis, peri-implantitis, and oral cancer. Given the severity of oral diseases caused by cross-kingdom consortia that develop hard-to-remove and highly drug-resistant biofilms, fundamental research is warranted to strategically develop cost-effective and safe therapies to prevent and treat cross-kingdom interactions and subsequent biofilm development. While studies have shed some light, targeting fungal-involved polymicrobial biofilms has been limited. This mini-review outlines the key features of Candida-bacterial interactions and their impact on various oral diseases. In addition, current knowledge on therapeutic strategies to target Candida-bacterial polymicrobial biofilms is discussed.
Collapse
Affiliation(s)
- Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding Author: Geelsu Hwang,
| |
Collapse
|
28
|
Wang KK, He KY, Yang JY, Liu MJ, Guo JR, Liang JY, Wang JH, Xu ZX, Jian YP. Lactobacillus Suppresses Tumorigenesis of Oropharyngeal Cancer via Enhancing Anti-Tumor Immune Response. Front Cell Dev Biol 2022; 10:842153. [PMID: 35300424 PMCID: PMC8920992 DOI: 10.3389/fcell.2022.842153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Deficiency in T cell-mediated adaptive immunity, such as low CD8+ T cell infiltration, inhibits the immune surveillance, promotes malignant transformation, and facilitates tumor growth. Microbiota dysbiosis diminishes the immune system and contributes to the occurrence of cancer. However, the impact of oral dysbiosis on the occurrence and molecular mechanisms of oropharyngeal cancer (OPC) remains largely unknown. In the current study, we used 4-nitroquinoline-1-oxide (4NQO) to mimic tobacco-related carcinogenesis to generate a murine OPC model and determine the role of microbiota changes in OPC tumorigenesis. Our results showed that the oral flora composition of mice was deregulated during the tumorigenesis of OPC. The abundance of Streptococcus, Veillonella, Muribacter, Rodentibacter, and Gemella was increased, whereas the dominant genus Lactobacillus was gradually decreased with disease progression. We further demonstrated that infiltration of CD8+ T lymphocytes was markedly reduced due to the reduction of Lactobacillus. Supplementation of Lactobacillus increased the infiltration of CD8+ T cells, promoted the expression of IFN-γ and granzyme B, and lessened the OPC progression. Analyzing the metabolites of the Lactobacillus, we demonstrated that Lactobacillus enhanced the anti-tumor immune response by producing acetate in OPC development. Administration of acetate to mice could increase the expression of IFN-γ and IFN-γ-inducible chemokines in tumor tissues by activating GPR43 to promote the infiltration of CD8+ T lymphocytes and substantially delay the development of OPC. Together, our data suggest that dysbiosis of oral microbiota promotes the tumorigenesis of OPC through downregulation of cytotoxic T lymphocytes. Lactobacillus and its metabolite acetate improve the tumor microenvironment, which could be applied in the treatment of OPC.
Collapse
Affiliation(s)
- Ke-Ke Wang
- School of Life Sciences, Henan University, Kaifeng, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, China
| | - Ji-Yong Liang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jin-Hua Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
29
|
Frank DN, Qiu Y, Cao Y, Zhang S, Lu L, Kofonow JM, Robertson CE, Liu Y, Wang H, Levens CL, Kuhn KA, Song J, Ramakrishnan VR, Lu SL. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene 2022; 41:1269-1280. [PMID: 35087236 PMCID: PMC8882136 DOI: 10.1038/s41388-021-02137-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Recent studies have reported dysbiotic oral microbiota and tumor-resident bacteria in human head and neck squamous cell carcinoma (HNSCC). We aimed to identify and validate oral microbial signatures in treatment-naïve HNSCC patients compared with healthy control subjects. We confirm earlier reports that the relative abundances of Lactobacillus spp. and Neisseria spp. are elevated and diminished, respectively, in human HNSCC. In parallel, we examined the disease-modifying effects of microbiota in HNSCC, through both antibiotic depletion of microbiota in an induced HNSCC mouse model (4-Nitroquinoline 1-oxide, 4NQO) and reconstitution of tumor-associated microbiota in a germ-free orthotopic mouse model. We demonstrate that depletion of microbiota delays oral tumorigenesis, while microbiota transfer from mice with oral cancer accelerates tumorigenesis. Enrichment of Lactobacillus spp. was also observed in murine HNSCC, and activation of the aryl-hydrocarbon receptor was documented in both murine and human tumors. Together, our findings support the hypothesis that dysbiosis promotes HNSCC development.
Collapse
Affiliation(s)
- Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Yue Qiu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China
| | - Yu Cao
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
- Department of Surgical Oncology, The First University Hospital, China Medical University, Shenyang, 110122, China
| | - Shuguang Zhang
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Jennifer M Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Haibo Wang
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Cassandra L Levens
- Division of Rheumatology and the Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology and the Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - John Song
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
30
|
Mahapatra S, Mohanty S, Mishra R, Prasad P. An overview of cancer and the human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:83-139. [DOI: 10.1016/bs.pmbts.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Jiang Q, Liu X, Yang Q, Chen L, Yang D. Salivary Microbiome in Adenoid Cystic Carcinoma Detected by 16S rRNA Sequencing and Shotgun Metagenomics. Front Cell Infect Microbiol 2022; 11:774453. [PMID: 34970508 PMCID: PMC8712576 DOI: 10.3389/fcimb.2021.774453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Microorganisms are confirmed to be closely related to the occurrence and development of cancers in human beings. However, there has been no published report detailing relationships between the oral microbiota and salivary adenoid cystic carcinoma (SACC). In this study, unstimulated saliva was collected from 13 SACC patients and 10 healthy controls. The microbial diversities, compositions and functions were comprehensively analyzed after 16S rRNA sequencing and whole-genome shotgun metagenomic sequencing. The alpha diversity showed no significant difference between SACC patients and healthy controls, while beta diversity showed a separation trend. The SACC patients showed higher abundances of Streptococcus and Rothia, while Prevotella and Alloprevotella were more abundant in healthy controls. The prevalent KEGG pathways, carbohydrate-active enzymes, antibiotic resistances and virulence factors as well as the biomarkers in SACC were determined by functional gene analysis. Our study preliminarily investigated the salivary microbiome of SACC patients compared with healthy controls and might be the basis for further studies on novel diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xing Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Qifen Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
32
|
Li Z, Chen G, Wang P, Sun M, Zhao J, Li A, Sun Q. Alterations of the Oral Microbiota Profiles in Chinese Patient With Oral Cancer. Front Cell Infect Microbiol 2021; 11:780067. [PMID: 34956932 PMCID: PMC8696029 DOI: 10.3389/fcimb.2021.780067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Oral cancer is the most common malignant tumor in the oral and maxillofacial region, of which more than 90% is squamous cell carcinoma. The incidence of oral cancer is on the rise worldwide. An imbalance between the microorganism composition and its host may lead to the occurrence of oral malignant tumors. Accumulating evidence suggests that the oral microbiota plays an important role in oral cancer; however, the association between oral microbiota and oral cancer has not yet been comprehensively studied. In this study, metagenomic sequencing was used to compare the microbial composition of three groups of samples from Chinese patients with oral cancer, patients with precancerous lesion, and normal individuals. In terms of microbiota richness, the oral microbiota of patients with precancerous lesions was richer than that of oral cancer patients and healthy controls, whereas in terms of microbiota diversity, there was little difference between the three groups. The three groups of samples exhibited statistically significant differences in microbiota composition and metabolic function at the family, genus, and species levels (P < 0.05). The differentially enriched phylum in oral cancer samples was Bacteroidetes (P < 0.05). At the genus level, the main differentially enriched taxa were Prevotella, Peptostreptococcus, Carnobacterium, and Diastella (P < 0.05). The species level was differentially enriched in Prevotella intermedia and Peptostreptococcus stomatis (p < 0.05). The prediction of microbiota function shows that oral cancer is mainly associated with coenzyme A biosynthesis, phosphopantothenic acid biosynthesis, inosine 5’-phosphate degradation, and riboflavin biosynthesis. Furthermore, the increase in C-reactive protein level in oral cancer patients was found to be closely related to P. intermedia. Overall, oral bacterial profiles showed significant differences between the oral cancer group and normal group. Hence, microbes can be employed as diagnostic markers and treatment targets for oral cancer.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Panpan Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minglei Sun
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Zhao
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Metsäniitty M, Hasnat S, Salo T, Salem A. Oral Microbiota-A New Frontier in the Pathogenesis and Management of Head and Neck Cancers. Cancers (Basel) 2021; 14:cancers14010046. [PMID: 35008213 PMCID: PMC8750462 DOI: 10.3390/cancers14010046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC) is a group of common and aggressive tumors. Recently, oral microbiota has been credited as an important player in carcinogenesis. However, the available knowledge is not always consistent and sometimes conflicting. Therefore, the present comprehensive systematic review of the current clinical reports was conducted to evaluate the role of oral microbiota in HNSCC. Importantly, this study addresses whether oral microbiota targeting could provide diagnostic, prognostic or therapeutic utility in cancer patients. We also discussed the current limitations of this newly emerging field and the potential related strategies for the management of patients with HNSCC and possibly other solid tumors. Abstract Head and neck squamous cell carcinoma (HNSCC) comprises the majority of tumors in head and neck tissues. The prognosis of HNSCC has not significantly improved for decades, signifying the need for new diagnostic and therapeutic targets. Recent evidence suggests that oral microbiota is associated with carcinogenesis. Thus, we conducted a comprehensive systematic review to evaluate the current evidence regarding the role of oral microbiota in HNSCC and whether their targeting may confer diagnostic, prognostic or therapeutic utility. Following the screening of 233 publications retrieved from multiple databases, 34 eligible studies comprising 2469 patients were compiled and critically appraised. Importantly, many oral pathogens, such as Porphyromonas gingivalis and Fusobacterium nucleatum were linked to certain oral potentially malignant lesions and various types of HNSCC. Furthermore, we summarized the association between the expression profiles of different oral bacterial species and their tumorigenic and prognostic effects in cancer patients. We also discussed the current limitations of this newly emerging area and the potential microbiota-related strategies for preventing and treating HNSCC. Whilst many clinical studies are underway to unravel the role of oral microbiota in cancer, the limited available data and experimental approaches reflect the newness of this promising yet challenging field.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
| | - Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Correspondence:
| |
Collapse
|
34
|
Dou Y, Ma C, Wang K, Liu S, Sun J, Tan W, Neckenig M, Wang Q, Dong Z, Gao W, Chen A, Zhang D, Wang B, Shi L, Nan Z, Ai D, Yu W, Liu J, Song B, Zhao L, Shao Q, Zhu Y, Wang T, Wang J, Hu W, Wei F, Xu X, Qu X. Dysbiotic tumor microbiota associates with head and neck squamous cell carcinoma outcomes. Oral Oncol 2021; 124:105657. [PMID: 34915261 DOI: 10.1016/j.oraloncology.2021.105657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The need for an effective tool to predict prognosis of head and neck squamous cell carcinoma (HNSCC) patients is critical and unmet. Microbiota has recently been found involved in tumor progression and response to immunotherapy. However, the association of microbiota with the prognosis of HNSCC patients remains obscure. This study aims to investigate the association between tumor microbiota and outcomes of HNSCC patients. METHODS A retrospective study including 129 primary tumors of HNSCC was conducted. Using 16S rRNA sequencing, the profile and the composition of tumor microbiota were measured and their associations with overall survival (OS) and disease free survival (DFS) were examined. RESULTS We observed a reduced richness and enriched abundances of genera Schlegelella and Methyloversatilis in tumor microbiota of HNSCC patients with poor prognosis. However, a richer tumor microbiota with greater abundances of genera Bacillus, and Lactobacillus and Sphingomonas was characterized in the patients with favorable prognosis.The ratio of these differentially abundant taxa, microbial dysbiosis index (MDI), was significantly associated with OS (hazard ratio [HR], 4.67, 95% confidence interval [CI], 2.51 to 8.69,P < 0.001) and DFS (HR, 2.89; 95% CI, 1.74 to 4.80, P < 0.001) independently of age, tumor size, lymph node metastasis, differentiation and p16 status. The risk score of multivariate Cox regression exhibited an excellent performance for estimating three-year OS (AUC of 0.826). We also found a richer tumor microbiota was correlated with moderate peritumoral inflammatory infiltration. CONCLUSION These results indicate that tumor microbiota associates with outcomes of HNSCC patients.
Collapse
Affiliation(s)
- Yu Dou
- School and Hospital of Stomatology, Cheelo College of Medicine, Shandong University, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Ketao Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wanye Tan
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Markus Neckenig
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Wenjuan Gao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Anwei Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Dong Zhang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Bing Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Liang Shi
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Zhaodi Nan
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Ai
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjie Yu
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medicial University, Yantai, China
| | - Jia Liu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Zhao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Qianqian Shao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yong Zhu
- School and Hospital of Stomatology, Cheelo College of Medicine, Shandong University, China
| | - Tao Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fengcai Wei
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University & Institute of Stomatology, Shandong University, Jinan, China
| | - Xin Xu
- School and Hospital of Stomatology, Cheelo College of Medicine, Shandong University, China.
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
35
|
McIlvanna E, Linden GJ, Craig SG, Lundy FT, James JA. Fusobacterium nucleatum and oral cancer: a critical review. BMC Cancer 2021; 21:1212. [PMID: 34774023 PMCID: PMC8590362 DOI: 10.1186/s12885-021-08903-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing level of interest in the potential role inflammation has on the initiation and progression of malignancy. Notable examples include Helicobacter pylori-mediated inflammation in gastric cancer and more recently Fusobacterium nucleatum-mediated inflammation in colorectal cancer. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that was first isolated from the oral cavity and identified as a periodontal pathogen. Biofilms on oral squamous cell carcinomas are enriched with anaerobic periodontal pathogens, including F. nucleatum, which has prompted hypotheses that this bacterium could contribute to oral cancer development. Recent studies have demonstrated that F. nucleatum can promote cancer by several mechanisms; activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation and immune evasion. This review provides an update on the association between F. nucleatum and oral carcinogenesis, and provides insights into the possible mechanisms underlying it.
Collapse
Affiliation(s)
- Emily McIlvanna
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Stephanie G Craig
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.,Precision Medicine Centre of Excellence, Health Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - Jacqueline A James
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Precision Medicine Centre of Excellence, Health Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Northern Ireland Biobank, Health Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
36
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
37
|
Simas AM, Kramer CD, Weinberg EO, Genco CA. Oral infection with a periodontal pathogen alters oral and gut microbiomes. Anaerobe 2021; 71:102399. [PMID: 34090994 DOI: 10.1016/j.anaerobe.2021.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023]
Abstract
Periodontal disease, an inflammatory bone disease of the oral cavity, affects more than 50% of the United States population over the age of 30. The Gram-negative, anaerobic bacterium Porphyromonas gingivalis, the etiological agent of periodontal disease, is known to induce dysbiosis of the oral microbiome while promoting inflammatory bone loss. We have recently reported that P. gingivalis can also alter the gut microbiota of mice prone to develop inflammatory atherosclerosis. However, it is still unknown whether P. gingivalis induces similar changes to the gut microbiome as it does to oral microbiome. In this study, we demonstrate that P. gingivalis infection increases the diversity of the oral microbiome, allowing for colonization of potentially opportunistic species in the oral microbiome and overgrowth of commensal species in both the oral and gut microbiomes. Since periodontal disease treatment in humans typically involves antibiotic treatment, we also examined the combined effect of P. gingivalis infection on mice pretreated with oral antibiotics. By correlating the oral and cecal microbiota of P. gingivalis-infected mice fed a normal chow diet, we identified blooms of the Gram-negative genera Barnesiella and Bacteroides and imbalances of mucin-degrading bacteria. These disrupted community structures were predicted to have increased detrimental functional capacities including increased flavonoid degradation and l-histidine fermentation. Though antibiotic pretreatment (without P. gingivlais) had a dominant impact on the cecal microbiome, P. gingivalis infection of mice with or without antibiotic pretreatment increased the abundance of the phylum Firmicutes and the Porphyromonadaceae family in the cecum. Collectively, our study demonstrates that P. gingivalis oral infection disrupted the oral and cecal microbiomes of otherwise unperturbed mice, altering their community membership and functional potential.
Collapse
Affiliation(s)
- Alexandra M Simas
- Graduate Program in Biochemical and Molecular Nutrition, Gerald J. and Dorothy R. Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, 02111, USA; Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA, 02111, USA.
| | - Carolyn D Kramer
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA, 02111, USA.
| | - Ellen O Weinberg
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA, 02111, USA.
| | - Caroline A Genco
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA, 02111, USA; Graduate Program in Immunology and Molecular Microbiology, School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA, 02111, USA; Molecular Microbiology, School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA, 02111, USA.
| |
Collapse
|
38
|
Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021; 9:microorganisms9081549. [PMID: 34442627 PMCID: PMC8400438 DOI: 10.3390/microorganisms9081549] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis in the oral environment may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This review aims to summarize the current knowledge about the association of oral microbiota with OSCC and to describe possible etiopathogenetic mechanisms involved in processes of OSCC development and progression. Association studies included in this review were designed as case–control/case studies, analyzing the bacteriome, mycobiome, and virome from saliva, oral rinses, oral mucosal swabs, or oral mucosal tissue samples (deep and superficial) and comparing the results in healthy individuals to those with OSCC and/or with premalignant lesions. Changes in relative abundances of specific bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.) and fungi (especially Candida sp.) were associated with OSCC. Viruses can also play a role; while the results of studies investigating the role of human papillomavirus in OSCC development are controversial, Epstein–Barr virus was positively correlated with OSCC. The oral microbiota has been linked to tumorigenesis through a variety of mechanisms, including the stimulation of cell proliferation, tumor invasiveness, angiogenesis, inhibition of cell apoptosis, induction of chronic inflammation, or production of oncometabolites. We also advocate for the necessity of performing a complex analysis of the microbiome in further studies and of standardizing the sampling procedures by establishing guidelines to support future meta-analyses.
Collapse
Affiliation(s)
- Tereza Vyhnalova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Department of Maxillofacial Surgery, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +420-777-550-596
| | - Daniela Gachova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
| | - Petra Borilova Linhartova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
39
|
Su Mun L, Wye Lum S, Kong Yuiin Sze G, Hock Yoong C, Ching Yung K, Kah Lok L, Gopinath D. Association of Microbiome with Oral Squamous Cell Carcinoma: A Systematic Review of the Metagenomic Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7224. [PMID: 34299675 PMCID: PMC8306663 DOI: 10.3390/ijerph18147224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
The past decade has witnessed a surge in epidemiological studies that have explored the relationship between the oral microbiome and oral cancer. Owing to the diversity of the published data, a comprehensive systematic overview of the currently available evidence is critical. This review summarises the current evidence on the metagenomic studies on the oral microbiome in oral cancer. A systematic search was conducted in Medline and Embase databases to identify original studies examining the differences in the oral microbiome of oral cancer cases and controls. A total of twenty-six studies were identified that reported differences in microbial abundance between oral squamous cell carcinoma (OSCC) and controls. Although almost all the studies identified microbial dysbiosis to be associated with oral cancer, the detailed qualitative analysis did not reveal the presence/abundance of any individual bacteria or a consortium to be consistently enriched in OSCC samples across the studies. Interestingly, few studies reported a surge of periodontopathogenic taxa, especially Fusobacteria, whereas others demonstrated a depletion of commensal taxa Streptococci. Considerable heterogeneity could be identified in the parameters used for designing the studies as well as reporting the microbial data. If microbiome data needs to be translated in the future, to complement the clinical parameters for diagnosis and prognosis of oral cancer, further studies with the integration of clinical variables, adequate statistical power, reproducible methods, and models are required.
Collapse
Affiliation(s)
- Lee Su Mun
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - See Wye Lum
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Genevieve Kong Yuiin Sze
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Cheong Hock Yoong
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Kwek Ching Yung
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Liong Kah Lok
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Divya Gopinath
- Oral Diagnosis and Surgical Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
40
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
41
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
42
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
43
|
Differences in the bacteriome of swab, saliva, and tissue biopsies in oral cancer. Sci Rep 2021; 11:1181. [PMID: 33441939 PMCID: PMC7806708 DOI: 10.1038/s41598-020-80859-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Microbial dysbiosis has been implicated in the pathogenesis of oral cancer. We analyzed the compositional and metabolic profile of the bacteriome in three specific niches in oral cancer patients along with controls using 16SrRNA sequencing (Illumina Miseq) and DADA2 software. We found major differences between patients and control subjects. Bacterial communities associated with the tumor surface and deep paired tumor tissue differed significantly. Tumor surfaces carried elevated abundances of taxa belonging to genera Porphyromonas, Enterobacteriae, Neisseria, Streptococcus and Fusobacteria, whereas Prevotella, Treponema, Sphingomonas, Meiothermus and Mycoplasma genera were significantly more abundant in deep tissue. The most abundant microbial metabolic pathways were those related to fatty-acid biosynthesis, carbon metabolism and amino-acid metabolism on the tumor surface: carbohydrate metabolism and organic polymer degradation were elevated in tumor tissues. The bacteriome of saliva from patients with oral cancer differed significantly from paired tumor tissue in terms of community structure, however remained similar at taxonomic and metabolic levels except for elevated abundances of Streptococcus, Lactobacillus and Bacteroides, and acetoin-biosynthesis, respectively. These shifts to a pro-inflammatory profile are consistent with other studies suggesting oncogenic properties. Importantly, selection of the principal source of microbial DNA is key to ensure reliable, reproducible and comparable results in microbiome studies.
Collapse
|
44
|
Campbell PM, Humphreys GJ, Summers AM, Konkel JE, Knight CG, Augustine T, McBain AJ. Does the Microbiome Affect the Outcome of Renal Transplantation? Front Cell Infect Microbiol 2020; 10:558644. [PMID: 33425774 PMCID: PMC7785772 DOI: 10.3389/fcimb.2020.558644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
The role of the human microbiome in health and disease is becoming increasingly apparent. Emerging evidence suggests that the microbiome is affected by solid organ transplantation. Kidney transplantation is the gold standard treatment for End-Stage Renal Disease (ESRD), the advanced stage of Chronic Kidney Disease (CKD). The question of how ESRD and transplantation affect the microbiome and vice versa includes how the microbiome is affected by increased concentrations of toxins such as urea and creatinine (which are elevated in ESRD), whether restoration of renal function following transplantation alters the composition of the microbiome, and the impact of lifelong administration of immunosuppressive drugs on the microbiome. Changes in microbiome composition and activity have been reported in ESRD and in therapeutic immunosuppression, but the effect on the outcome of transplantation is not well-understood. Here, we consider the current evidence that changes in kidney function and immunosuppression following transplantation influence the oral, gut, and urinary microbiomes in kidney transplant patients. The potential for changes in these microbiomes to lead to disease, systemic inflammation, or rejection of the organ itself is discussed, along with the possibility that restoration of kidney function might re-establish orthobiosis.
Collapse
Affiliation(s)
- Paul M Campbell
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Angela M Summers
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher G Knight
- School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Titus Augustine
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Gopinath D, Kunnath Menon R, Chun Wie C, Banerjee M, Panda S, Mandal D, Behera PK, Roychoudhury S, Kheur S, George Botelho M, Johnson NW. Salivary bacterial shifts in oral leukoplakia resemble the dysbiotic oral cancer bacteriome. J Oral Microbiol 2020; 13:1857998. [PMID: 33391629 PMCID: PMC7734041 DOI: 10.1080/20002297.2020.1857998] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: While some oral carcinomas appear to arise de novo, others develop within long-standing conditions of the oral cavity that have malignant potential, now known as oral potentially malignant disorders (OPMDs). The oral bacteriome associated with OPMD has been studied to a lesser extent than that associated with oral cancer. To characterize the association in detail we compared the bacteriome in whole mouth fluid (WMF) in patients with oral leukoplakia, oral cancer and healthy controls. Methods: WMF bacteriome from 20 leukoplakia patients, 31 patients with oral cancer and 23 healthy controls were profiled using the Illumina MiSeq platform. Sequencing reads were processed using DADA2, and taxonomical classification was performed using the phylogenetic placement method. Sparse Partial Least Squares Regression Discriminant Analysis model was used to identify bacterial taxa that best discriminate the studied groups. Results: We found considerable overlap between the WMF bacteriome of leukoplakia and oral cancer while a clearer separation between healthy controls and the former two disorders was observed. Specifically, the separation was attributed to 14 taxa belonging to the genera Megaspheara, unclassified enterobacteria, Prevotella, Porphyromonas, Rothia and Salmonella, Streptococcus, and Fusobacterium. The most discriminative bacterial genera between leukoplakia and oral cancer were Megasphaera, unclassified Enterobacteriae, Salmonella and Prevotella. Conclusion: Oral bacteria may play a role in the early stages of oral carcinogenesis as a dysbiotic bacteriome is associated with oral leukoplakia and this resembles that of oral cancer more than healthy controls. Our findings may have implications for developing oral cancer prevention strategies targeting early microbial drivers of oral carcinogenesis.
Collapse
Affiliation(s)
- Divya Gopinath
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China.,Oral Diagnostics and Surgical Science, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Rohit Kunnath Menon
- Clinical Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Chong Chun Wie
- School of Pharmacy, Monash University, Selangor, Malaysia
| | - Moinak Banerjee
- Human Molecular Genetics Lab, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Siksha O Anusandhan University, Bhubaneswar, India
| | - Deviprasad Mandal
- Department of Oral Pathology and Microbiology, Siksha O Anusandhan University, Bhubaneswar, India
| | - Paresh Kumar Behera
- Head and Neck Oncology, Acharya Harihara Regional Cancer Centre, Bhubaneswar, India
| | - Susanta Roychoudhury
- Basic research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, D.Y. Patil Dental College, Pune, India
| | | | - Newell W Johnson
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China.,Menzies Health Institute Queensland and School of Dentistry and Oral Health, Griffith University, Australia.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| |
Collapse
|
46
|
Handsley-Davis M, Jamieson L, Kapellas K, Hedges J, Weyrich LS. The role of the oral microbiota in chronic non-communicable disease and its relevance to the Indigenous health gap in Australia. BMC Oral Health 2020; 20:327. [PMID: 33198712 PMCID: PMC7670664 DOI: 10.1186/s12903-020-01308-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aboriginal Australians and Torres Strait Islanders (hereafter respectfully referred to as Indigenous Australians) experience disproportionately poor health and low life expectancy compared to non-Indigenous Australians. Poor oral health is a critical, but understudied, contributor to this health gap. A considerable body of evidence links poor oral health to increased risks of other chronic non-communicable conditions, such as diabetes, cardiovascular disease, chronic kidney disease, and poor emotional wellbeing. MAIN: The oral microbiota is indisputably associated with several oral diseases that disproportionately affect Indigenous Australians. Furthermore, a growing literature suggests direct and indirect links between the oral microbiota and systemic chronic non-communicable diseases that underpin much of the Indigenous health gap in Australia. Recent research indicates that oral microbial communities are shaped by a combination of cultural and lifestyle factors and are inherited from caregivers to children. Systematic differences in oral microbiota diversity and composition have been identified between Indigenous and non-Indigenous individuals in Australia and elsewhere, suggesting that microbiota-related diseases may be distinct in Indigenous Australians. CONCLUSION: Oral microbiota research involving Indigenous Australians is a promising new area that could benefit Indigenous communities in numerous ways. These potential benefits include: (1) ensuring equity and access for Indigenous Australians in microbiota-related therapies; (2) opportunities for knowledge-sharing and collaborative research between scientists and Indigenous communities; and (3) using knowledge about the oral microbiota and chronic disease to help close the gaps in Indigenous oral and systemic health.
Collapse
Affiliation(s)
- Matilda Handsley-Davis
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA, Australia.
| | - Lisa Jamieson
- Australian Research Centre for Population Oral Health (ARCPOH), University of Adelaide, Adelaide, SA, Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health (ARCPOH), University of Adelaide, Adelaide, SA, Australia
| | - Joanne Hedges
- Australian Research Centre for Population Oral Health (ARCPOH), University of Adelaide, Adelaide, SA, Australia
| | - Laura S Weyrich
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA, Australia.
- Department of Anthropology and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
47
|
Tuominen H, Rautava J. Oral Microbiota and Cancer Development. Pathobiology 2020; 88:116-126. [PMID: 33176328 DOI: 10.1159/000510979] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Oral microbiota are among the most diverse in the human body. More than 700 species have been identified in the mouth, and new sequencing methods are allowing us to discover even more species. The anatomy of the oral cavity is different from that of other body sites. The oral cavity has mucosal surfaces (the tongue, the buccal mucosa, the gingiva, and the palate), hard tissues (the teeth), and exocrine gland tissue (major and minor salivary glands), all of which present unique features for microbiota composition. The connection between oral microbiota and diseases of the human body has been under intensive research in the past years. Furthermore, oral microbiota have been associated with cancer development. Patients suffering from periodontitis, a common advanced gingival disease caused by bacterial dysbiosis, have a 2-5 times higher risk of acquiring any cancer compared to healthy individuals. Some oral taxa, especially Porphyromonas gingivalis and Fusobacterium nucleatum, have been shown to have carcinogenic potential by several different mechanisms. They can inhibit apoptosis, activate cell proliferation, promote cellular invasion, induce chronic inflammation, and directly produce carcinogens. These microbiota changes can already be seen with potentially malignant lesions of the oral cavity. The causal relationship between microbiota and cancer is complex. It is difficult to accurately study the impact of specific bacteria on carcinoma development in humans. This review focuses on the elucidating the interactions between oral cavity bacterial microbiota and cancer. We gather literature on the current knowledge of the bacterial contribution to cancer development and the mechanisms behind it.
Collapse
Affiliation(s)
- Heidi Tuominen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland.,Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Jaana Rautava
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland, .,Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,
| |
Collapse
|
48
|
Deo PN, Deshmukh R. Oral microbiome and oral cancer - The probable nexus. J Oral Maxillofac Pathol 2020; 24:361-367. [PMID: 33456248 PMCID: PMC7802843 DOI: 10.4103/jomfp.jomfp_20_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma is one of the most common malignancies and is the leading cause of morbidity and mortality. The known risk factors for oral cancer are tobacco, alcohol consumption and betel quid chewing. Nutritional deficiencies and certain microorganisms are also associated with oral cancer. Oral cavity is a host to numerous microorganisms, majority of which are bacterial communities along with fungi and viruses. A possibility of the dysregulation of the oral microbiome cannot be ignored. Oral microbiome is defined as the collective genome of microorganisms that reside in the oral cavity. With the development of culture-independent techniques, the detection and identification of the bacteria which cannot be cultured has become possible. Revolution in technology has led to increased research in this area in an attempt to find the role of microbiome in health and disease. Before identifying the exact role the microbiome plays in the development of oral cancer, it is essential to profile the microbiome in healthy individuals and patients with oral cancer. It is essential to note that oral cancer may sometimes occur without any habit too!! This article is an attempt to review the role of oral microbiome in oral cancer with a focus on the bacteriome, its related studies and in brief about the omics technologies in understanding the microbiome.
Collapse
Affiliation(s)
- Priya Nimish Deo
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be) University, Dental College and Hospital, Pune, Maharashtra, India
| | - Revati Deshmukh
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be) University, Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
49
|
Rai AK, Panda M, Das AK, Rahman T, Das R, Das K, Sarma A, Kataki AC, Chattopadhyay I. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol 2020; 203:137-152. [PMID: 32783067 DOI: 10.1007/s00203-020-02011-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
Advanced combinatorial treatments of surgery, chemotherapy, and radiotherapy do not have any effect on the enhancement of a 5-year survival rate of oral squamous cell carcinoma (OSCC). The discovery of early diagnostic non-invasive biomarkers is required to improve the survival rate of OSCC patients. Recently, it has been reported that oral microbiome has a significant contribution to the development of OSCC. Oral microbiome induces inflammatory response through the production of cytokines and chemokines that enhances tumor cell proliferation and survival. The study aims to develop saliva-based oral microbiome and cytokine biomarker panel that screen OSCC patients based on the level of the microbiome and cytokine differences. We compared the oral microbiome signatures and cytokine level in the saliva of OSCC patients and healthy individuals by 16S rRNA gene sequencing targeting the V3/V4 region using the MiSeq platform and cytokine assay, respectively. The higher abundance of Prevotella melaninogenica, Fusobacterium sp., Veillonella parvula, Porphyromonas endodontalis, Prevotella pallens, Dialister, Streptococcus anginosus, Prevotella nigrescens, Campylobacter ureolyticus, Prevotella nanceiensis, Peptostreptococcus anaerobius and significant elevation of IL-8, IL-6, TNF-α, GM-CSF, and IFN-γ in the saliva of patients having OSCC. Oncobacteria such as S. anginosus, V. parvula, P. endodontalis, and P. anaerobius may contribute to the development of OSCC by increasing inflammation via increased expression of inflammatory cytokines such as IL-6, IL-8, TNF-α, IFN-γ, and GM-CSF. These oncobacteria and cytokines panels could potentially be used as a non-invasive biomarker in clinical practice for more efficient screening and early detection of OSCC patients.
Collapse
Affiliation(s)
- Avdhesh Kumar Rai
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Madhusmita Panda
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Ashok Kumar Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Tashnin Rahman
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Rajjyoti Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Kishore Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Anupam Sarma
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Amal Ch Kataki
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 16, India
| | - Indranil Chattopadhyay
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India.
| |
Collapse
|
50
|
Clinical Detection of Chronic Rhinosinusitis through Next-Generation Sequencing of the Oral Microbiota. Microorganisms 2020; 8:microorganisms8060959. [PMID: 32604855 PMCID: PMC7356624 DOI: 10.3390/microorganisms8060959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is the chronic inflammation of the sinus cavities of the upper respiratory tract, which can be caused by a disrupted microbiome. However, the role of the oral microbiome in CRS is not well understood. Polymicrobial and anaerobic infections of CRS frequently increased the difficulty of cultured and antibiotic therapy. This study aimed to elucidate the patterns and clinical feasibility of the oral microbiome in CRS diagnosis. Matched saliva and nasal swabs were collected from 18 CRS patients and 37 saliva specimens from normal volunteers were collected for 16S rRNA sequencing. The α-diversity of the saliva displayed no significant difference between control and CRS patients, whereas the β-diversity was significantly different (p = 0.004). Taxonomic indices demonstrated that Veillonella dispar, Rothia mucilaginosa, and Porphyromonas endodontalis were enriched, while Campylobacter and Cardiobacterium were reduced in the saliva of CRS patients. These microbial markers could significantly distinguish CRS patients from control (AUC = 0.939). It is noted that the 16S rRNA results of the nasal swab were consistent with the nasopharynx aerobic culture, and additionally detected multiple pathogens in CRS patients. In summary, these results indicated these oral microbiomes may provide a novel signal for CRS detection and that NGS may be an alternative approach for CRS diagnosis.
Collapse
|