1
|
Lubkin A, Bernard-Raichon L, DuMont AL, Valero Jimenez AM, Putzel GG, Gago J, Zwack EE, Olusanya O, Boguslawski KM, Dallari S, Dyzenhaus S, Herrmann C, Ilmain JK, Isom GL, Pawline M, Perault AI, Perelman S, Sause WE, Shahi I, St. John A, Tierce R, Zheng X, Zhou C, Noval MG, O'Keeffe A, Podkowik M, Gonzales S, Inglima K, Desvignes L, Hochman SE, Stapleford KA, Thorpe LE, Pironti A, Shopsin B, Cadwell K, Dittmann M, Torres VJ. SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus. mBio 2024; 15:e0166724. [PMID: 39037272 PMCID: PMC11323729 DOI: 10.1128/mbio.01667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Severe COVID-19 has been associated with coinfections with bacterial and fungal pathogens. Notably, patients with COVID-19 who develop Staphylococcus aureus bacteremia exhibit higher rates of mortality than those infected with either pathogen alone. To understand this clinical scenario, we collected and examined S. aureus blood and respiratory isolates from a hospital in New York City during the early phase of the pandemic from both SARS-CoV-2+ and SARS-CoV-2- patients. Whole genome sequencing of these S. aureus isolates revealed broad phylogenetic diversity in both patient groups, suggesting that SARS-CoV-2 coinfection was not associated with a particular S. aureus lineage. Phenotypic characterization of the contemporary collection of S. aureus isolates from SARS-CoV-2+ and SARS-CoV-2- patients revealed no notable differences in several virulence traits examined. However, we noted a trend toward overrepresentation of S. aureus bloodstream strains with low cytotoxicity in the SARS-CoV-2+ group. We observed that patients coinfected with SARS-CoV-2 and S. aureus were more likely to die during the acute phase of infection when the coinfecting S. aureus strain exhibited high or low cytotoxicity. To further investigate the relationship between SARS-CoV-2 and S. aureus infections, we developed a murine coinfection model. These studies revealed that infection with SARS-CoV-2 renders mice susceptible to subsequent superinfection with low cytotoxicity S. aureus. Thus, SARS-CoV-2 infection sensitizes the host to coinfections, including S. aureus isolates with low intrinsic virulence. IMPORTANCE The COVID-19 pandemic has had an enormous impact on healthcare across the globe. Patients who were severely infected with SARS-CoV-2, the virus causing COVID-19, sometimes became infected with other pathogens, which is termed coinfection. If the coinfecting pathogen is the bacterium Staphylococcus aureus, there is an increased risk of patient death. We collected S. aureus strains that coinfected patients with SARS-CoV-2 to study the disease outcome caused by the interaction of these two important pathogens. We found that both in patients and in mice, coinfection with an S. aureus strain lacking toxicity resulted in more severe disease during the early phase of infection, compared with infection with either pathogen alone. Thus, SARS-CoV-2 infection can directly increase the severity of S. aureus infection.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lucie Bernard-Raichon
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ana Mayela Valero Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory G. Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Juan Gago
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Olufolakemi Olusanya
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Kristina M. Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Simone Dallari
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Christin Herrmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Georgia L. Isom
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Miranda Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Sofya Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - William E. Sause
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ifrah Shahi
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Rebecca Tierce
- Division of Comparative Medicine, New York University Langone Health, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chunyi Zhou
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna O'Keeffe
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Magda Podkowik
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Sandra Gonzales
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth Inglima
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ludovic Desvignes
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
- High Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York, USA
| | - Sarah E. Hochman
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lorna E. Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| |
Collapse
|
2
|
Anderson EE, Dyzenhaus S, Ilmain JK, Sullivan MJ, van Bakel H, Torres VJ. SarS Is a Repressor of Staphylococcus aureus Bicomponent Pore-Forming Leukocidins. Infect Immun 2023; 91:e0053222. [PMID: 36939325 PMCID: PMC10112191 DOI: 10.1128/iai.00532-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.
Collapse
Affiliation(s)
- Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mitchell J. Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Dyzenhaus S, Sullivan MJ, Alburquerque B, Boff D, van de Guchte A, Chung M, Fulmer Y, Copin R, Ilmain JK, O'Keefe A, Altman DR, Stubbe FX, Podkowik M, Dupper AC, Shopsin B, van Bakel H, Torres VJ. MRSA lineage USA300 isolated from bloodstream infections exhibit altered virulence regulation. Cell Host Microbe 2023; 31:228-242.e8. [PMID: 36681080 PMCID: PMC9911362 DOI: 10.1016/j.chom.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/18/2022] [Accepted: 12/02/2022] [Indexed: 01/22/2023]
Abstract
The epidemic community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 lineage has recently become a leading cause of hospital-associated bloodstream infections (BSIs). Here, we leveraged this recent introduction into hospitals and the limited genetic variation across USA300 isolates to identify mutations that contribute to its success in a new environment. We found that USA300 BSI isolates exhibit altered virulence regulation. Using comparative genomics to delineate the genes involved in this phenotype, we discovered repeated and independent mutations in the transcriptional regulator sarZ. Mutations in sarZ resulted in increased virulence of USA300 BSI isolates in a murine model of BSI. The sarZ mutations derepressed the expression and production of the surface protein ClfB, which was critical for the pathogenesis of USA300 BSI isolates. Altogether, these findings highlight ongoing evolution of a major MRSA lineage and suggest USA300 strains can optimize their fitness through altered regulation of virulence.
Collapse
Affiliation(s)
- Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mitchell J Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bremy Alburquerque
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daiane Boff
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marilyn Chung
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yi Fulmer
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard Copin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna O'Keefe
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Deena R Altman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - François-Xavier Stubbe
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Magdalena Podkowik
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Amy C Dupper
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Wang Y, Li H, Li Y, Guo H, Zhou J, Wang T. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159913. [PMID: 36343807 DOI: 10.1016/j.scitotenv.2022.159913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Rivers are important vectors and reservoirs of antibiotics resistance genes (ARGs). Information regarding transmission and health risk of ARGs in river confluence is still lacking. In this study, metagenomics was used to distinguish contributions of human activities on ARGs and human pathogenic bacteria (HPB) in confluence of Fenhe, Weihe, and Yellow Rivers. Bacitracin resistance gene and bacA were the highest in all rivers, with 1.86 × 10-2-7.26 × 10-2 and 1.79 × 10-2-9.12 × 10-2 copies/16S rRNA copies, respectively. River confluence significantly increased the abundance of ARGs, especially at the confluence of three rivers with the highest 1.53 × 10-1 copies/16S rRNA copies. Antibiotic efflux and antibiotic target alteration were the dominant resistant mechanisms in three rivers. ARGs profiles were influenced by multiple factors, with the contributions of various factors ranked as microbial communities > physicochemical factors > human activities > mobile genetic elements (MGEs). Notably, human activities and animal feces were important potential contributors of ARGs in the Weihe River and Yellow River. Transposons, as the main MGEs in three rivers, played important roles in ARGs transfer. The confluence of three rivers had the highest abundance of MGEs with the greatest transfer potentials, and therefore exhibiting the largest exposure risk of ARGs with 232.4 copies/cap·d. Furthermore, correlations of ARGs, MGEs, and HPB in different rivers were constructed via co-occurrence modes to systematically illustrate the health risks of ARGs. This study firstly unveiled the transmission and health risk of ARGs in river confluence, providing supports for ARGs control in watershed.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Bacterial Resistance to β-Lactam Antibiotics in Municipal Wastewater: Insights from a Full-Scale Treatment Plant in Poland. Microorganisms 2022; 10:microorganisms10122323. [PMID: 36557576 PMCID: PMC9783957 DOI: 10.3390/microorganisms10122323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated enzymatic and genetic determinants of bacterial resistance to β-lactam antibiotics in the biocenosis involved in the process of biological treatment of wastewater by activated sludge. The frequency of bacteria resistant to selected antibiotics and the activity of enzymes responsible for resistance to β-lactam antibiotics were estimated. The phenomenon of selection and spread of a number of genes determining antibiotic resistance was traced using PCR and gene sequencing. An increase in the percentage of bacteria showing resistance to β-lactam antibiotics in the microflora of wastewater during the treatment process was found. The highest number of resistant microorganisms, including multi-resistant strains, was recorded in the aeration chamber. Significant amounts of these bacteria were also present in treated wastewater, where the percentage of penicillin-resistant bacteria exceeded 50%, while those resistant to the new generation β-lactam antibiotics meropenem and imipenem were found at 8.8% and 6.4%, respectively. Antibiotic resistance was repeatedly accompanied by the activity of enzymes such as carbapenemases, metallo-β-lactamases, cephalosporinases and β-lactamases with an extended substrate spectrum. The activity of carbapenemases was shown in up to 97% of the multi-resistant bacteria. Studies using molecular biology techniques showed a high frequency of genes determining resistance to β-lactam antibiotics, especially the blaTEM1 gene. The analysis of the nucleotide sequences of blaTEM1 gene variants present in bacteria at different stages of wastewater treatment showed 50-100% mutual similarity of.
Collapse
|
6
|
Moynihan E, Mackey K, Blaskovich MAT, Reen FJ, McGlacken G. N-Alkyl-2-Quinolonopyrones Demonstrate Antimicrobial Activity against ESKAPE Pathogens Including Staphylococcus aureus. ACS Med Chem Lett 2022; 13:1358-1362. [PMID: 35978679 PMCID: PMC9377017 DOI: 10.1021/acsmedchemlett.2c00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Eoin Moynihan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Katrina Mackey
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Mark A. T. Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - F. Jerry Reen
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Gerard McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
7
|
Subramanian D, Natarajan J. RNA-seq analysis reveals resistome genes and signalling pathway associated with vancomycin-intermediate Staphylococcus aureus. Indian J Med Microbiol 2019; 37:173-185. [PMID: 31745016 DOI: 10.4103/ijmm.ijmm_18_311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Vancomycin-intermediate Staphylococcus aureus remains one of the most prevalent multidrug-resistant pathogens causing healthcare infections that are difficult to treat. Aims This study uses a comprehensive computational analysis to systematically investigate various gene expression profiles of resistant and sensitive S. aureus strains on exposure to antibiotics. Settings and Design The transcriptional changes leading to the development of multiple antibiotic resistance were examined by an integrative analysis of nine differential expression experiments under selected conditions of vancomycin-intermediate and -sensitive strains for four different antibiotics using publicly available RNA-Seq datasets. Materials and Methods For each antibiotic, three experimental conditions for expression analysis were selected to identify those genes that are particularly involved in the development of resistance. The results were further scrutinised to generate a resistome that can be analysed for their role in the development or adaptation to antibiotic resistance. Results The 99 genes in the resistome are then compiled to create a multiple drug resistome of 25 known and novel genes identified to play a part in antibiotic resistance. The inclusion of agr genes and associated virulence factors in the identified resistome supports the role of agr quorum sensing system in multiple drug resistance. In addition, enrichment analysis also identified the kyoto encyclopedia of genes and genomes (KEGG) pathways - quorum sensing and two-component system pathways - in the resistome gene set. Conclusion Further studies on understanding the role of the identified molecular targets such as SAA6008_00181, SAA6008_01127, agrA, agrC and coa in adapting to the pressure of antibiotics at sub-inhibitory concentrations can help in learning the molecular mechanisms causing resistance to the pathogens as well as finding other potential therapeutics.
Collapse
Affiliation(s)
- Devika Subramanian
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeyakumar Natarajan
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
|
9
|
Lucas D, Badia-Fabregat M, Vicent T, Caminal G, Rodríguez-Mozaz S, Balcázar JL, Barceló D. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. CHEMOSPHERE 2016; 152:301-308. [PMID: 26991378 DOI: 10.1016/j.chemosphere.2016.02.113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
The emergence and spread of antibiotic resistance represents one of the most important public health concerns and has been linked to the widespread use of antibiotics in veterinary and human medicine. The overall elimination of antibiotics in conventional wastewater treatment plants is quite low; therefore, residual amounts of these compounds are continuously discharged to receiving surface waters, which may promote the emergence of antibiotic resistance. In this study, the ability of a fungal treatment as an alternative wastewater treatment for the elimination of forty-seven antibiotics belonging to seven different groups (β-lactams, fluoroquinolones, macrolides, metronidazoles, sulfonamides, tetracyclines, and trimethoprim) was evaluated. 77% of antibiotics were removed after the fungal treatment, which is higher than removal obtained in conventional treatment plants. Moreover, the effect of fungal treatment on the removal of some antibiotic resistance genes (ARGs) was evaluated. The fungal treatment was also efficient in removing ARGs, such as ermB (resistance to macrolides), tetW (resistance to tetracyclines), blaTEM (resistance to β-lactams), sulI (resistance to sulfonamides) and qnrS (reduced susceptibility to fluoroquinolones). However, it was not possible to establish a clear link between concentrations of antibiotics and corresponding ARGs in wastewater, which leads to the conclusion that there are other factors that should be taken into consideration besides the antibiotic concentrations that reach aquatic ecosystems in order to explain the emergence and spread of antibiotic resistance.
Collapse
Affiliation(s)
- D Lucas
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain
| | - M Badia-Fabregat
- Departamentd'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - T Vicent
- Departamentd'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - G Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - J L Balcázar
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
10
|
Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego CM, Barceló D, Balcázar JL. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. WATER RESEARCH 2015; 69:234-242. [PMID: 25482914 DOI: 10.1016/j.watres.2014.11.021] [Citation(s) in RCA: 893] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 05/17/2023]
Abstract
Antibiotic resistance has become a major health concern; thus, there is a growing interest in exploring the occurrence of antibiotic resistance genes (ARGs) in the environment as well as the factors that contribute to their emergence. Aquatic ecosystems provide an ideal setting for the acquisition and spread of ARGs due to the continuous pollution by antimicrobial compounds derived from anthropogenic activities. We investigated, therefore, the pollution level of a broad range of antibiotics and ARGs released from hospital and urban wastewaters, their removal through a wastewater treatment plant (WWTP) and their presence in the receiving river. Several antimicrobial compounds were detected in all water samples collected. Among antibiotic families, fluoroquinolones were detected at the highest concentration, especially in hospital effluent samples. Although good removal efficiency by treatment processes was observed for several antimicrobial compounds, most antibiotics were still present in WWTP effluents. The results also revealed that copy numbers of ARGs, such as blaTEM (resistance to β-lactams), qnrS (reduced susceptibility to fluoroquinolones), ermB (resistance to macrolides), sulI (resistance to sulfonamides) and tetW (resistance to tetracyclines), were detected at the highest concentrations in hospital effluent and WWTP influent samples. Although there was a significant reduction in copy numbers of these ARGs in WWTP effluent samples, this reduction was not uniform across analyzed ARGs. Relative concentration of ermB and tetW genes decreased as a result of wastewater treatment, whereas increased in the case of blaTEM, sulI and qnrS genes. The incomplete removal of antibiotics and ARGs in WWTP severely affected the receiving river, where both types of emerging pollutants were found at higher concentration in downstream waters than in samples collected upstream from the discharge point. Taken together, our findings demonstrate a widespread occurrence of antibiotics and ARGs in urban and hospital wastewater and how these effluents, even after treatment, contribute to the spread of these emerging pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Sara Chamorro
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Elisabet Marti
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Belinda Huerta
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Jose Luis Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
| |
Collapse
|
11
|
In vitro and in vivo antibacterial activities of cranberry press cake extracts alone or in combination with β-lactams against Staphylococcus aureus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:90. [PMID: 23622254 PMCID: PMC3641957 DOI: 10.1186/1472-6882-13-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/18/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cranberry fruits possess many biological activities partly due to their various phenolic compounds; however the underlying modes of action are poorly understood. We studied the effect of cranberry fruit extracts on the gene expression of Staphylococcus aureus to identify specific cellular processes involved in the antibacterial action. METHODS Transcriptional profiles of four S. aureus strains grown in broth supplemented or not with 2 mg/ml of a commercial cranberry preparation (Nutricran®90) were compared using DNA arrays to reveal gene modulations serving as markers for biological activity. Ethanol extracted pressed cakes from fresh fruits also produced various fractions and their effects on marker genes were demonstrated by qPCR. Minimal inhibitory concentrations (MICs) of the most effective cranberry fraction (FC111) were determined against multiple S. aureus strains and drug interactions with β-lactam antibiotics were also evaluated. Incorporation assays with [(3)H]-radiolabeled precursors were performed to evaluate the effect of FC111 on DNA, RNA, peptidoglycan (PG) and protein biosynthesis. RESULTS Treatment of S. aureus with Nutricran®90 or FC111 revealed a transcriptional signature typical of PG-acting antibiotics (up-regulation of genes vraR/S, murZ, lytM, pbp2, sgtB, fmt). The effect of FC111 on PG was confirmed by the marked inhibition of incorporation of D-[(3)H]alanine. The combination of β-lactams and FC111 in checkerboard assays revealed a synergistic activity against S. aureus including strain MRSA COL, which showed a 512-fold drop of amoxicillin MIC in the presence of FC111 at MIC/8. Finally, a therapeutic proof of concept was established in a mouse mastitis model of infection. S. aureus-infected mammary glands were treated with amoxicillin, FC111 or a combination of both; only the combination significantly reduced bacterial counts from infected glands (P<0.05) compared to the untreated mice. CONCLUSIONS The cranberry fraction FC111 affects PG synthesis of S. aureus and acts in synergy with β-lactam antibiotics. Such a fraction easily obtained from poorly exploited press-cake residues, may find interesting applications in the agri-food sector and help reduce antibiotic usage in animal food production.
Collapse
|
12
|
Current world literature. Curr Opin Infect Dis 2012; 25:718-28. [PMID: 23147811 DOI: 10.1097/qco.0b013e32835af239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Hao H, Dai M, Wang Y, Huang L, Yuan Z. Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus. Future Microbiol 2012; 7:1315-29. [DOI: 10.2217/fmb.12.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), popularly known as a type of superbug, has been a serious challenge for animal and human health. S. aureus has developed methicillin resistance mainly by expression of β-lactamase and PBP2a, which is regulated by the blaZ–blaI–blaR1 and mecA–mecI–mecRI systems. Other genetic elements, including murE and femA, also participate in expression of methicillin resistance, but the mechanism remains unclear. The evolution of the staphylococcal cassette chromosome mec determines the epidemiological risk of MRSA. The plasmid-located gene cfr might contribute to multiresistance and transmission of MRSA. Some virulence factors, including Panton–Valentine leukocidin, phenol-soluble modulin, arginine catabolic mobile element and other toxin elements enhance the pathogenesis and fitness of MRSA. Two-component regulation systems (agr, saeRS and vraRS) are closely associated with pathogenesis and drug resistance of MRSA. The systematic exploration of key genetic elements and regulation systems involved in multidrug resistance/pathogenesis/transmission of MRSA is conclusively integrated into this review, providing fundamental information for the development of new antimicrobial agents and the establishment of reasonable antibiotic stewardship to reduce the risk of this superbug.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|