1
|
Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Cellulomonas Species. Appl Environ Microbiol 2022; 88:e0096822. [PMID: 35862679 PMCID: PMC9361826 DOI: 10.1128/aem.00968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the β-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on β-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.
Collapse
|
2
|
Cayetano-Cruz M, Caro-Gómez LA, Plascencia-Espinosa M, Santiago-Hernández A, Benítez-Cardoza CG, Campos JE, Hidalgo-Lara ME, Zamorano-Carrillo A. Effect of the single mutation N9Y on the catalytical properties of xylanase Xyn11A from Cellulomonas uda: a biochemical and molecular dynamic simulation analysis. Biosci Biotechnol Biochem 2021; 85:1971-1985. [PMID: 34232281 DOI: 10.1093/bbb/zbab124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Cellulomonas uda produces Xyn11A, moderately thermostable xylanase, with optimal activity at 50 °C and pH 6.5. An improvement in the biochemical properties of Xyn11A was achieved by site-directed mutagenesis approach. Wild-type xylanase, Xyn11A-WT, and its mutant Xyn11A-N9Y were expressed in Escherichia coli, and then both enzymes were purified and characterized. Xyn11A-N9Y displayed optimal activity at 60 °C and pH 7.5, an upward shift of 10 ºC in the optimum temperature, and an upward shift of one unit in optimum pH; also, it manifested an 11-fold increase in thermal stability at 60 ºC, compared to that displayed by Xyn11A-WT. Molecular dynamics (MD) simulations of Xyn11A-WT and Xyn11A-N9Y suggest the substitution N9Y leads to an array of secondary structure changes at the N-terminal end and an increase in the number of hydrogen bonds in Xyn11A-N9Y. Based on the significant improvements, Xyn11A-N9Y may be considered as a candidate for several biotechnological applications.
Collapse
Affiliation(s)
- Maribel Cayetano-Cruz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, D.F. CP 07360, México
| | - Luis A Caro-Gómez
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Miguel Plascencia-Espinosa
- CIBA-Instituto Politécnico Nacional, Km 1.5 Carretera Estatal Tecuexcomac-Tepetitla, 90700, Tepetitla, Tlaxcala, México
| | - Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, D.F. CP 07360, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Jorge E Campos
- Laboratorio de Bioquímica Molecular, UBIPRO, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México
| | - María Eugenia Hidalgo-Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, D.F. CP 07360, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| |
Collapse
|
3
|
Li J, Solhi L, Goddard-Borger ED, Mathieu Y, Wakarchuk WW, Withers SG, Brumer H. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:29. [PMID: 33485381 PMCID: PMC7828015 DOI: 10.1186/s13068-020-01860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/13/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally changed our understanding of microbial lignocellulose degradation. Cellulomonas bacteria have a rich history of study due to their ability to degrade recalcitrant cellulose, yet little is known about the predicted LPMOs that they encode from Auxiliary Activity Family 10 (AA10). RESULTS Here, we present the comprehensive biochemical characterization of three AA10 LPMOs from Cellulomonas flavigena (CflaLPMO10A, CflaLPMO10B, and CflaLPMO10C) and one LPMO from Cellulomonas fimi (CfiLPMO10). We demonstrate that these four enzymes oxidize insoluble cellulose with C1 regioselectivity and show a preference for substrates with high surface area. In addition, CflaLPMO10B, CflaLPMO10C, and CfiLPMO10 exhibit limited capacity to perform mixed C1/C4 regioselective oxidative cleavage. Thermostability analysis indicates that these LPMOs can refold spontaneously following denaturation dependent on the presence of copper coordination. Scanning and transmission electron microscopy revealed substrate-specific surface and structural morphological changes following LPMO action on Avicel and phosphoric acid-swollen cellulose (PASC). Further, we demonstrate that the LPMOs encoded by Cellulomonas flavigena exhibit synergy in cellulose degradation, which is due in part to decreased autoinactivation. CONCLUSIONS Together, these results advance understanding of the cellulose utilization machinery of historically important Cellulomonas species beyond hydrolytic enzymes to include lytic cleavage. This work also contributes to the broader mapping of enzyme activity in Auxiliary Activity Family 10 and provides new biocatalysts for potential applications in biomass modification.
Collapse
Affiliation(s)
- James Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Laleh Solhi
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ethan D Goddard-Borger
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephen G Withers
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Department of Botany, University of British Columbia, 3200 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
4
|
Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi. Enzyme Microb Technol 2018; 113:9-17. [PMID: 29602392 PMCID: PMC5892457 DOI: 10.1016/j.enzmictec.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 01/06/2023]
Abstract
Identified over 90 putative polysaccharide degrading ORFs in C. fimi genome. Cloned 14 putative cellulolytic ORFs as BioBricks, screened them for activity. Partially purified AfsB, BxyF, BxyH and XynF and characterised them further. BxyH proved highly temperature and alkaline pH tolerant. BioBricks are an easy method for screening genes for specific activities.
Recent analyses of genome sequences belonging to cellulolytic bacteria have revealed many genes potentially coding for cellulosic biomass degradation enzymes. Annotation of these genes however, is based on few biochemically characterised examples. Here we present a simple strategy based on BioBricks for the rapid screening of candidate genes expressed in Escherichia coli. As proof of principle we identified over 70 putative biomass degrading genes from bacterium Cellulomonas fimi, expressing a subset of these in BioBrick format. Six novel genes showed activity in E. coli. Four interesting enzymes were characterised further. α-l-arabinofuranosidase AfsB, β-xylosidases BxyF and BxyH and multi-functional β-cellobiosidase/xylosidase XynF were partially purified to determine their optimum pH, temperature and kinetic parameters. One of these enzymes, BxyH, was unexpectedly found to be highly active at strong alkaline pH and at temperatures as high as 100 °C. This report demonstrates a simple method of quickly screening and characterising putative genes as BioBricks.
Collapse
|
5
|
C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Biotechnol Lett 2016; 38:1739-45. [DOI: 10.1007/s10529-016-2149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
6
|
Verma D, Satyanarayana T. Molecular approaches for ameliorating microbial xylanases. BIORESOURCE TECHNOLOGY 2012; 117:360-367. [PMID: 22595098 DOI: 10.1016/j.biortech.2012.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 05/31/2023]
Abstract
In industrial processes, chemical catalysis is being replaced by enzyme catalysis, since the latter is environmentally benign, non-persistent and cost effective. Microbial xylanases have significant applications in textile, baking, food and feed industries, and in paper and pulp industries for reducing the chlorine requirement. The hazardous chlorine required for bleaching can be reduced up to 25-30% by including an enzymatic step in the pulp bleaching process. The paper pulp bleaching requires xylanases that are active at alkaline pH and elevated temperatures. The enzymes from the cultured microbes do not perform optimally in the paper industry due to their inadequate stability under the process conditions of high temperature and alkaline pH. This review, therefore, deals with the rationale of molecular approaches such as protein engineering for designing xylanases with improved characteristics to suit the process conditions in industries, and prospects and problems.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
7
|
Kim DY, Han MK, Oh HW, Bae KS, Jeong TS, Kim SU, Shin DH, Kim IH, Rhee YH, Son KH, Park HY. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. BIORESOURCE TECHNOLOGY 2010; 101:8814-8821. [PMID: 20615688 DOI: 10.1016/j.biortech.2010.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/15/2010] [Accepted: 06/03/2010] [Indexed: 05/29/2023]
Abstract
The novel intracellular GH10 xylanase (iXylC) gene (1023-bp) of Cohnella laeviribosi HY-21 encoded a protein consisting of 340 amino acids with a deduced molecular mass of 39,330Da and a calculated pI of 5.81. The primary structure of iXylC was 70% identical to that of Geobacillus sp. GH10 enzyme (GenBank accession number: EDV78425). Xylanolytic activity of the His-tagged iXylC overproduced in Escherichiacoli BL21 was stimulated by 2.2-fold in the presence of 0.5% non-ionic detergents. iXylC produced a mixture of xylooligosaccharides (xylobiose to xylooctaose) from xylotriose and xylotetraose used as the hydrolytic substrate. In addition, it exhibited considerable cleavage activities for p-nitrophenylxylopyranoside (PNP-xylopyranoside) and PNP-cellobioside, indicating that iXylC is a unique GH10 enzyme. The hydrolytic activity (57.8IUmL(-1)) of iXylC toward PNP-xylopyranoside increased to 8.3-fold by W217A and W315A mutations, while mutations of W133A, W295A, and W303A abolished the hydrolytic activity of the enzyme.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sunna A. Modular organisation and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 2009; 86:189-200. [DOI: 10.1007/s00253-009-2242-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
9
|
Kim DY, Han MK, Lee JS, Oh HW, Park DS, Shin DH, Bae KS, Son KH, Park HY. Isolation and characterization of a cellulase-free endo-β-1,4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Hekmat O, Florizone C, Kim YW, Eltis LD, Warren RAJ, Withers SG. Specificity Fingerprinting of Retaining β-1,4-Glycanases in theCellulomonas fimi Secretome Using Two Fluorescent Mechanism-Based Probes. Chembiochem 2007; 8:2125-32. [DOI: 10.1002/cbic.200700481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Santiago-Hernández A, Vega-Estrada J, del Carmen Montes-Horcasitas M, Hidalgo-Lara ME. Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena. J Ind Microbiol Biotechnol 2007; 34:331-8. [PMID: 17219190 DOI: 10.1007/s10295-006-0202-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/12/2006] [Indexed: 01/09/2023]
Abstract
We report the purification and characterization of two thermophilic xylanases from the mesophilic bacteria Cellulomonas flavigena grown on sugarcane bagasse (SCB) as the only carbon source. Extracellular xylanase activity produced by C. flavigena was found both free in the culture supernatant and associated with residual SCB. To identify some of the molecules responsible for the xylanase activity in the substrate-bound fraction, residual SCB was treated with 3 M guanidine hydrochloride and then with 6 M urea. Further analysis of the eluted material led to the identification of two xylanases Xyl36 (36 kDa) and Xyl53 (53 kDa). The pI for Xyl36 was 5.0, while the pI for Xyl53 was 4.5. Xyl36 had a Km value of 1.95 mg/ml, while Xyl53 had a Km value of 0.78 mg/ml. In addition to SCB, Xyl36 and Xyl53 were also able to bind to insoluble oat spelt xylan and Avicel, as shown by substrate-binding assays. Xyl36 and Xyl53 showed optimal activity at pH 6.5, and at optimal temperature 65 and 55 degrees C, respectively. Xyl36 and Xyl53 retained 24 and 35%, respectively, of their original activity after 8 h of incubation at their optimal temperature. As far as we know, this is the first study on the thermostability properties of purified xylanases from microorganisms belonging to the genus Cellulomonas.
Collapse
Affiliation(s)
- Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, Mexico D. F., CP 07360, Mexico
| | | | | | | |
Collapse
|
12
|
Wu S, Liu B, Zhang X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 2006; 72:1210-6. [PMID: 16607523 DOI: 10.1007/s00253-006-0416-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
A novel xylanase-producing thermophilic strain MT-1 was isolated from a deep-sea hydrothermal field in east Pacific. A xylanase gene encoding 331 amino-acid peptide from this isolate was cloned and expressed in Escherichia coli. The recombinant xylanase exhibited maximum activity at 70 degrees C and had an optimum pH of 7.0. It was active up to 90 degrees C and showed activity over a wide pH ranging from 5.5 to 10.0. The crude xylanase presented similar properties in temperature and pH to those of the recombinant xylanase. The recombinant xylanase was stable in 1 mM of enzyme inhibitors (PMSF, EDTA, 2-ME or DTT) and in 0.1% detergents (Tween 20, Chaps or Triton X-100), whereas, it was strongly inhibited by sodium dodecyl sulfate (SDS) (1 mM). In addition, its catalytic function was stable in the presence of Li(+), Na(+) or K(+). However, it was strongly inhibited by Ni(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Al(3+) (1 or 0.1 mM). The K (m) and V (max) of the recombinant xylanase for oat spelt xylan were calculated to be 1.579 mg/ml and 289 micromol/(min x mg), respectively. Our study, therefore, presented a rapid overexpression and purification of xylanase from deep-sea thermophile aimed at improving the enzyme yield for industrial applications and scientific research.
Collapse
Affiliation(s)
- Suijie Wu
- School of Life Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
13
|
Kleine J, Liebl W. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Extremophiles 2006; 10:373-81. [PMID: 16550304 DOI: 10.1007/s00792-006-0509-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/04/2006] [Indexed: 10/24/2022]
Abstract
The modular Xylanase XynA from Thermotoga maritima consists of five domains (A1-A2-B-C1-C2). Two similar N-terminal domains (A1-A2-) are family 22 carbohydrate-binding modules (CBMs), followed by the catalytic domain (-B-) belonging to glycoside hydrolase family 10, and the C-terminal domains (-C1-C2), which are members of family 9 of CBMs. The gradual deletion of the non-catalytic domains resulted in deletion derivatives (XynADeltaC; XynADeltaA1C and XynADeltaNC) with increased maximum activities (V (max)) at 75 degrees C, pH 6.2. Furthermore, these deletions led to a shift of the optimal NaCl concentration for xylan hydrolysis from 0.25 (XynA) to 0.5 M (XynADeltaNC). In the presence of the family 22 CBMs, the catalytic domain retained more activity in the acidic range of the pH spectrum than without these domains. In addition to the deletion derivatives of XynA, the N-terminal domains A1 and A2 were produced recombinantly, purified, and investigated in binding studies. For soluble xylan preparations, linear beta-1,4-glucans and mixed-linkage beta-1,3-1,4-glucans, only the A2 domain mediated binding, not the A1 domain, in accordance with previous observations. The XynA deletion enzymes lacking the C domains displayed low affinity also to hydroxyethylcellulose and carboxymethylcellulose. With insoluble oat spelt xylan and birchwood xylan as the binding substrates, the highest affinity was observed with XynADeltaC and the lowest affinity with XynADeltaNC. Although the domain A1 did not bind to soluble xylan preparations, the insoluble oat spelt xylan-binding data suggest that this domain does play a role in substrate binding in that it improves the binding to insoluble xylans.
Collapse
Affiliation(s)
- Jörg Kleine
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, 37077 Göttingen, Germany
| | | |
Collapse
|
14
|
Stjohn FJ, Rice JD, Preston JF. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl Environ Microbiol 2006; 72:1496-506. [PMID: 16461704 PMCID: PMC1392964 DOI: 10.1128/aem.72.2.1496-1506.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022] Open
Abstract
Environmental and economic factors predicate the need for efficient processing of renewable sources of fuels and chemicals. To fulfill this need, microbial biocatalysts must be developed to efficiently process the hemicellulose fraction of lignocellulosic biomass for fermentation of pentoses. The predominance of methylglucuronoxylan (MeGAXn), a beta-1,4 xylan in which 10% to 20% of the xylose residues are substituted with alpha-1,2-4-O-methylglucuronate residues, in hemicellulose fractions of hardwood and crop residues has made this a target for processing and fermentation. A Paenibacillus sp. (strain JDR-2) has been isolated and characterized for its ability to efficiently utilize MeGAXn. A modular xylanase (XynA1) of glycosyl hydrolase family 10 (GH 10) was identified through DNA sequence analysis that consists of a triplicate family 22 carbohydrate binding module followed by a GH 10 catalytic domain followed by a single family 9 carbohydrate binding module and concluding with C-terminal triplicate surface layer homology (SLH) domains. Immunodetection of the catalytic domain of XynA1 (XynA1 CD) indicates that the enzyme is associated with the cell wall fraction, supporting an anchoring role for the SLH modules. With MeGAXn as substrate, XynA1 CD generated xylobiose and aldotetrauronate (MeGAX3) as predominant products. The inability to detect depolymerization products in medium during exponential growth of Paenibacillus sp. strain JDR-2 on MeGAXn, as well as decreased growth rate and yield with XynA1 CD-generated xylooligosaccharides and aldouronates as substrates, indicates that XynA1 catalyzes a depolymerization process coupled to product assimilation. This depolymerization/assimilation system may be utilized for development of biocatalysts to efficiently convert MeGAXn to alternative fuels and biobased products.
Collapse
Affiliation(s)
- Franz J Stjohn
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | | | | |
Collapse
|
15
|
Puchart V, Gariépy MC, Shareck F, Dupont C. Identification of catalytically important amino acid residues of Streptomyces lividans acetylxylan esterase A from carbohydrate esterase family 4. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:263-74. [PMID: 16434244 DOI: 10.1016/j.bbapap.2005.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/05/2005] [Accepted: 11/21/2005] [Indexed: 11/16/2022]
Abstract
Multiple sequence alignment of Streptomyces lividans acetylxylan esterase A and other carbohydrate esterase family 4 enzymes revealed the following conserved amino acid residues: Asp-12, Asp-13, His-62, His-66, Asp-130, and His-155. These amino acids were mutated in order to investigate a functional role of these residues in catalysis. Replacement of the conserved histidine residues by alanine caused significant reduction of enzymatic activity. Maintenance of ionizable carboxylic group in side chains of amino acids at positions 12, 13, and 130 seems to be necessary for catalytic efficiency. The absence of conserved serine excludes a possibility that the enzyme is a serine esterase, in contrast to acetylxylan esterases of carbohydrate esterase families 1, 5, and 7. On the contrary, total conservation of Asp-12, Asp-13, Asp-130, and His-155 along with dramatic decrease in enzyme activity of mutants of either of these residues lead us to a suggestion that acetylxylan esterase A from Streptomyces lividans and, by inference, other members of carbohydrate esterase family 4 are aspartic deacetylases. We propose that one component of the aspartate dyad/triad functions as a catalytic nucleophile and the other one(s) as a catalytic acid/base. The ester/amide bond cleavage would proceed via a double displacement mechanism through covalently linked acetyl-enzyme intermediate of mixed anhydride type.
Collapse
Affiliation(s)
- Vladimír Puchart
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | | | | | | |
Collapse
|
16
|
Laurie JI, Clarke JH, Ciruela A, Faulds CB, Williamson G, Gilbert HJ, Rixon JE, Millward-Sadler J, Hazlewood GP. The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylates acetylxylan. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10298.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Hekmat O, Kim YW, Williams SJ, He S, Withers SG. Active-site peptide "fingerprinting" of glycosidases in complex mixtures by mass spectrometry. Discovery of a novel retaining beta-1,4-glycanase in Cellulomonas fimi. J Biol Chem 2005; 280:35126-35. [PMID: 16085650 DOI: 10.1074/jbc.m508434200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.
Collapse
Affiliation(s)
- Omid Hekmat
- Protein Engineering Network of Centres of Excellence of Canada, Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | |
Collapse
|
18
|
Kim JH, Irwin D, Wilson DB. Purification and characterization ofThermobifida fuscaxylanase 10B. Can J Microbiol 2004; 50:835-43. [PMID: 15644898 DOI: 10.1139/w04-077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermobifida fusca grows well on cellulose and xylan, and produces a number of cellulases and xylanases. The gene encoding a previously unstudied endoxylanase, xyl10B, was overexpressed in E. coli, and the protein was purified and characterized. Mature Xyl10B is a 43-kDa glycohydrolase with a short basic domain at the C-terminus. It has moderate thermostability, maintaining 50% of its activity after incubation for 16 h at 62 °C, and is most active between pH 5 and 8. Xyl10B is produced by growth of T. fusca on xylan or Solka Floc but not on pure cellulose. Mass spectroscopic analysis showed that Xyl10B produces xylobiose as the major product from birchwood and oat spelts xylan and that its hydrolysis products differ from those of T. fusca Xyl11A. Xyl10B hydrolyzes various p-nitrophenyl-sugars, including p-nitrophenyl α-D-arabinofuranoside, p-nitrophenyl-β-D-xylobioside, p-nitrophenyl-β-D-xyloside, and p-nitrophenyl-β-D-cellobioside. Xyl11A has higher activity on xylan substrates, but Xyl10B produced more reducing sugars from corn fiber than did Xyl11A.Key words: xylanase, enzyme purification, Thermobifida fusca, family 10 hydrolase.
Collapse
Affiliation(s)
- Jeong H Kim
- Division of Applied Life Science, Graduate School, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | | | | |
Collapse
|
19
|
Devillard E, Bera-Maillet C, Flint HJ, Scott KP, Newbold CJ, Wallace RJ, Jouany JP, Forano E. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. Biochem J 2003; 373:495-503. [PMID: 12693992 PMCID: PMC1223500 DOI: 10.1042/bj20021784] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Revised: 04/04/2003] [Accepted: 04/14/2003] [Indexed: 11/17/2022]
Abstract
A new xylanase gene, xyn10B, was isolated from the ruminal protozoan Polyplastron multivesiculatum and the gene product was characterized. XYN10B is the first protozoan family 10 glycoside hydrolase characterized so far and is a modular enzyme comprising a family 22 carbohydrate-binding module (CBM) preceding the catalytic domain. The CBM22 was shown to be a true CBM. It showed high affinity for soluble arabinoxylan and is the first example of a CBM22 that binds strongly to celluloses of various crystallinities. The enzymic properties of XYN10B were also analysed. Its optimal temperature and pH for activity were 39 degrees C and 7.0 respectively; these values being close to those of the ruminal ecosystem. The phylogenetic relationships between the XYN10B CBM22 or catalytic domain and related sequences from ruminal and non-ruminal bacteria and eukaryotes are reported. The xyn10B gene is shown to lack introns.
Collapse
Affiliation(s)
- Estelle Devillard
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shin ES, Yang MJ, Jung KH, Kwon EJ, Jung JS, Park SK, Kim J, Yun HD, Kim H. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl Environ Microbiol 2002; 68:3496-501. [PMID: 12089033 PMCID: PMC126775 DOI: 10.1128/aem.68.7.3496-3501.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A xylanase gene, xynX, of Clostridium thermocellum had one thermostabilizing domain (TSD) between the signal peptide sequence and the catalytic domain (CD). The TSD of a truncated xylanase gene, xynX'(TSD-CD), was transpositioned from the N terminus to the C terminus of the CD by overlapping PCRs, and a modified product, xynX'(CD-TSD), was constructed. XynX'(TSD-CD) had a higher optimum temperature (70 degrees C versus 65 degrees C) and was more thermostable (residual activity of 68% versus 46% after a 20-min preincubation at 70 degrees C) than the one without the TSD, XynX'(CD). However, the domain-transpositioned enzyme, XynX'(CD-TSD), showed a lower optimum temperature (30 degrees C) and thermostability (20%) than XynX'(CD). Both XynX'(TSD-CD) and XynX'(CD-TSD) showed significantly higher binding capacity toward xylan than XynX'(CD), and the domain transposition did not cause any change in the binding ability. XynX'(TSD-CD) and XynX'(CD-TSD) also showed considerable binding to lichenan but not to carboxymethyl cellulose and laminarin. XynX'(TSD-CD) and XynX'(CD-TSD) had higher activities for insoluble xylan than XynX'(CD), while XynX'(CD) was more active against soluble xylan than XynX'(TSD-CD) and XynX'(CD-TSD). These results indicate that the TSD of XynX has dual functions, xylan binding and thermostabilization, and the domain should also be classified as a xylan-binding domain (XBD). The binding capacity of the XBD was not affected by domain transpositioning within the gene.
Collapse
Affiliation(s)
- Eun-Sun Shin
- Department of Agricultural Chemistry, Sunchon National University, Sunchon 540-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ali MK, Kimura T, Sakka K, Ohmiya K. The multidomain xylanase Xyn10B as a cellulose-binding protein in Clostridium stercorarium. FEMS Microbiol Lett 2001; 198:79-83. [PMID: 11325557 DOI: 10.1111/j.1574-6968.2001.tb10622.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cells of Clostridium stercorarium F-9 grown on cellobiose bound to insoluble cellulose allomorphs such as phosphoric acid-swollen cellulose (ASC). Treatment of the cells with 3 M guanidine hydrochloride extracted surface-layer proteins from the cells and abolished the affinity of the cells for ASC. SDS-polyacrylamide gel electrophoresis, zymogram, and immunological analyses indicated that one of the major surface layer proteins was Xyn10B, which is a modular xylanase comprising two family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases, a family 9 CBM, and two S-layer homologous (SLH) domains. The C. stercorarium F-9 cells treated with guanidine hydrochloride coprecipitated with ASC upon the addition of a derivative of Xyn10B containing both a CBM and SLH domain in addition to a catalytic domain, but not a derivative without Xyn10B-SLH domains, suggesting that Xyn10B functioned as a cellulose-binding protein in C. stercorarium F-9.
Collapse
Affiliation(s)
- M K Ali
- Faculty of Bioresources, Mie University, 1515 Kamihamacho, 514-8507, Tsu, Japan
| | | | | | | |
Collapse
|
22
|
Kataeva IA, Blum DL, Li XL, Ljungdahl LG. Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? PROTEIN ENGINEERING 2001; 14:167-72. [PMID: 11342713 DOI: 10.1093/protein/14.3.167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellulolytic and hemicellulolytic enzymes usually have a domain composition. The mutual influence of a cellulose-binding domain and a catalytic domain was investigated with cellobiohydrolase CelK and xylanase XynZ from Clostridium thermocellum. CelK is composed of an N-terminal family IV cellulose-binding domain (CBDIV(CelK)), a family 9 glycosyl hydrolase domain (Gh9(CelK)) and a dockerin domain (DD). CelK without the DD, (CBDIV-Gh9)(CelK) and CBDIV(CelK) bound cellulose. The thermostability of (CBDIV-Gh9)(CelK) was significantly higher than that of CBDIV(CelK) and Gh9(CelK). The temperature optima of (CBDIV-Gh9)(CelK) and Gh9(CelK) were 65 and 45 degrees C, respectively. XynZ consists of an N-terminal feruloyl esterase domain (FAE(XynZ)), a linker (L), a family VI CBD (CBDVI(XynZ)), a DD and a xylanase domain. FAE(XynZ) and (FAE-L-CBDVI)(XynZ), used in the present study did not bind cellulose, but both were highly thermostable. Replacement of CBDVI(XynZ) with CBDIV(CelK) resulted in chimeras with feruloyl esterase activity and the ability to bind cellulose. CBDIV(CelK)-FAE(XynZ) bound cellulose with parameters similar to that of (CBDIV-Gh9)(CelK). (FAE-L)(XynZ)-CBDIV(CelK) and FAE(XynZ)-CBDIV(CelK) had lower relative affinities and binding capacities than those of (CBDIV-Gh9)(CelK). The three chimeras were much less thermostable than FAE(XynZ) and (FAE-L-CBDVI)(XynZ). The results indicate that domains of glycosyl hydrolases are not randomly combined and that domain interactions affect properties of these domain-structured enzymes.
Collapse
Affiliation(s)
- I A Kataeva
- Center for Biological Resources Recovery and Department of Biochemistry and Molecular Biology, A210 Life Sciences Building, University of Georgia, Athens, GA 30602-7229, USA.
| | | | | | | |
Collapse
|
23
|
Sunna A, Gibbs MD, Bergquist PL. A novel thermostable multidomain 1,4-beta-xylanase from 'Caldibacillus cellulovorans' and effect of its xylan-binding domain on enzyme activity. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2947-2955. [PMID: 11065373 DOI: 10.1099/00221287-146-11-2947] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequence of the complete xynA gene, encoding a novel multidomain xylanase XynA of 'Caldibacillus cellulovorans', was determined by genomic-walking PCR. The putative XynA comprises an N-terminal domain (D1), recently identified as a xylan-binding domain (XBD), homologous to non-catalytic thermostabilizing domains from other xylanases. D1 is followed by a xylanase catalytic domain (D2) homologous to family 10 glycosyl hydrolases. Downstream of this domain two cellulose-binding domains (CBD), D3 and D4, were found linked via proline-threonine (PT)-rich peptides. Both CBDs showed sequence similarity to family IIIb CBDs. Upstream of xynA an incomplete open reading frame was identified, encoding a putative C-terminal CBD homologous to family IIIb CBDs. Two expression plasmids encoding the N-terminal XBD plus the catalytic domain (XynAd1/2) and the xylanase catalytic domain alone (XynAd2) were constructed and the biochemical properties of the recombinant enzymes compared. The absence of the XBD resulted in a decrease in thermostability of the catalytic domain from 70 degrees C (XynAd1/2) to 60 degrees C (XynAd2). Substrate-specificity experiments and analysis of the main products released from xylan hydrolysis indicate that both recombinant enzymes act as endo-1, 4-beta-xylanases, but differ in their ability to cleave small xylooligosaccharides.
Collapse
Affiliation(s)
- Anwar Sunna
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia1
| | - Moreland D Gibbs
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia1
| | - Peter L Bergquist
- Department of Molecular Medicine, University of Auckland Medical School, Private Bag 92019, Auckland, New Zealand2
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia1
| |
Collapse
|
24
|
Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LM, Davies GJ, Fontes CM. The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 2000; 39:5013-21. [PMID: 10819965 DOI: 10.1021/bi992821q] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many polysaccharide-degrading enzymes display a modular structure in which a catalytic module is attached to one or more noncatalytic modules. Several xylanases contain a module of previously unknown function (termed "X6" modules) that had been implicated in thermostability. We have investigated the properties of two such "thermostabilizing" modules, X6a and X6b from the Clostridium thermocellumxylanase Xyn10B. These modules, expressed either as discrete entities or as their natural fusions with the catalytic module, were assayed, and their capacity to bind various carbohydrates and potentiate hydrolytic activity was determined. The data showed that X6b, but not X6a, increased the activity of the enzyme against insoluble xylan and bound specifically to xylooligosaccharides and various xylans. In contrast, X6a exhibited no affinity for soluble or insoluble forms of xylan. Isothermal titration calorimetry revealed that the ligand-binding site of X6b accommodates approximately four xylose residues. The protein exhibited K(d) values in the low micromolar range for xylotetraose, xylopentaose, and xylohexaose; 24 microM for xylotriose; and 50 microM for xylobiose. Negative DeltaH and DeltaS values indicate that the interaction of X6b with xylooligosaccharides and xylan is driven by enthalpic forces. The three-dimensional structure of X6b has been solved by X-ray crystallography to a resolution of 2.1 A. The protein is a beta-sandwich that presents a tryptophan and two tyrosine residues on the walls of a shallow cleft that is likely to be the xylan-binding site. In view of the structural and carbohydrate-binding properties of X6b, it is proposed that this and related modules be re-assigned as family 22 carbohydrate-binding modules.
Collapse
Affiliation(s)
- S J Charnock
- Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, U.K
| | | | | | | | | | | | | |
Collapse
|
25
|
Cazemier AE, Verdoes JC, van Ooyen AJ, Op den Camp HJ. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl Environ Microbiol 1999; 65:4099-107. [PMID: 10473422 PMCID: PMC99747 DOI: 10.1128/aem.65.9.4099-4107.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Accepted: 07/15/1999] [Indexed: 11/20/2022] Open
Abstract
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.
Collapse
Affiliation(s)
- A E Cazemier
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Abstract
The genes man26a and man2A from Cellulomonas fimi encode mannanase 26A (Man26A) and beta-mannosidase 2A (Man2A), respectively. Mature Man26A is a secreted, modular protein of 951 amino acids, comprising a catalytic module in family 26 of glycosyl hydrolases, an S-layer homology module, and two modules of unknown function. Exposure of Man26A produced by Escherichia coli to C. fimi protease generates active fragments of the enzyme that correspond to polypeptides with mannanase activity produced by C. fimi during growth on mannans, indicating that it may be the only mannanase produced by the organism. A significant fraction of the Man26A produced by C. fimi remains cell associated. Man2A is an intracellular enzyme comprising a catalytic module in a subfamily of family 2 of the glycosyl hydrolases that at present contains only mammalian beta-mannosidases.
Collapse
Affiliation(s)
- D Stoll
- Department of Microbiology and Immunology and The Protein Engineering Network of Centres of Excellence, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
27
|
Bergquist PL, Gibbs MD, Morris DD, Te'o V, Saul DJ, Morgan HW. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00565.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Hazlewood GP, Gilbert HJ. Structure and function analysis of Pseudomonas plant cell wall hydrolases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:211-41. [PMID: 9752722 DOI: 10.1016/s0079-6603(08)60828-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolysis of the major structural polysaccharides of plant cell walls by the aerobic soil bacterium Pseudomonas fluorescens subsp. cellulosa is attributable to the production of multiple extracellular cellulase and hemicellulase enzymes, which are the products of distinct genes belonging to multigene families. Cloning and sequencing of individual genes, coupled with gene sectioning and functional analysis of the encoded proteins have provided a detailed picture of structure/function relationships and have established the cellulase-hemicellulase system of P. fluorescens subsp. cellulosa as a model for the plant cell wall degrading enzyme systems of aerobic cellulolytic bacteria. Cellulose- and xylan-degrading enzymes produced by the pseudomonad are typically modular in structure and contain catalytic and noncatalytic domains joined together by serine-rich linker sequences. The cellulases include a cellodextrinase; a beta-glucan glucohydrolase and multiple endoglucanases, containing catalytic domains belonging to glycosyl hydrolase families 5, 9, and 45; and cellulose-binding domains of families II and X, both of which are present in each enzyme. Endo-acting xylanases, with catalytic domains belonging to families 10 and 11, and accessory xylan-degrading enzymes produced by P. fluorescens subsp. cellulosa contain cellulose-binding domains of families II, X, and XI, which act by promoting close contact between the catalytic domain of the enzyme and its target substrate. A domain homologous with NodB from rhizobia, present in one xylanase, functions as a deacetylase. Mananase, arabinanase, and galactanase produced by the pseudomonad are single domain enzymes. Crystallographic studies, coupled with detailed kinetic analysis of mutant forms of the enzyme in which key residues have been altered by site-directed mutagenesis, have shown that xylanase A (family 10) has 8-fold alpha/beta barrel architecture, an extended substrate-binding cleft containing at least six xylose-binding pockets and a calcium-binding site that protects the enzyme from thermal inactivation, thermal unfolding, and attack by proteinases. Kinetic studies of mutant and wild-type forms of a mannanase and a galactanase from P. fluorescens subsp. cellulosa have enabled the catalytic mechanisms and key catalytic residues of these enzymes to be identified.
Collapse
Affiliation(s)
- G P Hazlewood
- Laboratory of Molecular Enzymology, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
29
|
Morris DD, Gibbs MD, Chin CW, Koh MH, Wong KK, Allison RW, Nelson PJ, Bergquist PL. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 1998; 64:1759-65. [PMID: 9572948 PMCID: PMC106227 DOI: 10.1128/aem.64.5.1759-1765.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A two-step PCR protocol was used to identify and sequence a family 11 xylanase gene from Dictyoglomus thermophilum Rt46B.1. Family 11 xylanase consensus fragments (GXCFs) were amplified from Rt46B.1 genomic DNA by using different sets of consensus PCR primers that exhibited broad specificity for conserved motifs within fungal and/or bacterial family 11 xylanase genes. On the basis of the sequences of a representative sample of the GXCFs a single family 11 xylanase gene (xynB) was identified. The entire gene sequence was obtained in the second step by using genomic walking PCR to amplify Rt46B.1 genomic DNA fragments upstream and downstream of the xynB GXCF region. The putative XynB peptide (M(r), 39,800) encoded by the Rt46B.1 xynB open reading frame was a multidomain enzyme comprising an N-terminal catalytic domain (M(r), 22,000) and a possible C-terminal substrate-binding domain (M(r), 13,000) that were separated by a short serine-glycine-rich 23-amino-acid linker peptide. Seven xylanases which differed at their N and C termini were produced from different xynB expression plasmids. All seven xylanases exhibited optimum activity at pH 6.5. However, the temperature optima of the XynB xylanases varied from 70 to 85 degrees C. Pretreatment of Pinus radiata and eucalypt kraft-oxygen pulps with XynB resulted in moderate xylan solubilization and a substantial improvement in the bleachability of these pulps.
Collapse
Affiliation(s)
- D D Morris
- Centre for Gene Technology, School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Black GW, Rixon JE, Clarke JH, Hazlewood GP, Ferreira LM, Bolam DN, Gilbert HJ. Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol 1997; 57:59-69. [PMID: 9335166 DOI: 10.1016/s0168-1656(97)00089-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To evaluate the role of the CBDs and linker sequences in Pseudomonas xylanase A (XYLA) and arabinofuranosidase C (XYLC), the catalytic activity of derivatives of these enzymes, lacking either the linker sequences or CBDs, was assessed. Removal of the CBDs or linker sequences did not affect the activity of either XYLA or XYLC against soluble arabinoxylan, while derivatives of XYLA, in which either the CBD or interdomain regions had been deleted, exhibited decreased activity against the xylan component of cellulose/hemicellulose complexes. Although a truncated derivative of XYLC (XYLC"'), lacking its CBD, was less active than the full-length enzyme against plant cell wall material containing highly substituted arabinoxylan, XYLC"' was more active than XYLC on complex substrates where the degree of substitution of arabinoxylan was very low. These data indicate that CBDs and linker sequences play an important role in the activity of hemicellulases against plant cell walls and other cellulose/hemicellulose complexes.
Collapse
Affiliation(s)
- G W Black
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Wassenberg D, Schurig H, Liebl W, Jaenicke R. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Sci 1997; 6:1718-26. [PMID: 9260284 PMCID: PMC2143759 DOI: 10.1002/pro.5560060812] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hyperthermophilic bacterium Thermotoga maritima is capable of gaining metabolic energy utilizing xylan. XynA, one of the corresponding hydrolases required for its degradation, is a 120-kDa endo-1,4-D-xylanase exhibiting high intrinsic stability and a temperature optimum approximately 90 degrees C. Sequence alignments with other xylanases suggest the enzyme to consist of five domains. The C-terminal part of XynA was previously shown to be responsible for cellulose binding (Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. 1995. Identification of a novel cellulose-binding domain within the multi-domain 120 kDa Xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431-444). In order to characterize the domain organization and the stability of XynA and its C-terminal cellulose-binding domain (CBD), the two separate proteins were expressed in Escherichia coli. CBD, because of its instability in its ligand-free form, was expressed as a glutathione S-transferase fusion protein with a specific thrombin cleavage site as linker. XynA and CBD were compared regarding their hydrodynamic and spectral properties. As taken from analytical ultracentrifugation and gel permeation chromatography, both are monomers with 116 and 22 kDa molecular masses, respectively. In the presence of glucose as a ligand, CBD shows high intrinsic stability. Denaturation/renaturation experiments with isolated CBD yield > 80% renaturation, indicating that the domain folds independently. Making use of fluorescence emission and far-UV circular dichroism in order to characterize protein stability, guanidine-induced unfolding of XynA leads to biphasic transitions, with half-concentrations c1/2 (GdmCl) approximately 4 M and > 5 M, in accordance with the extreme thermal stability. At acid pH, XynA exhibits increased stability, indicated by a shift of the second guanidine-transition from 5 to 7 M GdmCl. This can be tentatively attributed to the cellulose-binding domain. Differences in the transition profiles monitored by fluorescence emission and dichroic absorption indicate multi-state behavior of XynA. In the case of CBD, a temperature-induced increase in negative ellipticity at 217 nm is caused by alterations in the environment of aromatic residues that contribute to the far-UV CD in the native state.
Collapse
Affiliation(s)
- D Wassenberg
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
32
|
Hayashi H, Takagi KI, Fukumura M, Kimura T, Karita S, Sakka K, Ohmiya K. Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol 1997; 179:4246-53. [PMID: 9209040 PMCID: PMC179246 DOI: 10.1128/jb.179.13.4246-4253.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleotide sequence of the Clostridium thermocellum F1 xynC gene, which encodes the xylanase XynC, consists of 1,857 bp and encodes a protein of 619 amino acids with a molecular weight of 69,517. XynC contains a typical N-terminal signal peptide of 32 amino acid residues, followed by a 165-amino-acid sequence which is homologous to the thermostabilizing domain. Downstream of this domain was a family 10 catalytic domain of glycosyl hydrolase. The C terminus separated from the catalytic domain by a short linker sequence contains a dockerin domain responsible for cellulosome assembly. The N-terminal amino acid sequence of XynC-II, the enzyme purified from a recombinant Escherichia coli strain, was in agreement with that deduced from the nucleotide sequence although XynC-II suffered from proteolytic truncation by a host protease(s) at the C-terminal region. Immunological and N-terminal amino acid sequence analyses disclosed that the full-length XynC is one of the major components of the C. thermocellum cellulosome. XynC-II was highly active toward xylan and slightly active toward p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-cellobioside, p-nitrophenyl-beta-D-glucopyranoside, and carboxymethyl cellulose. The Km and Vmax values for xylan were 3.9 mg/ml and 611 micromol/min/mg of protein, respectively. This enzyme was optimally active at 80 degrees C and was stable up to 70 degrees C at neutral pHs and over the pH range of 4 to 11 at 25 degrees C.
Collapse
Affiliation(s)
- H Hayashi
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|