1
|
Ramón A, Sanguinetti M, Silva Santos LH, Amillis S. Understanding fungal and plant active urea transport systems: Keys from Aspergillus nidulans and beyond. Biochem Biophys Res Commun 2024; 735:150801. [PMID: 39437702 DOI: 10.1016/j.bbrc.2024.150801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Urea is present in all ecosystems, as a result of the metabolism of different organisms and also of human activity, being the world's most common form of nitrogen fertilizer. Fungi and plants can use urea as a nitrogen source, taking it up from the environment through specialized active transport proteins. These proteins belong to a subfamily of urea/H+ symporters included in the Solute:Sodium Symporter (SSS) family of transporters. In this review we summarize the current knowledge on this group of transporters, based on our previous studies on Aspergillus nidulans UreA. We delve into its transcriptional and post-translational regulation, structure-function relationships, transport mechanism, and certain aspects of its biogenesis. Recent findings suggest that this urea transporter subfamily is more expanded than originally thought, with representatives found in organisms as diverse as Archaea and mollusks, which raises questions on evolutionary aspects. A. nidulans ureA knockout strains provide a valuable platform for expressing urea transporters from diverse sources, facilitating their characterization and functional analysis. In this context, given the close relationship between plant and fungal active urea transporters, this knowledge could serve to develop strategies to improve the efficiency of applied urea as fertilizer.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225 CP 11400, Montevideo, Uruguay.
| | - Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225 CP 11400, Montevideo, Uruguay.
| | | | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece; Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
2
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Beltran JL, Bain RK, Stiefel MJ, McDonnell AS, Carr NN, Thurtle-Schmidt BH. Human SLC4A11 does not complement BOR1 or support borate transport in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000605. [PMID: 35903773 PMCID: PMC9315404 DOI: 10.17912/micropub.biology.000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Borate is an essential micronutrient in plants regulated by borate transporters, which also protect both yeast and plants from toxically high levels of borate and share homology with the human SLC4 transporters. SLC4A11 is linked to congenital hereditary endothelial dystrophy and was initially reported to transport borate before subsequent studies rebutted this conclusion. To better understand the transport activities of purported borate transporters, we tested the ability of SLC4A11 and eleven borate transporters from A. thaliana and O. sativa to complement a BOR1 deletion in S. cerevisiae . We show that AtBOR4 , AtBOR5 , AtBOR7 , OsBOR2 , and OsBOR3 can each complement ScBOR1 , while the rest of the transporters tested do not rescue growth. Additionally, quantification of intracellular borate content demonstrates that SLC4A11 does not export borate in yeast, supporting studies that its transported substrate is not borate.
Collapse
Affiliation(s)
- Jean L. Beltran
- Department of Biology, Davidson College, Davidson, NC 28035, USA
| | - Richara K. Bain
- Department of Biology, Davidson College, Davidson, NC 28035, USA
| | - Marie J. Stiefel
- Department of Biology, Davidson College, Davidson, NC 28035, USA
| | | | - Natalie N. Carr
- Department of Biology, Davidson College, Davidson, NC 28035, USA
| | - Bryan H. Thurtle-Schmidt
- Department of Biology, Davidson College, Davidson, NC 28035, USA
,
Correspondence to: Bryan H. Thurtle-Schmidt (
)
| |
Collapse
|
4
|
Ushio K, Watanabe E, Kamiya T, Nagashima A, Furuta T, Imaizumi G, Fujiwara T, Romero MF, Kato A. Boric acid transport activity of human aquaporins expressed in Xenopus oocytes. Physiol Rep 2022; 10:e15164. [PMID: 35014212 PMCID: PMC8749175 DOI: 10.14814/phy2.15164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 04/17/2023] Open
Abstract
Boric acid is a vital micronutrient that is toxic at high concentrations in animals. However, the mechanisms underlying boric acid transport in animal cells remain unclear. To identify the plasma membrane boric acid channels in animals, we analyzed the function of human aquaporins (AQPs), which are homologous to the nodulin-like intrinsic protein family of plant boric acid channels. When human AQPs were expressed in Xenopus laevis oocytes, the results of the swelling assay showed that boric acid permeability significantly increased in oocytes expressing AQP3, 7, 8, 9, and 10, but not in those expressing AQP1, 2, 4, and 5. The boric acid influxes of these oocytes were also confirmed by elemental quantification. Electrophysiological analysis using a pH microelectrode showed that these AQPs transported boric acid (B(OH)3 ) but not borate ions (B(OH)4- ). These results indicate that AQP3, 7, 8, 9, and 10 act as boric acid transport systems, likely as channels in humans.
Collapse
Affiliation(s)
- Kazutaka Ushio
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Erika Watanabe
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takehiro Kamiya
- Department of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ayumi Nagashima
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tadaomi Furuta
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Genki Imaizumi
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Toru Fujiwara
- Department of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Michael F. Romero
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine & ScienceRochesterMinnesotaUSA
- Nephrology and HypertensionMayo Clinic College of Medicine & ScienceRochesterMinnesotaUSA
- O’Brien Urology Research CenterMayo Clinic College of Medicine & ScienceRochesterMinnesotaUSA
| | - Akira Kato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine & ScienceRochesterMinnesotaUSA
- Center for Biological Resources and InformaticsTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
5
|
The Bicarbonate Transporter (MoAE4) Localized on Both Cytomembrane and Tonoplast Promotes Pathogenesis in Magnaporthe oryzae. J Fungi (Basel) 2021; 7:jof7110955. [PMID: 34829242 PMCID: PMC8624833 DOI: 10.3390/jof7110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
Bicarbonate (HCO3−) transporter family including the anion exchanger (AE) group is involved in multiple physiological processes through regulating acid-base homeostasis. HCO3− transporters have been extensively studied in mammals, but fungal homologues of AE are poorly understood. Here, we characterized the AE group member (MoAE4) in Magnaporthe oryzae. MoAE4 exhibits more sequence and structure homologies with the reported AE4 and BOR1 proteins. In addition to the common sublocalization on cytomembrane, MoAE4 also localizes on tonoplast. Yeast complementation verified that MoAE4 rescues boron sensitivity and endows NaHCO3 tolerance in the BOR1 deleted yeast. MoAE4 gene is bicarbonate induced in M. oryzae; and loss of MoAE4 (ΔMoAE4) resulted in mycelial growth inhibited by NaHCO3. Lucigenin fluorescence quenching assay confirmed that ΔMoAE4 accumulated less HCO3− in vacuole and more HCO3− in cytosol, revealing a real role of MoAE4 in bicarbonate transport. ΔMoAE4 was defective in conidiation, appressorium formation, and pathogenicity. More H2O2 was detected to be accumulated in ΔMoAE4 mycelia and infected rice cells. Summarily, our data delineate a cytomembrane and tonoplast located HCO3− transporter, which is required for development and pathogenicity in M. oryzae, and revealing a potential drug target for blast disease control.
Collapse
|
6
|
Wang G, DiTusa SF, Oh DH, Herrmann AD, Mendoza-Cozatl DG, O'Neill MA, Smith AP, Dassanayake M. Cross species multi-omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. THE NEW PHYTOLOGIST 2021; 230:1985-2000. [PMID: 33629348 DOI: 10.1111/nph.17295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Boron toxicity is a world-wide problem for crops, yet we have a limited understanding of the genetic responses and adaptive mechanisms to this stress in plants. We employed a cross-species comparison between boron stress-sensitive Arabidopsis thaliana and its boron stress-tolerant extremophyte relative Schrenkiella parvula, and a multi-omics approach integrating genomics, transcriptomics, metabolomics and ionomics to assess plant responses and adaptations to boron stress. Schrenkiella parvula maintains lower concentrations of total boron and free boric acid than Arabidopsis when grown with excess boron. Schrenkiella parvula excludes excess boron more efficiently than Arabidopsis, which we propose is partly driven by SpBOR5, a boron transporter that we functionally characterize in this study. Both species use cell walls as a partial sink for excess boron. When accumulated in the cytoplasm, excess boron appears to interrupt RNA metabolism. The extremophyte S. parvula facilitates critical cellular processes while maintaining the pool of ribose-containing compounds that can bind with boric acid. The S. parvula transcriptome is pre-adapted to boron toxicity. It exhibits substantial overlaps with the Arabidopsis boron-stress responsive transcriptome. Cell wall sequestration and increases in global transcript levels under excess boron conditions emerge as key mechanisms for sustaining plant growth under boron toxicity.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Achim D Herrmann
- Department of Geology & Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
7
|
Pekarsky A, Mihalyi S, Weiss M, Limbeck A, Spadiut O. Depletion of Boric Acid and Cobalt from Cultivation Media: Impact on Recombinant Protein Production with Komagataella phaffii. Bioengineering (Basel) 2020; 7:bioengineering7040161. [PMID: 33322107 PMCID: PMC7763993 DOI: 10.3390/bioengineering7040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
The REACH regulation stands for “Registration, Evaluation, Authorization and Restriction of Chemicals” and defines certain substances as harmful to human health and the environment. This urges manufacturers to adapt production processes. Boric acid and cobalt dichloride represent such harmful ingredients, but are commonly used in yeast cultivation media. The yeast Komagataella phaffii (Pichia pastoris) is an important host for heterologous protein production and compliance with the REACH regulation is desirable. Boric acid and cobalt dichloride are used as boron and cobalt sources, respectively. Boron and cobalt support growth and productivity and a number of cobalt-containing enzymes exist. Therefore, depletion of boric acid and cobalt dichloride could have various negative effects, but knowledge is currently scarce. Herein, we provide an insight into the impact of boric acid and cobalt depletion on recombinant protein production with K. phaffii and additionally show how different vessel materials affect cultivation media compositions through leaking elements. We found that boric acid could be substituted through boron leakiness from borosilicate glassware. Furthermore, depletion of boric acid and cobalt dichloride neither affected high cell density cultivation nor cell morphology and viability on methanol. However, final protein quality of three different industrially relevant enzymes was affected in various ways.
Collapse
Affiliation(s)
- Alexander Pekarsky
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (A.P.); (S.M.)
| | - Sophia Mihalyi
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (A.P.); (S.M.)
| | - Maximilian Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-I2AC, 1060 Vienna, Austria; (M.W.); (A.L.)
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-I2AC, 1060 Vienna, Austria; (M.W.); (A.L.)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, 1060 Vienna, Austria; (A.P.); (S.M.)
- Correspondence: ; Tel.: +43-1-58801-166473
| |
Collapse
|
8
|
Tsednee M, Tanaka M, Kasai K, Fujiwara T. Boron-dependent regulation of translation through AUGUAA sequence in yeast. Yeast 2020; 37:638-646. [PMID: 33289202 DOI: 10.1002/yea.3526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
Under high boron (B) conditions, nodulin 26-like intrinsic protein 5;1 (NIP5;1) mRNA, a boric acid channel, is destabilized to avoid excess B entry into roots of Arabidopsis thaliana. In this regulation, the minimum upstream open reading frame (uORF), AUGUAA, in its 5'-untranslated region (5'-UTR) is essential, and high B enhances ribosome stalling at AUGUAA and leads to suppression of translation and mRNA degradation. This B-dependent AUGUAA-mediated regulation occurs also in animal transient expression and reticulocyte lysate translation systems. Thus, uncovering the ubiquitousness of B-dependent unique regulation is important to reveal the evolution of translational regulation. In the present study, we examined the regulation in Saccharomyces cerevisiae. Reporter assay showed that in yeast, carrying ATGTAA in 5'-UTR of NIP5;1 upstream of the reporter gene, the relative reporter activities were reduced significantly under high B conditions compared with control, whereas deletion of ATGTAA abolished such responses. This suggests that AUGUAA mediates B-dependent regulation of translation in Saccharomyces cerevisiae. Moreover, the deletion of ATGTAA resulted in up to 10-fold increase in general reporter activities indicating the suppression effect of AUGUAA on translation of the main ORF. Interestingly, mRNA level of the reporter gene was not affected by B in both yeast cells with and without AUGUAA. This finding reveals that in yeast, unlike the case in plants, mRNA degradation is not associated with AUGUAA regulation. Together, results suggest that B-dependent AUGUAA-mediated translational regulation is common among eukaryotes.
Collapse
Affiliation(s)
- Munkhtsetseg Tsednee
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Koji Kasai
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Uluisik İ, Karakaya HC, Koc A. tRNA Wobble Base Modifications and Boric Acid Resistance in Yeast: Boron-Resistant Deletion Mutants Induce the General Amino Acid Control Mechanism and Activate Boron Efflux. Mol Biol 2020. [DOI: 10.1134/s0026893320030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Porcel R, Bustamante A, Ros R, Serrano R, Mulet Salort JM. BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. PLANT, CELL & ENVIRONMENT 2018; 41:2844-2857. [PMID: 30103284 DOI: 10.1111/pce.13416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/05/2018] [Accepted: 07/24/2018] [Indexed: 05/20/2023]
Abstract
Beta vulgaris (sugar beet) is one of the most important industrial crops. Screening of a cDNA library for sugar beet genes able to confer cold tolerance upon overexpression in yeast identified a novel aquaporin, which we named BvCOLD1. The amino acid sequence of BvCOLD1 indicated that an acidic protein (pI 5.18) is similar to tonoplast intrinsic protein aquaporins. RNA expression analysis indicated that BvCOLD1 is expressed in all sugar beet organs. Confocal microscopy of a green fluorescent protein-tagged version localized BvCOLD1 in the endoplasmic reticulum in yeast and in plant cells. Experiments in yeast showed that BvCOLD1 has an important role in transporting several molecules, among them is boron, one of the most limiting micronutrients for sugar beet cultivation. Transgenic Arabidopsis thaliana plants overexpressing BvCOLD1 showed enhanced tolerance to cold, to different abiotic stresses, and to boron deficiency at different developmental stages. Searches in databases only retrieved BvCOLD1 orthologues in genomes from the Chenopodioideae, a subfamily of the Amaranthaceae family that includes the closely related crop Spinacea oleracea and halotolerant plants such as Salicornia herbacea or Suaeda glauca. Orthologues share a conserved sequence in the carboxy terminus, not present in other aquaporins, which is required for the functionality of the protein.
Collapse
Affiliation(s)
- Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonio Bustamante
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Roc Ros
- Departament de Biologia Vegetal, Facultat de Farmácia, and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José M Mulet Salort
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
11
|
Huai Z, Peng L, Wang S, Zhao H, Shi L, Xu F. Identification and Characterization of an Arabidopsis thaliana Mutant lbt With High Tolerance to Boron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:736. [PMID: 29915610 PMCID: PMC5994474 DOI: 10.3389/fpls.2018.00736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/15/2018] [Indexed: 06/01/2023]
Abstract
Boron (B) is an essential micronutrient of plants. In the present study, we characterized an Arabidopsis mutant lbt with significant low-boron tolerance that was identified based on our previous mapping of QTL for B efficiency in Arabidopsis. Multiple nutrient-deficiency analyses point out that lbt mutant is insensitive to only B-limitation stress. Compared with wild-type Col-0, the fresh weight, leaf area, root length and root elongation rate of lbt mutant were significantly improved under B deficiency during vegetative growth. lbt mutant also showed the improvements in plant height, branches and inflorescences compared with Col-0 during the reproductive stage under B limitation. Ultrastructure analysis of the leaves showed that starch accumulation in lbt mutant was significantly diminished compared with Col-0. Furthermore, there were no significant differences in the expression of transporter-related genes and B concentrations between Col-0 and lbt mutant under both normal B and low-B conditions. These results suggest that lbt mutant has a lower B demand than Col-0. Genetic analysis suggests that the low-B tolerant phenotype of lbt mutant is under the control of a monogenic recessive gene. Based on the high-density SNP linkage genetic map, only one QTL for low-B tolerance was mapped on chromosome 4 between 10.4 and 14.8 Mb. No any reported B-relative genes exist in the QTL interval, suggesting that a gene with unknown function controls the tolerance of lbt to B limitation. Taken together, lbt is a low-B tolerant mutant that does not depend on the uptake or transport of B and is controlled by a monogenic recessive gene mapped on chromosome 4, and cloning and functional analysis of LBT gene are expected to reveal novel mechanisms for plant resistance to B deficiency.
Collapse
Affiliation(s)
- Zexun Huai
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Lishun Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Głazowska S, Murozuka E, Persson DP, Castro PH, Schjoerring JK. Silicon affects seed development and leaf macrohair formation in Brachypodium distachyon. PHYSIOLOGIA PLANTARUM 2018; 163:231-246. [PMID: 29215732 DOI: 10.1111/ppl.12675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 05/11/2023]
Abstract
Silicon (Si) has many beneficial effects in plants, especially for the survival from biotic and abiotic stresses. However, Si may negatively affect the quality of lignocellulosic biomass for bioenergy purposes. Despite many studies, the regulation of Si distribution and deposition in plants remains to be fully understood. Here, we have identified the Brachypodium distachyon mutant low-silicon 1 (Bdlsi1-1), with impaired channeling function of the Si influx transporter BdLSI1, resulting in a substantial reduction of Si in shoots. Bioimaging by laser ablation-inductively coupled plasma-mass spectrometry showed that the wild-type plants deposited Si mainly in the bracts, awns and leaf macrohairs. The Bdlsi1-1 mutants showed substantial (>90%) reduction of Si in the mature shoots. The Bdlsi1-1 leaves had fewer, shorter macrohairs, but the overall pattern of Si distribution in bracts and leaf tissues was similar to that in the wild-type. The Bdlsi1-1 plants supplied with Si had significantly lower seed weights, compared to the wild-type. In low-Si media, the seed weight of wild-type plants was similar to that of Bdlsi1-1 mutants supplied with Si, while the Bdlsi1-1 seed weight decreased further. We conclude that Si deficiency results in widespread alterations in leaf surface morphology and seed formation in Brachypodium, showing the importance of Si for successful development in grasses.
Collapse
Affiliation(s)
- Sylwia Głazowska
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Emiko Murozuka
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Daniel P Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Pedro Humberto Castro
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Jan K Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
13
|
Wang S, Mitani-Ueno N, Takano J. Boron Uptake Assay in Xenopus laevis Oocytes. Bio Protoc 2018; 8:e2755. [PMID: 34179281 DOI: 10.21769/bioprotoc.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 11/02/2022] Open
Abstract
Boron (B) is essential for plant growth and taken up by plant roots as boric acid. Under B limitation, B uptake and translocation in plants are dependent on the boric acid channels located in the plasma membrane. Xenopus leavis oocyte is a reliable heterologous expression system to characterize transport activities of boric acid channels and related major intrinsic proteins (aquaporins). Here, we outline the protocols for expression of boric acid channels and boric acid uptake assay in Xenopus leavis oocytes.
Collapse
Affiliation(s)
- Sheliang Wang
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
14
|
Bienert MD, Diehn TA, Richet N, Chaumont F, Bienert GP. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function. FRONTIERS IN PLANT SCIENCE 2018; 9:382. [PMID: 29632543 PMCID: PMC5879115 DOI: 10.3389/fpls.2018.00382] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/08/2018] [Indexed: 05/21/2023]
Abstract
Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for angiosperm PIP1 and PIP2 isoforms in terms of their water transport activity, trafficking, and interaction emerged already as early as in non-seed vascular plants. The existence and conservation of these characteristics may argue for the fact that PIP2s are indeed involved in the delivery of PIP1s to the plasma membrane and that the formation of functional heterotetramers is of biological relevance.
Collapse
Affiliation(s)
- Manuela D. Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Till A. Diehn
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nicolas Richet
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gerd P. Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- *Correspondence: Gerd P. Bienert,
| |
Collapse
|
15
|
Uluisik I, Karakaya HC, Koc A. The importance of boron in biological systems. J Trace Elem Med Biol 2018; 45:156-162. [PMID: 29173473 DOI: 10.1016/j.jtemb.2017.10.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 03/13/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
Abstract
Boron is an essential element for plants and probably essential for human and animal health. Boron has a broad range of physiological effects on biological systems at low concentrations, whereas it is toxic to at high concentrations. Eventhough there are many studies on boron's biological effects and toxicity, more information is needed to understand the mechanisms of its action. The aim of the current work is to review boron's function, transport and toxicity in different biological systems.
Collapse
Affiliation(s)
- Irem Uluisik
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Huseyin Caglar Karakaya
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Ahmet Koc
- Inonu University, Medical School, Department of Medical Biology and Genetics, Battalgazi, Malatya, Turkey.
| |
Collapse
|
16
|
Sabir F, Loureiro-Dias MC, Soveral G, Prista C. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae. FEMS Microbiol Lett 2017; 364:3739791. [PMID: 28430948 DOI: 10.1093/femsle/fnx080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions.
Collapse
Affiliation(s)
- Farzana Sabir
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,1649-003 Lisboa, Portugal
| | - Maria C Loureiro-Dias
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,1649-003 Lisboa, Portugal
| | - Catarina Prista
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal
| |
Collapse
|
17
|
Moraga NB, Irazusta V, Amoroso MJ, Rajal VB. BIO-PRECIPITATES PRODUCED BY TWO AUTOCHTHONOUS BORON TOLERANT STREPTOMYCES STRAINS. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2017; 5:3373-3383. [PMID: 29503806 PMCID: PMC5828252 DOI: 10.1016/j.jece.2017.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Boron is widespread in the environment. Although contaminated soils are hard to recover different strategies have been investigated in the recent years. Bioremediation is one of the most studied because it is eco-friendly and less costly than other techniques. The aim of this research was to evaluate whether two Streptomyces strains isolated from boron contaminated soils in Salta, Argentina, may help remove boron from such soils. For this, they were grown in different liquid media with two boric acid concentrations and their specific growth rate and specific boric acid consumption rate were determined. Both strains showed great capacity to remove boron from the media. Increasing boric acid concentrations affected negatively the specific growth rate, however the specific boric acid consumption rate was superior. Boron bio-precipitates were observed when the strains grew in the presence of boric acid, probably due to an adaptive response developed by the cells to the exposure, for which many proteins were differentially synthetized. This strategy to tolerate high concentrations of boron by immobilizing it in bio-precipitates has not been previously described, to the best of our knowledge, and may have a great potential application in remediating soils contaminated with boron compounds.
Collapse
Affiliation(s)
- Norma Beatriz Moraga
- Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, Argentina
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa
| | - Verónica Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa
- Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - María Julia Amoroso
- Planta de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Verónica Beatriz Rajal
- Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, Argentina
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
18
|
Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB. Genes (Basel) 2017; 8:genes8070188. [PMID: 28753996 PMCID: PMC5541321 DOI: 10.3390/genes8070188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022] Open
Abstract
Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA− mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties.
Collapse
|
19
|
Marsiccobetre S, Rodríguez-Acosta A, Lang F, Figarella K, Uzcátegui NL. Aquaglyceroporins Are the Entry Pathway of Boric Acid in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:679-685. [PMID: 28087364 DOI: 10.1016/j.bbamem.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 11/17/2022]
Abstract
The boron element possesses a range of different effects on living beings. It is essential to beneficial at low concentrations, but toxic at excessive concentrations. Recently, some boron-based compounds have been identified as promising molecules against Trypanosoma brucei, the causative agent of sleeping sickness. However, until now, the boron metabolism and its access route into the parasite remained elusive. The present study addressed the permeability of T. brucei aquaglyceroporins (TbAQPs) for boric acid, the main natural boron species. To this end, the three TbAQPs were expressed in Saccharomyces cerevisiae and Xenopus laevis oocytes. Our findings in both expression systems showed that all three TbAQPs are permeable for boric acid. Especially TbAQP2 is highly permeable for this compound, displaying one of the highest conductances reported for a solute in these channels. Additionally, T. brucei aquaglyceroporin activities were sensitive to pH. Taken together, these results establish that TbAQPs are channels for boric acid and are highly efficient entry pathways for boron into the parasite. Our findings stress the importance of studying the physiological functions of boron and their derivatives in T. brucei, as well as the pharmacological implications of their uptake by trypanosome aquaglyceroporins.
Collapse
Affiliation(s)
- Sabrina Marsiccobetre
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Katherine Figarella
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela.
| | - Néstor L Uzcátegui
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela; Department of Physiology I, University of Tubingen, Tubingen, Germany.
| |
Collapse
|
20
|
Coudray N, L Seyler S, Lasala R, Zhang Z, Clark KM, Dumont ME, Rohou A, Beckstein O, Stokes DL. Structure of the SLC4 transporter Bor1p in an inward-facing conformation. Protein Sci 2016; 26:130-145. [PMID: 27717063 DOI: 10.1002/pro.3061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023]
Abstract
Bor1p is a secondary transporter in yeast that is responsible for boron transport. Bor1p belongs to the SLC4 family which controls bicarbonate exchange and pH regulation in animals as well as borate uptake in plants. The SLC4 family is more distantly related to members of the Amino acid-Polyamine-organoCation (APC) superfamily, which includes well studied transporters such as LeuT, Mhp1, AdiC, vSGLT, UraA, SLC26Dg. Their mechanism generally involves relative movements of two domains: a core domain that binds substrate and a gate domain that in many cases mediates dimerization. To shed light on conformational changes governing transport by the SLC4 family, we grew helical membrane crystals of Bor1p from Saccharomyces mikatae and determined a structure at ∼6 Å resolution using cryo-electron microscopy. To evaluate the conformation of Bor1p in these crystals, a homology model was built based on the related anion exchanger from red blood cells (AE1). This homology model was fitted to the cryo-EM density map using the Molecular Dynamics (MD) Flexible Fitting method and then relaxed by all-atom MD simulation in explicit solvent and membrane. Mapping of water accessibility indicates that the resulting structure represents an inward-facing conformation. Comparisons of the resulting Bor1p model with the X-ray structure of AE1 in an outward-facing conformation, together with MD simulations of inward-facing and outward-facing Bor1p models, suggest rigid body movements of the core domain relative to the gate domain. These movements are consistent with the rocking-bundle transport mechanism described for other members of the APC superfamily.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Sean L Seyler
- Department of Physics, Arizona State University, Tempe, Arizona, 85287
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Kathy M Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Mark E Dumont
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Alexis Rohou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona, 85287.,Center for Biological Physics, Arizona State University, Tempe, Arizona, 85287
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| |
Collapse
|
21
|
Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers. Proc Natl Acad Sci U S A 2016; 113:10542-6. [PMID: 27601653 DOI: 10.1073/pnas.1612603113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Boron is essential for plant growth because of its incorporation into plant cell walls; however, in excess it is toxic to plants. Boron transport and homeostasis in plants is regulated in part by the borate efflux transporter Bor1, a member of the solute carrier (SLC) 4 transporter family with homology to the human bicarbonate transporter Band 3. Here, we present the 4.1-Å resolution crystal structure of Arabidopsis thaliana Bor1. The structure displays a dimeric architecture in which dimerization is mediated by centralized Gate domains. Comparisons with a structure of Band 3 in an outward-open state reveal that the Core domains of Bor1 have rotated inwards to achieve an occluded state. Further structural comparisons with UapA, a xanthine transporter from the nucleobase-ascorbate transporter family, show that the downward pivoting of the Core domains relative to the Gate domains may access an inward-open state. These results suggest that the SLC4, SLC26, and nucleobase-ascorbate transporter families all share an elevator transport mechanism in which alternating access is provided by Core domains that carry substrates across a membrane.
Collapse
|
22
|
Sabir F, Loureiro-Dias MC, Prista C. Comparative analysis of sequences, polymorphisms and topology of yeasts aquaporins and aquaglyceroporins. FEMS Yeast Res 2016; 16:fow025. [DOI: 10.1093/femsyr/fow025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
|
23
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
24
|
Costa C, Ponte A, Pais P, Santos R, Cavalheiro M, Yaguchi T, Chibana H, Teixeira MC. New Mechanisms of Flucytosine Resistance in C. glabrata Unveiled by a Chemogenomics Analysis in S. cerevisiae. PLoS One 2015; 10:e0135110. [PMID: 26267134 PMCID: PMC4534419 DOI: 10.1371/journal.pone.0135110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/18/2015] [Indexed: 11/19/2022] Open
Abstract
5-Flucytosine is currently used as an antifungal drug in combination therapy, but fungal pathogens are rapidly able to develop resistance against this drug, compromising its therapeutic action. The understanding of the underlying resistance mechanisms is crucial to deal with this problem. In this work, the S. cerevisiae deletion mutant collection was screened for increased resistance to flucytosine. Through this chemogenomics analysis, 183 genes were found to confer resistance to this antifungal agent. Consistent with its known effect in DNA, RNA and protein synthesis, the most significant Gene Ontology terms over-represented in the list of 5-flucytosine resistance determinants are related to DNA repair, RNA and protein metabolism. Additional functional classes include carbohydrate and nitrogen-particularly arginine-metabolism, lipid metabolism and cell wall remodeling. Based on the results obtained for S. cerevisiae as a model system, further studies were conducted in the pathogenic yeast Candida glabrata. Arginine supplementation was found to relieve the inhibitory effect exerted by 5-flucytosine in C. glabrata. Lyticase susceptibility was found to increase within the first 30min of 5-flucytosine exposure, suggesting this antifungal drug to act as a cell wall damaging agent. Upon exponential growth resumption in the presence of 5-flucytosine, the cell wall exhibited higher resistance to lyticase, suggesting that cell wall remodeling occurs in response to 5-flucytosine. Additionally, the aquaglyceroporin encoding genes CgFPS1 and CgFPS2, from C. glabrata, were identified as determinants of 5-flucytosine resistance. CgFPS1 and CgFPS2 were found to mediate 5-flucytosine resistance, by decreasing 5-flucytosine accumulation in C. glabrata cells.
Collapse
Affiliation(s)
- Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Andreia Ponte
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Rui Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Takashi Yaguchi
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
25
|
Abstract
In this review, we provide a brief synopsis of the evolution and functional diversity of the aquaporin gene superfamily in prokaryotic and eukaryotic organisms. Based upon the latest data, we discuss the expanding list of molecules shown to permeate the central pore of aquaporins, and the unexpected diversity of water channel genes in Archaea and Bacteria. We further provide new insight into the origin by horizontal gene transfer of plant glycerol-transporting aquaporins (NIPs), and the functional co-option and gene replacement of insect glycerol transporters. Finally, we discuss the origins of four major grades of aquaporins in Eukaryota, together with the increasing repertoires of aquaporins in vertebrates.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway; and
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| |
Collapse
|
26
|
Martínez-Cuenca MR, Martínez-Alcántara B, Quiñones A, Ruiz M, Iglesias DJ, Primo-Millo E, Forner-Giner MÁ. Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W. PLoS One 2015; 10:e0134372. [PMID: 26225859 PMCID: PMC4520451 DOI: 10.1371/journal.pone.0134372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/08/2015] [Indexed: 01/14/2023] Open
Abstract
This work provides insight into several mechanisms involved in boron (B) regulation pathway in response to high B conditions in Citrus. The study was carried out in Citrus macrophylla W. (Cm) seedlings cultured "in vitro" in media with 50 or 400 μM H3BO3 (control, Ct, and B-excess, +B, plants, respectively). Growth parameters, B concentration, leaf chlorophyll (Chl) concentration, the expression of the main putative genes involved in B transport and distribution, and leaf and root proline and malonaldehyde (MDA) concentrations, were assessed. Excess B led to high B concentration in +B plants (3.8- and 1.4-fold in leaves and roots, respectively) when compared with Ct ones. However, a minor effect was recorded in the plant (incipient visual symptoms, less than 27% reduction in root growth and 26% decrease in Chl b concentration). B toxicity down-regulated by half the expression level of putative B transporter genes NIP5 and PIP1. CmBOR1 gene was not repressed in +B plants and B accumulated in the shoots. High B level increased the transcripts of putative gene TIP5, involved in B transport across the tonoplast, by 3.3- and 2.4-fold in leaves and roots, respectively. The activity of V-PPiase proton pump, related with the electrochemical gradient in the vacuole, was also enhanced in +B organs. B toxicity up-regulated putative BOR4 gene (2.1- and 2.7-fold in roots and leaves, respectively), which codifies for an active efflux B transporter. Accordingly, B was located in +B plants preferently in an insoluble form on cell walls. Finally, excess B caused a significant rise in proline concentration (51% and 34% in roots and leaves, respectively), while the MDA level did not exceed 20%. In conclusion, Cm tolerance to a high B level is likely based on the synergism of several specific mechanisms against B toxicity, including: 1/ down-regulation of NIP5 and PIP1 boron transporters; 2/ activation of B efflux from cells due to the up-regulation of putative BOR4 gene; 3/ compartmentation of B in the vacuole through TIP5 transporter activation and the acidification of the organelle; 4/ insolubilisation of B and deposition in cell walls preventing from cytoplasm damage; and, 5/ induction of an efficient antioxidant system through proline accumulation.
Collapse
Affiliation(s)
- Mary-Rus Martínez-Cuenca
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Belén Martínez-Alcántara
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Ana Quiñones
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Marta Ruiz
- Department of Vegetal Protection and Biotechnology, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Domingo J. Iglesias
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - Eduardo Primo-Millo
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| | - M. Ángeles Forner-Giner
- Department of Citriculture and Vegetal Production, Valencian Institute of Agrarian Research, Moncada, Valencia, Spain
| |
Collapse
|
27
|
Svrbicka A, Toth Hervay N, Gbelska Y. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis. Folia Microbiol (Praha) 2015; 61:101-7. [PMID: 26142045 DOI: 10.1007/s12223-015-0414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Abstract
Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.
Collapse
Affiliation(s)
- Alexandra Svrbicka
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic
| | - Nora Toth Hervay
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic.
| |
Collapse
|
28
|
Li K, Kamiya T, Fujiwara T. Differential Roles of PIN1 and PIN2 in Root Meristem Maintenance Under Low-B Conditions in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1205-14. [PMID: 25814435 DOI: 10.1093/pcp/pcv047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/12/2015] [Indexed: 05/09/2023]
Abstract
Boron (B) is an essential element for plants; its deficiency causes rapid cessation of root elongation. In addition, B influences auxin accumulation in plants. To assess the importance of auxin transport in B-dependent root elongation, Arabidopsis thaliana pin1-pin4 mutants were grown under low-B conditions. Among them, only the pin2/eir1-1 mutant showed a significantly shorter root under low-B conditions than under control conditions. Moreover, the root meristem size of pin2/eir1-1 was reduced under low-B conditions. Among the PIN-FORMED (PIN) family, PIN1 and PIN2 are important for root meristem growth/maintenance under normal conditions. To investigate the differential response of pin1 and pin2 mutants under low-B conditions, the effect of low-B on PIN1-green fluorescent protein (GFP) and PIN2-GFP accumulation and localization was examined. Low-B did not affect PIN2-GFP, while it reduced the accumulation of PIN1-GFP. Moreover, no signal from DII-VENUS, an auxin sensor, was detected under the low-B condition in the stele of wild-type root meristems. Taken together, these results indicate that under low-B conditions PIN1 is down-regulated and PIN2 plays an important role in root meristem maintenance.
Collapse
Affiliation(s)
- Ke Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
29
|
Wakuta S, Mineta K, Amano T, Toyoda A, Fujiwara T, Naito S, Takano J. Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1. PLANT & CELL PHYSIOLOGY 2015; 56:852-862. [PMID: 25619824 DOI: 10.1093/pcp/pcv011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments.
Collapse
Affiliation(s)
- Shinji Wakuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Taro Amano
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Atsushi Toyoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Graduate School of Life Science, Hokkaido University, Sapporo, 060-8589 Japan
| | - Junpei Takano
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
30
|
Sabir F, Leandro MJ, Martins AP, Loureiro-Dias MC, Moura TF, Soveral G, Prista C. Exploring three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast. PLoS One 2014; 9:e102087. [PMID: 25111598 PMCID: PMC4128642 DOI: 10.1371/journal.pone.0102087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24-38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species.
Collapse
Affiliation(s)
- Farzana Sabir
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria José Leandro
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ana Paula Martins
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria C. Loureiro-Dias
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Teresa F. Moura
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Dept. de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Prista
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
31
|
Draft Genome Sequence of the Boron-Tolerant and Moderately Halotolerant Bacterium Gracilibacillus boraciitolerans JCM 21714T. GENOME ANNOUNCEMENTS 2014; 2:2/1/e00097-14. [PMID: 24558242 PMCID: PMC3931363 DOI: 10.1128/genomea.00097-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gracilibacillus boraciitolerans JCM 21714(T) has been characterized as a highly boron-tolerant and moderately halotolerant bacterium. Here, we report the draft genome sequence of this strain. The genome sequence facilitates an understanding of the biochemical functions of boron and provides a base to identify the gene(s) involved in the boron tolerance mechanism of the strain.
Collapse
|
32
|
Mukhopadhyay R, Bhattacharjee H, Rosen BP. Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta Gen Subj 2013; 1840:1583-91. [PMID: 24291688 DOI: 10.1016/j.bbagen.2013.11.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. SCOPE OF REVIEW This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. MAJOR CONCLUSIONS As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. GENERAL SIGNIFICANCE The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA.
| |
Collapse
|
33
|
Cañon P, Aquea F, Rodríguez-Hoces de la Guardia A, Arce-Johnson P. Functional characterization of Citrus macrophylla BOR1 as a boron transporter. PHYSIOLOGIA PLANTARUM 2013; 149:329-39. [PMID: 23414066 DOI: 10.1111/ppl.12037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 05/04/2023]
Abstract
Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants.
Collapse
Affiliation(s)
- Paola Cañon
- Departamento Genética Molecular y Microbiología, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
34
|
Ahmadpour D, Geijer C, Tamás MJ, Lindkvist-Petersson K, Hohmann S. Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta Gen Subj 2013; 1840:1482-91. [PMID: 24076236 DOI: 10.1016/j.bbagen.2013.09.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae provides unique opportunities to study roles and regulation of aqua/glyceroporins using frontline tools of genetics and genomics as well as molecular cell and systems biology. SCOPE OF REVIEW S. cerevisiae has two similar orthodox aquaporins. Based on phenotypes mediated by gene deletion or overexpression as well as on their expression pattern, the yeast aquaporins play important roles in key aspects of yeast biology: establishment of freeze tolerance, during spore formation as well as determination of cell surface properties for substrate adhesion and colony formation. Exactly how the aquaporins perform those roles and the mechanisms that regulate their function under such conditions remain to be elucidated. S. cerevisiae also has two different aquaglyceroporins. While the role of one of them, Yfl054c, remains to be determined, Fps1 plays critical roles in osmoregulation by controlling the accumulation of the osmolyte glycerol. Fps1 communicates with two osmo-sensing MAPK signalling pathways to perform its functions but the details of Fps1 regulation remain to be determined. MAJOR CONCLUSIONS Several phenotypes associated with aqua/glyceroporin function in yeasts have been established. However, how water and glycerol transport contribute to the observed effects is not understood in detail. Also many of the basic principles of regulation of yeast aqua/glyceroporins remain to be elucidated. GENERAL SIGNIFICANCE Studying the yeast aquaporins and aquaglyceroporins offers rich insight into the life style, evolution and adaptive responses of yeast and rewards us with discoveries of unexpected roles and regulatory mechanisms of members of this ancient protein family. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Doryaneh Ahmadpour
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Cecilia Geijer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | | | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.
| |
Collapse
|
35
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
36
|
Lourenço AB, Roque FC, Teixeira MC, Ascenso JR, Sá-Correia I. Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells. PLoS One 2013; 8:e55439. [PMID: 23408980 PMCID: PMC3568136 DOI: 10.1371/journal.pone.0055439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance.
Collapse
Affiliation(s)
- Artur B. Lourenço
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Filipa C. Roque
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Miguel C. Teixeira
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - José R. Ascenso
- Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Isabel Sá-Correia
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
37
|
Krenc D, Wu B, Beitz E. Specific aquaporins increase the ammonia tolerance of aSaccharomyces cerevisiae mep1-3fps1deletion strain. Mol Membr Biol 2012; 30:43-51. [DOI: 10.3109/09687688.2012.733976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Schmidt M, Akasaka K, Messerly JT, Boyer MP. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2012; 158:2667-2678. [PMID: 22902726 DOI: 10.1099/mic.0.060590-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to identify genetic contributions to boric acid (BA) resistance, a yeast knockout collection was screened for BA-sensitive mutants. Prominent among the BA-sensitive mutants were strains with defects in the cytoplasmic part of the high osmolarity/glycerol (HOG) signalling pathway, the trehalose-synthesis pathway (TPS1/TPS2) and the copper-zinc superoxide dismutase SOD1. An analysis of HOG-pathway mutants and fluorescence microscopy of Hog1-GFP fusions showed that the non-redundant cytoplasmic components of the pathway, Pbs2p and Hog1p, are required to maintain BA resistance, but that import of the activated Hog1p kinase into the nucleus neither occurs during BA stress nor is necessary for wild-type-like BA tolerance. Pbs2p and Hog1p are also required to support normal morphogenesis during BA stress as their absence leads to BA-induced hyperpolarized growth. An analysis of Sod1p and Tps1p expression revealed that BA stress induces superoxide dismutase and increases trehalose synthesis activity, albeit only after a 7 h delay. We conclude that normal BA resistance of Saccharomyces cerevisiae depends on the functioning of HOG signalling, the trehalose synthesis pathway and superoxide dismutase activity.
Collapse
Affiliation(s)
- Martin Schmidt
- Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
| | - Kento Akasaka
- Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
| | | | - Michael P Boyer
- Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
| |
Collapse
|
39
|
Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 2012; 11:98. [PMID: 22839110 PMCID: PMC3422159 DOI: 10.1186/1475-2859-11-98] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/13/2012] [Indexed: 11/24/2022] Open
Abstract
Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio-ethanol production.
Collapse
Affiliation(s)
- Miguel C Teixeira
- IBB - Institute for Biotechnology and BioEngineering, Centro de Engenharia Biológica e Química, and Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
40
|
Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, Tapia J, Fujiwara T, González E. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. PLANT & CELL PHYSIOLOGY 2012; 53:485-94. [PMID: 22247248 DOI: 10.1093/pcp/pcs001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for normal development of roots, shoots and reproductive tissues in plants. Due to its role in the structure of rhamnogalacturonan II, a polysaccharide required for pollen tube growth, B deficiency has been associated with the occurrence of parthenocarpic seedless grapes in some varieties of Vitis vinifera L. Despite that, it is unclear how B is mobilized and accumulated in reproductive tissues. Here we describe the characterization of an efflux B transporter, VvBOR1, homolog to AtBOR1, which is involved in B xylem loading in Arabidopsis thaliana roots. VvBOR1-green fluorescent protein (GFP) fusion protein expressed in A. thaliana localizes in the proximal plasma membrane domain in root pericycle cells, and VvBOR1 overexpression restores the wild-type phenotype in A. thaliana bor1-3 mutant plants exposed to B deficiency. Complementation of a mutant yeast strain indicates that VvBOR1 corresponds to a B efflux transporter. Transcriptional analyses during grapevine reproductive development show that the VvBOR1 gene is preferentially expressed in flowers at anthesis and a direct correlation between the expression pattern and B content in grapes was established, suggesting the involvement of this transporter in B accumulation in grapevine berries.
Collapse
Affiliation(s)
- Ramón Pérez-Castro
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 2011; 6:e27772. [PMID: 22114689 PMCID: PMC3219688 DOI: 10.1371/journal.pone.0027772] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/25/2011] [Indexed: 12/01/2022] Open
Abstract
Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.
Collapse
|
42
|
Ditt RF, Gentile A, Tavares RG, Camargo SR, Fernandez JH, Silva MJD, Menossi M. Analysis of the stress-inducible transcription factor SsNAC23 in sugarcane plants. SCIENTIA AGRICOLA 2011. [PMID: 0 DOI: 10.1590/s0103-90162011000400010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
43
|
Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 2011; 39:1963-73. [PMID: 21660474 DOI: 10.1007/s11033-011-0930-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Six full-length cDNA encoding boron transporters (BOR) were isolated from Brassica napus (AACC) by rapid amplification of cDNA ends (RACE). The phylogenic analysis revealed that the six BORs were the orthologues of AtBOR1, which formed companying with the triplication and allotetra-ploidization process of B. napus, and were divided into three groups in B. napus. Each group was comprised of two members, one of which was originated from Brassica rapa (AA) and the other from Brassica oleracea (CC). Based on the phylogenetic relationships, the six genes were named as BnBOR1;1a, BnBOR1;1c, BnBOR1;2a, BnBOR1;2c, BnBOR1;3a and BnBOR1;3c, respectively. The deduced BnBOR1 s had extensive similarity with other plant BORs, with the identity of 74-96.8% in amino acid sequence. The BnBOR1;3a and BnBOR1;3c resembled AtBOR1 in number and positions of the 11 introns, but the others only have 9 introns. After the gene duplication, there was evidence of purifying selection under a divergent selective pressure. The expression patterns of the six BnBOR1 s were detected by semi-quantitative RT-PCR. The BnBOR1;3a and BnBOR1;3c showed a ubiquitous expression in all of the investigated tissues, whereas the other four genes showed similar tissue-specific expression profile. Unlike the non-transcriptional regulation of AtBOR1, the expression of BnBOR1;1c and BnBOR1;2a were obviously induced by boron deficiency. This study suggested that the BOR1 s had undergone a divergent expression pattern in the genome of B. napus after that the B. napus diverged from Arabidopsis thaliana.
Collapse
|
44
|
Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:306-17. [PMID: 21241387 DOI: 10.1111/j.1365-313x.2011.04496.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and β). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1β were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.
Collapse
Affiliation(s)
- Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
45
|
Genome-wide identification of genes that play a role in boron stress response in yeast. Genomics 2011; 97:106-11. [DOI: 10.1016/j.ygeno.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/21/2022]
|
46
|
Navarathna DHMLP, Das A, Morschhäuser J, Nickerson KW, Roberts DD. Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. MICROBIOLOGY (READING, ENGLAND) 2011; 157:270-279. [PMID: 20884691 PMCID: PMC3069533 DOI: 10.1099/mic.0.045005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 01/02/2023]
Abstract
Hemiascomycetes, including the pathogen Candida albicans, acquire nitrogen from urea using the urea amidolyase Dur1,2, whereas all other higher fungi use primarily the nickel-containing urease. Urea metabolism via Dur1,2 is important for resistance to innate host immunity in C. albicans infections. To further characterize urea metabolism in C. albicans we examined the function of seven putative urea transporters. Gene disruption established that Dur3, encoded by orf 19.781, is the predominant transporter. [(14)C]Urea uptake was energy-dependent and decreased approximately sevenfold in a dur3Δ mutant. DUR1,2 and DUR3 expression was strongly induced by urea, whereas the other putative transporter genes were induced less than twofold. Immediate induction of DUR3 by urea was independent of its metabolism via Dur1,2, but further slow induction of DUR3 required the Dur1,2 pathway. We investigated the role of the GATA transcription factors Gat1 and Gln3 in DUR1,2 and DUR3 expression. Urea induction of DUR1,2 was reduced in a gat1Δ mutant, strongly reduced in a gln3Δ mutant, and abolished in a gat1Δ gln3Δ double mutant. In contrast, DUR3 induction by urea was preserved in both single mutants but reduced in the double mutant, suggesting that additional signalling mechanisms regulate DUR3 expression. These results establish Dur3 as the major urea transporter in C. albicans and provide additional insights into the control of urea utilization by this pathogen.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| | - Aditi Das
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| |
Collapse
|
47
|
Kasai K, Takano J, Miwa K, Toyoda A, Fujiwara T. High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana. J Biol Chem 2010; 286:6175-83. [PMID: 21148314 DOI: 10.1074/jbc.m110.184929] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport. Here, we show that boron-induced ubiquitination is required for vacuolar sorting of BOR1. We found that a substitution of lysine 590 with alanine (K590A) in BOR1 blocked degradation. BOR1 was mono- or diubiquitinated within several minutes after applying a high concentration of boron, whereas the K590A mutant was not. The K590A mutation abolished vacuolar transport of BOR1 but did not apparently affect polar localization to the inner PM domains. Furthermore, brefeldin A and wortmannin treatment suggested that Lys-590 is required for BOR1 translocation from an early endosomal compartment to multivesicular bodies. Our results show that boron-induced ubiquitination of BOR1 is not required for endocytosis from the PM but is crucial for the sorting of internalized BOR1 to multivesicular bodies for subsequent degradation in vacuoles.
Collapse
Affiliation(s)
- Koji Kasai
- Biotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
48
|
Stiles AR, Bautista D, Atalay E, Babaoğlu M, Terry N. Mechanisms of boron tolerance and accumulation in plants: a physiological comparison of the extremely boron-tolerant plant species, Puccinellia distans, with the moderately boron-tolerant Gypsophila arrostil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7089-7095. [PMID: 20738130 DOI: 10.1021/es1016334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The physiological characteristics of the extremely boron (B)-tolerant plant species, Puccinellia distans, were compared with those of the moderately tolerant Gypsophila arrostil, two species collected from a B-mining area of Eskişehir, Turkey. Boron was supplied to plants hydroponically at B concentrations ranging from 0.5 to 50 mg B/L for G. arrostil, and from 0.5 to 2000 mg B/L for P. distans. The results show that P. distans has a strikingly greater tolerance to B than G. arrostil. While G. arrostil was unable to survive B supply concentrations greater than 50 mg B/L, P. distans grew at B supply concentrations exceeding 1250 mg B/L. Our research supports the conclusion that from 0.5 to 50 mg B/L, P. distans is better able to restrict the accumulation of B in the whole plant, and the transport of B from root to shoot, than G. arrostil. We propose that P. distans uses several strategies to achieve B tolerance including the ability to restrict the accumulation of B relative to its accumulation of biomass, the ability to restrict the transport of B from root to shoot, and, to a lesser extent, the ability to tolerate high concentrations of B in its shoot and root tissues.
Collapse
Affiliation(s)
- Amanda R Stiles
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | |
Collapse
|
49
|
Arsenic transport in prokaryotes and eukaryotic microbes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:47-55. [PMID: 20666223 DOI: 10.1007/978-1-4419-6315-4_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Aquaporins (AQPs) and aquaglyceroporins facilitate transport of a broad spectrum of substrates such as water, glycerol and other small uncharged solutes. More recently, AQPs ave also been shown to facilitate diffusion of metalloids such as arsenic (As) and antimony (Sb). At neutral pH, the trivalent forms of these metalloids are structurally similar to glycerol and hence they can enter cells through AQPs. As- and Sb-containing compounds are toxic to cells, yet both metalloids are used as chemotherapeutic agents for treating acute promyelocytic leukemia and diseases caused by protozoan parasites. In this chapter, we will review the role of AQPs and other proteins in metalloid transport in prokaryotes and eukaryotic microbes.
Collapse
|
50
|
Dahabieh M, Husnik J, Van Vuuren H. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. J Appl Microbiol 2010; 109:963-73. [DOI: 10.1111/j.1365-2672.2010.04723.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|