1
|
Liu W, Chen J, Wang T, Gong Y, Yang C, Li Y, Yan X, Duan H, Wang X, Zhang M. Involvement of CD146 in the Cryptococcus neoformans adhesion and infection of brain endothelial cells. Infect Immun 2025:e0014525. [PMID: 40208055 DOI: 10.1128/iai.00145-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Cryptococcal meningitis is a common and refractory central nervous system (CNS) infection with high mortality and disability. For Cryptococcus neoformans (C. neoformans) to penetrate the CNS, it first adheres to and breaches the blood‒brain barrier (BBB). Here, we explored the roles of CD146, an adhesion molecule expressed on the surface of brain microvascular endothelial cells (BMECs), in cryptococcal vascular adhesion and BBB invasion. Following cryptococcal infection, we observed a reduction in CD146 expression in BMECs, which was at least partially mediated by metalloproteinase-9. Once overexpressed on BMECs, CD146 increased C. neoformans adhesion; in contrast, CD146 knockout decreased the attachment of fungi to endothelial cells in vitro. Unexpectedly, CD146 knockout failed to reduce fungal infection in the brain following intravascular instillation of C. neoformans. However, the anti-CD146 antibody AA98 significantly increased the fungemia (spleen CFU), suggesting that CD146 may be involved in the early adhesion and invasion of Cryptococcus into cerebral vessels. AA98, however, failed to extend the survival of C. neoformans infected mice. These results suggest that CD146 may play dispensable roles in the C. neoformans brain infection.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junhong Chen
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Wang
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Gong
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Yang
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuwei Li
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongxia Duan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Wang
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingshun Zhang
- Department of Immunology, National Vaccine Innovation Platform, NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Bhalla K, Sánchez León-Hing E, Huang YH, French V, Hu G, Wang J, Kretschmer M, Qu X, Moreira R, Foster EJ, Johnson P, Kronstad JW. Polyphosphatases have a polyphosphate-independent influence on the virulence of Cryptococcus neoformans. Infect Immun 2025; 93:e0007225. [PMID: 40071953 PMCID: PMC11977306 DOI: 10.1128/iai.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Cryptococcus neoformans, an invasive basidiomycete fungal pathogen, causes one of the most prevalent, life-threatening diseases in immunocompromised individuals and accounts for ~19% of AIDS-associated deaths. Therefore, understanding the pathogenesis of C. neoformans and its interactions with the host immune system is critical for developing therapeutics against cryptococcosis. Previous studies demonstrated that C. neoformans cells lacking polyphosphate (polyP), an immunomodulatory polyanionic storage molecule, display altered cell surface architecture but unimpaired virulence in a murine model of cryptococcosis. However, the relevance of cell surface changes and the role of hyperaccumulation of polyP in the virulence of C. neoformans remain unclear. Here we show that mutants with abundant polyP due to loss of the polyphosphatases Xpp1 and Epp1 are attenuated for virulence. The double mutant differed from the wild type during disease by demonstrating a higher fungal burden in disseminated organs at the experimental endpoint and by provoking an altered immune response. An analysis of triple mutants lacking the polyphosphatases and the Vtc4 protein for polyP synthesis also caused attenuated virulence in mice, thus suggesting an influence of Xpp1 and/or Epp1 independent of polyP levels. A more detailed characterization revealed that Xpp1 and Epp1 play multiple roles by contributing to the organization of the cell surface, virulence factor production, the response to stress, and mitochondrial function. Overall, we conclude that polyphosphatases have additional functions in the pathobiology of C. neoformans beyond an influence on polyP levels.IMPORTANCECryptococcus neoformans causes one of the most prevalent fungal diseases in people with compromised immune systems and accounts for ~19% of AIDS-associated deaths worldwide. The continual increase in the incidence of fungal infections and limited treatment options necessitate the development of new antifungal drugs and improved diagnostics. Polyphosphate (polyP), an under-explored biopolymer, functions as a storage molecule, modulates the host immune response, and contributes to the ability of some fungal and bacterial pathogens to cause disease. However, the role of polyP in cryptococcal disease remains unclear. In this study, we report that the polyphosphatase enzymes that regulate polyP synthesis and turnover contribute to the virulence of C. neoformans in a mouse model of cryptococcosis. The polyphosphatases influenced the survival of C. neoformans in macrophages and altered the host immune response. In addition, the mutants lacking the enzymes have changes in cell surface architecture and size, as well as defects in both mitochondrial function and the stress response. By using mutants defective in the polyphosphatases and polyP synthesis, we demonstrate that many of the phenotypic contributions of the polyphosphatases are independent of polyP.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez León-Hing
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria French
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jen Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - E. Johan Foster
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Huang Y, Li S, Teng Y, Ding X, Xu D, Yang X, Yu Y, Fan Y. Glucuronoxylomannan (GXM) modulates macrophage proliferation and apoptosis through the STAT1 signaling pathway. Cell Biol Int 2025; 49:317-328. [PMID: 39760338 DOI: 10.1002/cbin.12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025]
Abstract
cryptococcus neoformans (C. neoformans) is a crucial opportunistic fungus that possesses an encapsulated fungal pathogen. The cryptococcal capsule is mainly composed of the polysaccharide glucuronoxylomannan (GXM). Macrophages form the first-line innate defense against cryptococcosis; however, the underlying mechanism remains unclear. In this study, GXM-treated RAW264.7 macrophages showed a notably reduced survival rate and increased apoptosis, accompanied by the promoted inducible nitric oxide synthase (iNOS) expression and NO production. Signal transducer and activator of transcription 1 (STAT1) expression was also found to be directly proportional to GXM concentration; STAT1 knockdown could alleviate GXM-induced proliferation decrease and apoptosis increase of macrophages, as well as reduce M1 polarization, iNOS expression and NO release. In conclusion, this study concluded that GXM was the main virulence factor of C. neoformans, which is critical in determining the mechanism of GXM-mediated protective immune response postinfection. The STAT1 signal pathway mediates the effect of GXM stimulation on macrophages, potentially providing a reference for further understanding the biological role of GXM.
Collapse
Affiliation(s)
- Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| | - Sujing Li
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| | - Xiaoxia Ding
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| | - Danfeng Xu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| | - Xianhong Yang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| | - Yong Yu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China
| |
Collapse
|
4
|
Siddiquee NH, Sujan MSI, Dremit TI, Rahat EH, Barman K, Karim M, Nandi C, Akter S, Talukder MEK, Hosen MS, Khaled M, Saha O. Natural Products in Precision Neurological Disease (Cryptococcal Meningitis): Structure-Based Phytochemical Screening of Glycyrrhiza glabra Plant Against Cryptococcus neoformans Farnesyltransferase (FTase). Chem Biodivers 2024:e202401987. [PMID: 39714914 DOI: 10.1002/cbdv.202401987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Cryptococcus neoformans causes cryptococcal meningitis, which is lethal to immune-compromised people, especially AIDS patients. This study employed diverse in silico techniques to find the best phytochemical to block farnesyltransferase (FTase). Based on molecular docking, the top two compounds selected from a screening of 5807 phytochemical compounds from 29 medicinal plants were CID_8299 (hydroxyacetone) and CID_71346280 (1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one), with docking scores of -5.786 and -0.078 kcal/mol, respectively, indicating stronger binding affinities than the control CID_3365 (fluconazole), which scored -4.2 kcal/mol. The control and lead compounds bind at the common active site of protein by interacting with common amino acid residues (HIS97, GLN408, PHE93, and TRP94). Post-docking MM-GBSA verified docking score where CID_8299 and CID_71346280 had negative binding free energies of -19.81 and -0.27 kcal/mol, respectively. These two lead compounds were reassessed through molecular dynamics simulation (100 ns), and several post-dynamics analyses were conducted. CID_71346280, 8299, and 3365 (control) showed average RSMD values of 3.17, 1.904, and 2.08; average root mean square fluctuation values of 1.167, 0.886, and 1.028 Å; average radius of gyration values of 5.13, 1.58, and 3.54 Å; average solvent accessible surface area values of 121.16, 3.51, and 183.81 Å2; average H-bond values of 466.05, 470.84, and 456.84 Å, respectively. The results revealed that CID_8299 had the highest stability and consistent interaction with the target protein throughout the simulation period. According to the toxicity analysis, CID_8299, which is found in the Glycyrrhiza glabra plant, can also cross the BBB, which makes it unbeatable in treating neuro-disease caused by C. neoformans and may potentially block FTase protein's activity inhibiting post-translational lipidation of essential signal transduction protein.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md Shiful Islam Sujan
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Tasnuva Islam Dremit
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Botany, Jahangirnagar University, Dhaka, Bangladesh
| | - Ekramul Hasan Rahat
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh
| | - Kripa Barman
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Mathematics and Natural Sciences (MNS), BRAC University, Dhaka, Bangladesh
| | - Mahima Karim
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Botany, Govt. Titumir College, Dhaka, Bangladesh
| | - Chinmoy Nandi
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka, Bangladesh
| | - Sumi Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Sapan Hosen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md Khaled
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| |
Collapse
|
5
|
Brown JC, Ballou ER. Is Cryptococcus neoformans a pleomorphic fungus? Curr Opin Microbiol 2024; 82:102539. [PMID: 39260180 PMCID: PMC11609021 DOI: 10.1016/j.mib.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Improved understanding of the human fungal pathogen Cryptococcus neoformans, classically described as a basidiomycete budding yeast, has revealed new infection-relevant single cell morphologies in vivo and in vitro. Here, we ask whether these morphologies constitute true morphotypes, requiring updated classification of C. neoformans as a pleomorphic fungus. We profile recent discoveries of C. neoformans seed cells and titan cells and provide a framework for determining whether these and other recently described single-cell morphologies constitute true morphotypes. We demonstrate that multiple C. neoformans single-cell morphologies are transcriptionally distinct, stable, heritable, and associated with active growth and therefore should be considered true morphotypes in line with the classification in other well-studied fungi. We conclude that C. neoformans is a pleomorphic fungus with an important capacity for morphotype switching that underpins pathogenesis.
Collapse
Affiliation(s)
- Jessica Cs Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
6
|
Glueck NK, Xie X, Lin X. Alternative isoforms and phase separation of Ref1 repress morphogenesis in Cryptococcus. Cell Rep 2024; 43:114904. [PMID: 39475508 DOI: 10.1016/j.celrep.2024.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024] Open
Abstract
Cryptococcus neoformans, the causative agent of cryptococcosis and a representative of the Basidiomycota phylum of Fungi, is a valuable model for our understanding of eukaryotic/fungal biology. Negative feedback is a well-documented mechanism across Eukarya to regulate developmental transitions. Here, we describe a repressor of the yeast-to-hypha transition, Ref1, which completes a negative feedback loop driven by the master regulator of hyphal morphogenesis, Znf2, during sexual development. Alternative transcription of Ref1, driven by Znf2, produces a functionally distinct Ref1 isoform. Isoform-specific capacity for phase separation imparts this functional distinction, making Ref1 a stronger repressor and more vulnerable to proteolytic degradation. The multimodal nature of Ref1 provides versatility that allows cells to fine-tune Ref1 activity to suit developmental context. This work reveals a mechanism by which phase separation allows a transcriptional program to tailor its own repression to guide an organism through morphological transition.
Collapse
Affiliation(s)
- Nathan K Glueck
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Sun C, Li Y, Kidd JM, Han J, Ding L, May AE, Zhou L, Liu Q. Characterization of a New Hsp110 Inhibitor as a Potential Antifungal. J Fungi (Basel) 2024; 10:732. [PMID: 39590652 PMCID: PMC11595998 DOI: 10.3390/jof10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy.
Collapse
Affiliation(s)
- Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yi Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Justin M. Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Liangliang Ding
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Hallas-Møller M, Burow M, Henrissat B, Johansen KS. Cryptococcus neoformans: plant-microbe interactions and ecology. Trends Microbiol 2024; 32:984-995. [PMID: 38519353 DOI: 10.1016/j.tim.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
While the opportunistic human pathogens Cryptococcus neoformans and Cryptococcus gattii are often isolated from plants and plant-related material, evidence suggests that these Cryptococcus species do not directly infect plants. Studies find that plants are important for Cryptococcus mating and dispersal. However, these studies have not provided enough detail about how plants and these fungi interact, especially in ways that could show the fungi are capable of causing disease. This review synthesizes recent findings from studies utilizing different plant models associated with the ecology of C. neoformans and C. gattii. Unanswered questions about their environmental role are highlighted. Overall, current research indicates that Cryptococcus utilizes plants as a substrate rather than harming them, arguing against Cryptococcus as a genuine plant pathogen. We hypothesize that plants represent reservoirs that aid dispersal, not hosts vulnerable to infection.
Collapse
Affiliation(s)
- Magnus Hallas-Møller
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kgs, Lyngby, Denmark
| | - Katja Salomon Johansen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Llinas J, Rozmanec M, Hyndman TH. Diagnosis and management of Cryptococcus neoformans var. grubii detected in an oral mass in a pink-tongued skink (Cyclodomorphus gerarrdii). Aust Vet J 2024; 102:416-422. [PMID: 38653559 DOI: 10.1111/avj.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Cryptococcus is an encapsulated yeast that is found in both yeast and hyphal forms. Cryptococcus neoformans and C. gattii are the most medically important species, causing disease in both immunocompromised and immunocompetent individuals. A large, friable, sublingual mass was surgically resected from the oral cavity of a pink-tongued skink (Cyclodomorphus gerarrdii). Histopathology, fungal culture and PCR testing with Sanger sequencing confirmed granulomatous inflammation containing large numbers of yeasts identified as Cryptococcus neoformans var. grubii. Surgical excision and treatment with oral amphotericin B and terbinafine was unsuccessful in managing the infection. On Day 67 after surgery, Cryptococcus DNA was detected by PCR in the blood but not oral, cloacal or skin swabs. The skink was euthanised 72 days after surgery due to anorexia, weight loss and progressive neurological signs of disease. Necropsy results showed disseminated cryptococcosis, including meningoencephalitis and ventriculitis. Two in-contact pink-tongued skinks remained asymptomatic and PCR-negative during 198 days of observation. This case suggests Cryptococcus infections should be considered for oral masses presenting with or without neurological signs in skinks. Further investigation is required to determine the best treatment options for disseminated cryptococcosis in reptiles. This report describes the third reported case of Cryptococcus in a reptile and the first case of cryptococcosis in a pink-tongued skink. It is also the first report of Cryptococcus in a reptile identified to the variety level using PCR, including in whole blood samples.
Collapse
Affiliation(s)
- J Llinas
- The Unusual Pet Vets Jindalee, Jindalee, Queensland, Australia
| | - M Rozmanec
- QML Vetnostics, SVS Pathology Network, Murarrie, Queensland, Australia
| | - T H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
10
|
Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, Lawrence DS, Abassi M, Rajasingham R, Meya DB, Boulware DR. Cryptococcal meningitis. Nat Rev Dis Primers 2023; 9:62. [PMID: 37945681 DOI: 10.1038/s41572-023-00472-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Cryptococcus neoformans and Cryptococcus gattii species complexes cause meningoencephalitis with high fatality rates and considerable morbidity, particularly in persons with deficient T cell-mediated immunity, most commonly affecting people living with HIV. Whereas the global incidence of HIV-associated cryptococcal meningitis (HIV-CM) has decreased over the past decade, cryptococcosis still accounts for one in five AIDS-related deaths globally due to the persistent burden of advanced HIV disease. Moreover, mortality remains high (~50%) in low-resource settings. The armamentarium to decrease cryptococcosis-associated mortality is expanding: cryptococcal antigen screening in the serum and pre-emptive azole therapy for cryptococcal antigenaemia are well established, whereas enhanced pre-emptive combination treatment regimens to improve survival of persons with cryptococcal antigenaemia are in clinical trials. Short courses (≤7 days) of amphotericin-based therapy combined with flucytosine are currently the preferred options for induction therapy of cryptococcal meningitis. Whether short-course induction regimens improve long-term morbidity such as depression, reduced neurocognitive performance and physical disability among survivors is the subject of further study. Here, we discuss underlying immunology, changing epidemiology, and updates on the management of cryptococcal meningitis with emphasis on HIV-associated disease.
Collapse
Affiliation(s)
- Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Kenneth Ssebambulidde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Jayne Ellis
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel M Wake
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jane Gakuru
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David S Lawrence
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Radha Rajasingham
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David B Meya
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Han L, Wu Y, Xiong S, Liu T. Ubiquitin Degradation of the AICAR Transformylase/IMP Cyclohydrolase Ade16 Regulates the Sexual Reproduction of Cryptococcus neoformans. J Fungi (Basel) 2023; 9:699. [PMID: 37504688 PMCID: PMC10381356 DOI: 10.3390/jof9070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
F-box protein is a key protein of the SCF E3 ubiquitin ligase complex, responsible for substrate recognition and degradation through specific interactions. Previous studies have shown that F-box proteins play crucial roles in Cryptococcus sexual reproduction. However, the molecular mechanism by which F-box proteins regulate sexual reproduction in C. neoformans is unclear. In the study, we discovered the AICAR transformylase/IMP cyclohydrolase Ade16 as a substrate of Fbp1. Through protein interaction and stability experiments, we demonstrated that Ade16 is a substrate for Fbp1. To examine the role of ADE16 in C. neoformans, we constructed the iADE16 strains and ADE16OE strains to analyze the function of Ade16. Our results revealed that the iADE16 strains had a smaller capsule and showed growth defects under NaCl, while the ADE16OE strains were sensitive to SDS but not to Congo red, which is consistent with the stress phenotype of the fbp1Δ strains, indicating that the intracellular protein expression level after ADE16 overexpression was similar to that after FBP1 deletion. Interestingly, although iADE16 strains can produce basidiospores normally, ADE16OE strains can produce mating mycelia but not basidiospores after mating, which is consistent with the fbp1Δmutant strains, suggesting that Fbp1 is likely to regulate the sexual reproduction of C. neoformans through the modulation of Ade16. A fungal nuclei development assay showed that the nuclei of the ADE16OE strains failed to fuse in the bilateral mating, indicating that Ade16 plays a crucial role in the regulation of meiosis during mating. In summary, our findings have revealed a new determinant factor involved in fungal development related to the post-translational regulation of AICAR transformylase/IMP cyclohydrolase.
Collapse
Affiliation(s)
- Liantao Han
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
| | - Yujuan Wu
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
| | - Sichu Xiong
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
| | - Tongbao Liu
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
12
|
Rush RE, Blackwood CB, Lemons AR, Dannemiller KC, Green BJ, Croston TL. Persisting Cryptococcus yeast species Vishniacozyma victoriae and Cryptococcus neoformans elicit unique airway inflammation in mice following repeated exposure. Front Cell Infect Microbiol 2023; 13:1067475. [PMID: 36864880 PMCID: PMC9971225 DOI: 10.3389/fcimb.2023.1067475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Background Allergic airway disease (AAD) is a growing concern in industrialized nations and can be influenced by fungal exposures. Basidiomycota yeast species such as Cryptococcus neoformans are known to exacerbate allergic airway disease; however, recent indoor assessments have identified other Basidiomycota yeasts, including Vishniacozyma victoriae (syn. Cryptococcus victoriae), to be prevalent and potentially associated with asthma. Until now, the murine pulmonary immune response to repeated V. victoriae exposure was previously unexplored. Objective This study aimed to compare the immunological impact of repeated pulmonary exposure to Cryptococcus yeasts. Methods Mice were repeatedly exposed to an immunogenic dose of C. neoformans or V. victoriae via oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were collected to examine airway remodeling, inflammation, mucous production, cellular influx, and cytokine responses at 1 day and 21 days post final exposure. The responses to C. neoformans and V. victoriae were analyzed and compared. Results Following repeated exposure, both C. neoformans and V. victoriae cells were still detectable in the lungs 21 days post final exposure. Repeated C. neoformans exposure initiated myeloid and lymphoid cellular infiltration into the lung that worsened over time, as well as an IL-4 and IL-5 response compared to PBS-exposed controls. In contrast, repeated V. victoriae exposure induced a strong CD4+ T cell-driven lymphoid response that started to resolve by 21 days post final exposure. Discussion C. neoformans remained in the lungs and exacerbated the pulmonary immune responses as expected following repeated exposure. The persistence of V. victoriae in the lung and strong lymphoid response following repeated exposure were unexpected given its lack of reported involvement in AAD. Given the abundance in indoor environments and industrial utilization of V. victoriae, these results highlight the importance to investigate the impact of frequently detected fungal organisms on the pulmonary response following inhalational exposure. Moreover, it is important to continue to address the knowledge gap involving Basidiomycota yeasts and their impact on AAD.
Collapse
Affiliation(s)
- Rachael E. Rush
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Brett J. Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
13
|
Stempinski PR, Gerbig GR, Greengo SD, Casadevall A. Last but not yeast-The many forms of Cryptococcus neoformans. PLoS Pathog 2023; 19:e1011048. [PMID: 36602969 PMCID: PMC9815591 DOI: 10.1371/journal.ppat.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Piotr R. Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Gracen R. Gerbig
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Seth D. Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
15
|
Role of the Heme Activator Protein Complex in the Sexual Development of Cryptococcus neoformans. mSphere 2022; 7:e0017022. [PMID: 35638350 PMCID: PMC9241503 DOI: 10.1128/msphere.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCAAT-binding heme activator protein (HAP) complex, comprising the DNA-binding heterotrimeric complex Hap2/3/5 and transcriptional activation subunit HapX, is a key regulator of iron homeostasis, mitochondrial functions, and pathogenicity in Cryptococcus neoformans, which causes fatal meningoencephalitis. However, its role in the development of human fungal pathogens remains unclear. To elucidate the role of the HAP complex in C. neoformans development, we constructed hap2Δ, hap3Δ, hap5Δ, and hapXΔ mutants and their complemented congenic MATα H99 and MATa YL99a strains. The HAP complex plays a conserved role in iron utilization and stress responses in cells of both mating types. Deletion of any of the HAP complex components markedly enhances filamentation during bisexual mating. However, the Hap2/3/5 complex, but not HapX, is crucial in repressing pheromone production and cell fusion and is thus a critical repressor of sexual differentiation of C. neoformans. Interestingly, deletion of the heterotrimeric complex transcriptionally regulated both positive and negative regulators in the pheromone-responsive Cpk1 mitogen-activated protein kinase (MAPK) pathway. Chromatin immunoprecipitation-quantitative PCR analysis revealed that the HAP complex physically bound to the CCAAT motif of the CRG1 and GPA2 promoter regions. Notably, the HAP complex was differentially localized depending on the mating type in basal conditions; it was enriched in the nuclei of MATα cells but diffused in the cytoplasm of MATa cells. Interestingly, however, a portion of the HAP complex in both mating types relocalized to the cell membrane during mating. In conclusion, the Hap2/3/5 heterotrimeric complex and HapX play major and minor roles, respectively, in repressing the sexual development of C. neoformans in association with the Cpk1 MAPK pathway. IMPORTANCECryptococcus neoformans isolates are of two mating types: MATα strains, which are predominant, and MATa strains, isolated from the sub-Saharan African region, where cryptococcosis is most abundant and severe. Here, we demonstrated the function of the CCAAT-binding HAP complex (Hap2/3/5/X) as a transcriptional repressor of Cpk1 pathway-related genes in cells of both mating types. Deletion of any HAP complex component markedly enhanced filamentation without affecting normal sporulation. In particular, deletion of the DNA-binding HAP complex components (Hap2/3/5), but not HapX, markedly enhanced pheromone production and cell fusion efficiency, validating its repressive role in the early stage of mating in C. neoformans. The HAP complex regulates the expression of both negative and positive mating regulators and is thus crucial for the regulation of the Cpk1 MAPK pathway during mating. This study provides insights into the complex signaling networks governing the sexual differentiation of C. neoformans.
Collapse
|
16
|
Del Poeta M, Ward BJ, Greenberg B, Hemmer B, Cree BA, Komatireddy S, Mishra J, Sullivan R, Kilaru A, Moore A, Hach T, Berger JR. Cryptococcal Meningitis Reported With Fingolimod Treatment: Case Series. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1156. [PMID: 35318259 PMCID: PMC8941596 DOI: 10.1212/nxi.0000000000001156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES To describe the characteristics of patients with MS reporting cryptococcal meningitis (CM) while treated with fingolimod. METHODS The Novartis safety database was searched for cases with CM between January 26, 2006, and February 28, 2020. The reporting rate of CM was estimated based on the case reports received and exposure to fingolimod in the postmarketing setting during the relevant period. RESULTS A total of 60 case reports of CM were identified, mostly from the United States. The median age was 48 years, and 51.8% were women. Most of the patients had recovered or were recovering at the time of final report. A fatal outcome occurred in 13 cases. During the study period, the rate of CM in patients with MS receiving fingolimod was estimated to be 8 per 100,000 patient-years (95% CI: 6.0; 10.0). The incidence of CM seemed to increase with duration of treatment; however, this relationship remains uncertain due to wide CIs and missing data. DISCUSSION The causal relationship between fingolimod treatment and CM is not yet fully understood. The CM mortality rate in fingolimod-treated patients is similar to that reported in HIV-negative patients. Vigilance for signs and symptoms of CM in patients receiving fingolimod, particularly the new onset of headaches and altered mental status, is essential. Early diagnosis and treatment are critical to reducing CM-associated mortality.
Collapse
Affiliation(s)
- Maurizio Del Poeta
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Brian J. Ward
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Benjamin Greenberg
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Bernhard Hemmer
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Bruce A.C. Cree
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Sreelatha Komatireddy
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Jitendriya Mishra
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Roseanne Sullivan
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Ajay Kilaru
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Alan Moore
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Thomas Hach
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Joseph R. Berger
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
17
|
A Velvet Transcription Factor Specifically Activates Mating through a Novel Mating-Responsive Protein in the Human Fungal Pathogen Cryptococcus deneoformans. Microbiol Spectr 2022; 10:e0265321. [PMID: 35471092 PMCID: PMC9241590 DOI: 10.1128/spectrum.02653-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sexual reproduction facilitates infection by the production of both a lineage advantage and infectious sexual spores in the ubiquitous human fungal pathogen Cryptococcus deneoformans. However, the regulatory determinants specific for initiating mating remain poorly understood. Here, we identified a velvet family regulator, Cva1, that strongly promotes sexual reproduction in C. deneoformans. This regulation was determined to be specific, based on a comprehensive phenotypic analysis of cva1Δ under 26 distinct in vitro and in vivo growth conditions. We further revealed that Cva1 plays a critical role in the initiation of early mating events, including sexual cell-cell fusion, but is not important for the late sexual development stages or meiosis. Thus, Cva1 specifically contributes to mating activation. Importantly, a novel mating-responsive protein, Cfs1, serves as the key target of Cva1 during mating, since its absence nearly blocks cell-cell fusion in C. deneoformans and its sister species C. neoformans. Together, our findings provide insight into how C. deneoformans ensures the regulatory specificity of mating. IMPORTANCE The human fungal pathogen C. deneoformans is a model organism for studying fungal sexual reproduction, which is considered to be important to infection. However, the specific regulatory determinants for activation of sexual reproduction remain poorly understood. In this study, by combining transcriptomic and comprehensive phenotypic analysis, we identified a velvet family regulator Cva1 that specifically and critically elicits early mating events, including sexual cell-cell fusion. Significantly, Cva1 induces mating through the novel mating-responsive protein Cfs1, which is essential for cell-cell fusion in C. deneoformans and its sister species C. neoformans. Considering that Cva1 and Cfs1 are highly conserved in species belonging to Cryptococcaeceae, they may play conserved and specific roles in the initiation of sexual reproduction in this important fungal clade, which includes multiple human fungal pathogens.
Collapse
|
18
|
Gutierrez MW, van Tilburg Bernardes E, Changirwa D, McDonald B, Arrieta MC. "Molding" immunity-modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunol 2022; 15:573-583. [PMID: 35474360 DOI: 10.1038/s41385-022-00515-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Fungi are important yet understudied contributors to the microbial communities of the gastrointestinal tract. Starting at birth, the intestinal mycobiome undergoes a period of dynamic maturation under the influence of microbial, host, and extrinsic influences, with profound functional implications for immune development in early life, and regulation of immune homeostasis throughout life. Candida albicans serves as a model organism for understanding the cross-talk between fungal colonization dynamics and immunity, and exemplifies unique mechanisms of fungal-immune interactions, including fungal dimorphism, though our understanding of other intestinal fungi is growing. Given the prominent role of the gut mycobiome in promoting immune homeostasis, emerging evidence points to fungal dysbiosis as an influential contributor to immune dysregulation in a variety of inflammatory and infectious diseases. Here we review current knowledge on the factors that govern host-fungi interactions in the intestinal tract and immunological outcomes in both mucosal and systemic compartments.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Erik van Tilburg Bernardes
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Diana Changirwa
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Ball B, Krieger JR, Geddes-McAlister J. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen. Methods Mol Biol 2022; 2456:141-151. [PMID: 35612740 DOI: 10.1007/978-1-0716-2124-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphorylation is a key post-translational modification central to the biological behavior of proteins. This reversible modification specifically regulates cell signaling mechanisms to control survival and growth. Moreover, microbial pathogens, including both fungi and bacteria, rely on this modification to coordinate protein production and functioning during infection and dissemination within a host. Understanding phosphorylation and its involvement with effector proteins and complex networks are now possible with the recent technological advancements of mass spectrometry. Herein, we describe a phosphopeptide enrichment strategy optimized for the invasive mycosis-causing fungal pathogen Cryptococcus neoformans. Our protocol details proper sample preparation for efficient lysis and protein extraction with minimal phosphorylation losses followed by outlined steps for enrichment, instrumentation handling, and data analysis to permit deep profiling of the global phosphoproteome. The high-throughput versatility of bottom-up proteomics combined with our sample preparation approach facilitates opportunities for in-depth phosphorylation mapping and novel biological discoveries.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
20
|
Hopke A, Mela A, Ellett F, Carter-House D, Peña JF, Stajich JE, Altamirano S, Lovett B, Egan M, Kale S, Kronholm I, Guerette P, Szewczyk E, McCluskey K, Breslauer D, Shah H, Coad BR, Momany M, Irimia D. Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS One 2021; 16:e0257823. [PMID: 34587206 PMCID: PMC8480888 DOI: 10.1371/journal.pone.0257823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 μm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.
Collapse
Affiliation(s)
- Alex Hopke
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Alex Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Felix Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jesús F. Peña
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian Lovett
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Martin Egan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Paul Guerette
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Edyta Szewczyk
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Kevin McCluskey
- Bolt Threads Inc., Emeryville, California, United States of America
| | - David Breslauer
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Hiral Shah
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Bryan R. Coad
- School of Agriculture, Food & Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (DI); (MM)
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
- * E-mail: (DI); (MM)
| |
Collapse
|
21
|
Holič R, Šťastný D, Griač P. Sec14 family of lipid transfer proteins in yeasts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158990. [PMID: 34118432 DOI: 10.1016/j.bbalip.2021.158990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
The hydrophobicity of lipids prevents their free movement across the cytoplasm. To achieve highly heterogeneous and precisely regulated lipid distribution in different cellular membranes, lipids are transported by lipid transfer proteins (LTPs) in addition to their transport by vesicles. Sec14 family is one of the most extensively studied groups of LTPs. Here we provide an overview of Sec14 family of LTPs in the most studied yeast Saccharomyces cerevisiae as well as in other selected non-Saccharomyces yeasts-Schizosaccharomyces pombe, Kluyveromyces lactis, Candida albicans, Candida glabrata, Cryptococcus neoformans, and Yarrowia lipolytica. Discussed are specificities of Sec14-domain LTPs in various yeasts, their mode of action, subcellular localization, and physiological function. In addition, quite few Sec14 family LTPs are target of antifungal drugs, serve as modifiers of drug resistance or influence virulence of pathologic yeasts. Thus, they represent an important object of study from the perspective of human health.
Collapse
Affiliation(s)
- Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominik Šťastný
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
22
|
Ding S, Yang J, Feng X, Pandey A, Barhoumi R, Zhang D, Bell SL, Liu Y, da Costa LF, Rice-Ficht A, Watson RO, Patrick KL, Qin QM, Ficht TA, de Figueiredo P. Interactions between fungal hyaluronic acid and host CD44 promote internalization by recruiting host autophagy proteins to forming phagosomes. iScience 2021; 24:102192. [PMID: 33718841 PMCID: PMC7920835 DOI: 10.1016/j.isci.2021.102192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Phagocytosis and autophagy play critical roles in immune defense. The human fungal pathogen Cryptococcus neoformans (Cn) subverts host autophagy-initiation complex (AIC)-related proteins, to promote its phagocytosis and intracellular parasitism of host cells. The mechanisms by which the pathogen engages host AIC-related proteins remain obscure. Here, we show that the recruitment of host AIC proteins to forming phagosomes is dependent upon the activity of CD44, a host cell surface receptor that engages fungal hyaluronic acid (HA). This interaction elevates intracellular Ca2+ concentrations and activates CaMKKβ and its downstream target AMPKα, which results in activation of ULK1 and the recruitment of AIC components. Moreover, we demonstrate that HA-coated beads efficiently recruit AIC components to phagosomes and CD44 interacts with AIC components. Taken together, these findings show that fungal HA plays a critical role in directing the internalization and productive intracellular membrane trafficking of a fungal pathogen of global importance. Fungal HA drives non-canonical and ligand-induced autophagy in phagocytic cells Cn recruits host CD44 to forming phagocytic cups to initiate fungal internalization Fungal HA-CD44 interactions elevate intracellular Ca2+ levels and activate CaMKKβ A Ca2+-CaMKKβ-AMPK-ULK1 signaling axis is involved in HA-CD44 induced autophagy
Collapse
Affiliation(s)
- Shengli Ding
- College of Plant Sciences & Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin 130062, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jing Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Xuehuan Feng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Dongmei Zhang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Yue Liu
- College of Plant Sciences & Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin 130062, China
| | - Luciana Fachini da Costa
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Qing-Ming Qin
- College of Plant Sciences & Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin 130062, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Martinez Barrera S, Byrum S, Mackintosh SG, Kozubowski L. Registered report protocol: Quantitative analysis of septin Cdc10-associated proteome in Cryptococcus neoformans. PLoS One 2020; 15:e0242381. [PMID: 33315917 PMCID: PMC7735571 DOI: 10.1371/journal.pone.0242381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. C. neoformans can thrive during infections due to its three main virulence-related characteristics: the ability to grow at host temperature (37°C), formation of carbohydrate capsule, and its ability to produce melanin. C. neoformans strains lacking septin proteins Cdc3 or Cdc12 are viable at 25°C; however, they fail to proliferate at 37°C and are avirulent in the murine model of infection. The basis of septin contribution to growth at host temperature remains unknown. Septins are a family of conserved filament-forming GTPases with roles in cytokinesis and morphogenesis. In the model organism Saccharomyces cerevisiae septins are essential. S. cerevisiae septins form a higher order complex at the mother-bud neck to scaffold over 80 proteins, including those involved in cell wall organization, cell polarity, and cell cycle control. In C. neoformans, septins also form a complex at the mother-bud neck but the septin interacting proteome in this species remains largely unknown. Moreover, it remains possible that septins play other roles important for high temperature stress that are independent of their established role in cytokinesis. Therefore, we propose to perform a global analysis of septin Cdc10 binding partners in C. neoformans, including those that are specific to high temperature stress. This analysis will shed light on the underlying mechanism of survival of this pathogenic yeast during infection and can potentially lead to the discovery of novel drug targets.
Collapse
Affiliation(s)
- Stephani Martinez Barrera
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
24
|
Madhani HD. Unbelievable but True: Epigenetics and Chromatin in Fungi. Trends Genet 2020; 37:12-20. [PMID: 33092902 DOI: 10.1016/j.tig.2020.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022]
Abstract
Evolutionary innovations in chromatin biology have been recently discovered through the study of fungi. In Saccharomyces cerevisiae, a prion form of a deacetylase complex assembles over subtelomeric domains that produces a heritable gene expression state that enables resistance to stress. In Candida albicans, stress triggers adaptive chromosome destabilization via erasure a centromeric histone H3, CENP-A; a process that cooperates with a newly evolved H2A variant lacking a mitotic phosphorylation site. Finally, in Cryptococcus neoformans, the loss of a cytosine DNA methyltransferase at least 50 million years ago has enabled the Darwinian evolution of methylation patterns over geological timescales. These studies reveal a remarkable genetic and epigenetic evolutionary plasticity of the chromatin fiber, despite the highly conserved structure of the nucleosome.
Collapse
Affiliation(s)
- Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
26
|
Liu KH, Shen WC. Sexual Differentiation Is Coordinately Regulated by Cryptococcus neoformans CRK1 and GAT1. Genes (Basel) 2020; 11:genes11060669. [PMID: 32575488 PMCID: PMC7349709 DOI: 10.3390/genes11060669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
The heterothallic basidiomycetous fungus Cryptococcus neoformans has two mating types, MATa and MATα. Morphological progression of bisexual reproduction in C. neoformans is as follows: yeast to hyphal transition, filament extension, basidium formation, meiosis, and sporulation. C. neoformans Cdk-related kinase 1 (CRK1) is a negative regulator of bisexual mating. In this study, we characterized the morphological features of mating structures in the crk1 mutant and determined the genetic interaction of CRK1 in the regulatory networks of sexual differentiation. In the bilateral crk1 mutant cross, despite shorter length of filaments than in the wild-type cross, dikaryotic filaments and other structures still remained intact during bisexual mating, but the timing of basidium formation was approximately 18 h earlier than in the cross between wild type strains. Furthermore, gene expression analyses revealed that CRK1 modulated the expression of genes involved in the progression of hyphal elongation, basidium formation, karyogamy and meiosis. Phenotypic results showed that, although deletion of C. neoformans CRK1 gene increased the efficiency of bisexual mating, filamentation in the crk1 mutant was blocked by MAT2 or ZNF2 mutation. A bioinformatics survey predicted the C. neoformans GATA transcriptional factor Gat1 as a potential substrate of Crk1 kinase. Our genetic and phenotypic findings revealed that C. neoformansGAT1 and CRK1 formed a regulatory circuit to negatively regulate MAT2 to control filamentation progression and transition during bisexual mating.
Collapse
|
27
|
Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A 2020; 117:7917-7928. [PMID: 32193338 DOI: 10.1073/pnas.1918659117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A fundamental characteristic of eukaryotic organisms is the generation of genetic variation via sexual reproduction. Conversely, significant large-scale genome structure variations could hamper sexual reproduction, causing reproductive isolation and promoting speciation. The underlying processes behind large-scale genome rearrangements are not well understood and include chromosome translocations involving centromeres. Recent genomic studies in the Cryptococcus species complex revealed that chromosome translocations generated via centromere recombination have reshaped the genomes of different species. In this study, multiple DNA double-strand breaks (DSBs) were generated via the CRISPR/Cas9 system at centromere-specific retrotransposons in the human fungal pathogen Cryptococcus neoformans The resulting DSBs were repaired in a complex manner, leading to the formation of multiple interchromosomal rearrangements and new telomeres, similar to chromothripsis-like events. The newly generated strains harboring chromosome translocations exhibited normal vegetative growth but failed to undergo successful sexual reproduction with the parental wild-type strain. One of these strains failed to produce any spores, while another produced ∼3% viable progeny. The germinated progeny exhibited aneuploidy for multiple chromosomes and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable change in gene sequences and thus suggest that chromosomal translocations alone may play an underappreciated role in the onset of reproductive isolation and speciation.
Collapse
|
28
|
Suen WW, Zedler S, Price R, Maguire T, Halliday C, Rosenblatt AJ, Allavena RE, Owen H, Medina-Torres CE. Rhinosinusitis in an Australian mare caused by Flavodon flavus, a recently recognized invasive fungal pathogen of the horse. J Vet Diagn Invest 2019; 32:162-165. [PMID: 31876248 DOI: 10.1177/1040638719897610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe herein the clinical, endoscopic, computed tomography (CT), pathologic, and microbiologic features of an infection caused by an under-recognized fungal pathogen, Flavodon flavus, in a 25-y-old Australian Quarter Horse. The horse had a unilateral obstructive nasal mass, resulting in stertor and dyspnea. On endoscopy, the mass was tan, multinodular, and completely obstructed the nasal passage. CT analysis revealed a large, soft tissue-attenuating and partially mineralized mass in the right nasal passage and dorsal-conchofrontal sinus, expanding into adjacent paranasal sinuses with associated bone lysis and rhinosinusitis. Histopathology of the mass on 2 occasions revealed suppurative inflammation initially, and pyogranulomatous inflammation subsequently. The inflammatory reaction surrounded numerous spherical fungal structures (~60-80 µm diameter) that stained positively on periodic acid-Schiff and Grocott methenamine silver stains. PCR for the fungal internal transcribed spacer 1 and 2 regions followed by Sanger sequencing on a cultured isolate identified the agent as F. flavus, which has only been reported previously as pathogenic in one horse in the United States, to our knowledge. Previous reports described this fungus as a nonpathogenic, environmental commensal fungus associated with insects and plants.
Collapse
Affiliation(s)
- Willy W Suen
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Steven Zedler
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Rochelle Price
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Tina Maguire
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Catriona Halliday
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Alana J Rosenblatt
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Rachel E Allavena
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Helen Owen
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| | - Carlos E Medina-Torres
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia (Suen, Zedler, Price, Maguire, Rosenblatt, Allavena, Owen, Medina-Torres).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Suen).,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia (Halliday)
| |
Collapse
|
29
|
Gregory-Miller K, Chagla Z, Yamamura D, El-Helou P. Cryptococcemia presenting as an opportunistic infection due to chronic visceral leishmaniasis. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2019; 4:178-181. [PMID: 36340650 PMCID: PMC9603025 DOI: 10.3138/jammi.2019-04-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/16/2023]
Abstract
We present a case of visceral leishmaniasis (VL) in a previously immunocompetent patient. At the time of presentation, he was co-infected with Cryptococcus neoformans. This case demonstrates how infectious diseases besides human immunodeficiency virus can lead to immunosuppression for patients, placing them at risk of opportunistic infections.
Collapse
Affiliation(s)
- Kathleen Gregory-Miller
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zain Chagla
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Deborah Yamamura
- Division of Medical Microbiology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philippe El-Helou
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
31
|
de Oliveira HC, Trevijano-Contador N, Garcia-Rodas R. Cryptococcal Pathogenicity and Morphogenesis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00340-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Vinh DC. The molecular immunology of human susceptibility to fungal diseases: lessons from single gene defects of immunity. Expert Rev Clin Immunol 2019; 15:461-486. [PMID: 30773066 DOI: 10.1080/1744666x.2019.1584038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Fungal diseases are a threat to human health. Therapies targeting the fungus continue to lead to disappointing results. Strategies targeting the host response represent unexplored opportunities for innovative treatments. To do so rationally requires the identification and neat delineation of critical mechanistic pathways that underpin human antifungal immunity. The study of humans with single-gene defects of the immune system, i.e. inborn errors of immunity (IEIs), provides a foundation for these paradigms. Areas covered: A systematic literature search in PubMed, Scopus, and abstracts of international congresses was performed to review the history of genetic resistance/susceptibility to fungi and identify IEIs associated with fungal diseases. Immunologic mechanisms from relevant IEIs were integrated with current definitions and understandings of mycoses to establish a framework to map out critical immunobiological pathways of human antifungal immunity. Expert opinion: Specific immune responses non-redundantly govern susceptibility to their corresponding mycoses. Defining these molecular pathways will guide the development of host-directed immunotherapies that precisely target distinct fungal diseases. These findings will pave the way for novel strategies in the treatment of these devastating infections.
Collapse
Affiliation(s)
- Donald C Vinh
- a Department of Medicine (Division of Infectious Diseases; Division of Allergy & Clinical Immunology), Department of Medical Microbiology, Department of Human Genetics , McGill University Health Centre - Research Institute , Montreal , QC , Canada
| |
Collapse
|
33
|
Liu L, He GJ, Chen L, Zheng J, Chen Y, Shen L, Tian X, Li E, Yang E, Liao G, Wang L. Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans. eLife 2018; 7:38683. [PMID: 30281018 PMCID: PMC6235564 DOI: 10.7554/elife.38683] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
In the human fungal pathogen Cryptococcus neoformans, sex can benefit its pathogenicity through production of meiospores, which are believed to offer both physical and meiosis-created lineage advantages for its infections. Cryptococcus sporulation occurs following two parallel events, meiosis and differentiation of the basidium, the characteristic sexual structure of the basidiomycetes. However, the circuit integrating these events to ensure subsequent sporulation is unclear. Here, we show the spatiotemporal coordination of meiosis and basidial maturation by visualizing event-specific molecules in developing basidia defined by a quantitative approach. Monitoring of gene induction timing together with genetic analysis reveals co-regulation of the coordinated events by a shared regulatory program. Two RRM family regulators, Csa1 and Csa2, are crucial components that bridge meiosis and basidial maturation, further determining sporulation. We propose that the regulatory coordination of meiosis and basidial development serves as a determinant underlying the production of infectious meiospores in C. neoformans.
Collapse
Affiliation(s)
- Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Jun He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Zheng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yingying Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ence Yang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
35
|
Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat Microbiol 2018; 3:698-707. [PMID: 29784977 DOI: 10.1038/s41564-018-0160-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.
Collapse
|
36
|
Fu C, Heitman J. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet 2017; 13:e1007113. [PMID: 29176784 PMCID: PMC5720818 DOI: 10.1371/journal.pgen.1007113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
37
|
Upadhya R, Lam WC, Maybruck BT, Donlin MJ, Chang AL, Kayode S, Ormerod KL, Fraser JA, Doering TL, Lodge JK. A fluorogenic C. neoformans reporter strain with a robust expression of m-cherry expressed from a safe haven site in the genome. Fungal Genet Biol 2017; 108:13-25. [PMID: 28870457 PMCID: PMC5681388 DOI: 10.1016/j.fgb.2017.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
C. neoformans is an encapsulated fungal pathogen with defined asexual and sexual life cycles. Due to the availability of genetic and molecular tools for its manipulation, it has become a model organism for studies of fungal pathogens, even though it lacks a reliable system for maintaining DNA fragments as extrachromosomal plasmids. To compensate for this deficiency, we identified a genomic gene-free intergenic region where heterologous DNA could be inserted by homologous recombination without adverse effects on the phenotype of the recipient strain. Since such a site in the C. neoformans genome at a different location has been named previously as "safe haven", we named this locus second safe haven site (SH2). Insertion of DNA into this site in the genome of the KN99 congenic strain pair caused minimal change in the growth of the engineered strain under a variety of in vitro and in vivo conditions. We exploited this 'safe' locus to create a genetically stable highly fluorescent strain expressing mCherry protein (KN99mCH); this strain closely resembled its wild-type parent (KN99α) in growth under a variety of in vitro stress conditions and in the expression of virulence traits. The efficiency of phagocytosis and the proliferation of KN99mCH inside human monocyte-derived macrophages were comparable to those of KN99α, and the engineered strain showed the expected organ dissemination after inoculation, although there was a slight reduction in virulence. The mCherry fluorescence allowed us to measure specific association of cryptococci with leukocytes in the lungs and mediastinal lymph nodes of infected animals and, for the first-time, to assess their live/dead status in vivo. These results highlight the utility of KN99mCH for elucidation of host-pathogen interactions in vivo. Finally, we generated drug-resistant KN99 strains of both mating types that are marked at the SH2 locus with a specific drug resistant gene cassette; these strains will facilitate the generation of mutant strains by mating.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Woei C Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian T Maybruck
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Andrew L Chang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Kayode
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kate L Ormerod
- Australian Infectious Diseases Research Centre and School of Chemistry& Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre and School of Chemistry& Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
38
|
Xu X, Lin J, Zhao Y, Kirkman E, So YS, Bahn YS, Lin X. Glucosamine stimulates pheromone-independent dimorphic transition in Cryptococcus neoformans by promoting Crz1 nuclear translocation. PLoS Genet 2017; 13:e1006982. [PMID: 28898238 PMCID: PMC5595294 DOI: 10.1371/journal.pgen.1006982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Morphotype switch is a cellular response to external and internal cues. The Cryptococcus neoformans species complex can undergo morphological transitions between the yeast and the hypha form, and such morphological changes profoundly affect cryptococcal interaction with various hosts. Filamentation in Cryptococcus was historically considered a mating response towards pheromone. Recent studies indicate the existence of pheromone-independent signaling pathways but their identity or the effectors remain unknown. Here, we demonstrated that glucosamine stimulated the C. neoformans species complex to undergo self-filamentation. Glucosamine-stimulated filamentation was independent of the key components of the pheromone pathway, which is distinct from pheromone-elicited filamentation. Glucosamine stimulated self-filamentation in H99, a highly virulent serotype A clinical isolate and a widely used reference strain. Through a genetic screen of the deletion sets made in the H99 background, we found that Crz1, a transcription factor downstream of calcineurin, was essential for glucosamine-stimulated filamentation despite its dispensability for pheromone-mediated filamentation. Glucosamine promoted Crz1 translocation from the cytoplasm to the nucleus. Interestingly, multiple components of the high osmolality glycerol response (HOG) pathway, consisting of the phosphorelay system and some of the Hog1 MAPK module, acted as repressors of glucosamine-elicited filamentation through their calcineurin-opposing effect on Crz1’s nuclear translocation. Surprisingly, glucosamine-stimulated filamentation did not require Hog1 itself and was distinct from the conventional general stress response. The results demonstrate that Cryptococcus can resort to multiple genetic pathways for morphological transition in response to different stimuli. Given that the filamentous form attenuates cryptococcal virulence and is immune-stimulatory in mammalian models, the findings suggest that morphogenesis is a fertile ground for future investigation into novel means to compromise cryptococcal pathogenesis. Cryptococcal meningitis claims half a million lives each year. There is no clinically available vaccine and the current antifungal therapies have serious limitations. Thus identifying cryptococcal specific programs that can be targeted for antifungal or vaccine development is of great value. We have shown previously that switching from the yeast to the hypha form drastically attenuates/abolishes cryptococcal virulence. Cryptococcal cells in the filamentous form also trigger host immune responses that can protect the host from a subsequent lethal challenge. However, self-filamentation is rarely observed in serotype A isolates that are responsible for the vast majority of cryptococcosis cases. In this study, we found that glucosamine stimulated self-filamentation in genetically distinct strains of the Cryptococcus species complex, including the most commonly used serotype A reference strain H99. We demonstrated that filamentation elicited by glucosamine did not depend on the pheromone pathway, but it requires the calcineurin transcription factor Crz1. Glucosamine promotes nuclear translocation of Crz1, which is positively controlled by the phosphatase calcineurin and is suppressed by the HOG pathway. These findings raise the possibility of manipulating genetic pathways controlling fungal morphogenesis against diseases caused by the Cryptococcus species complex.
Collapse
Affiliation(s)
- Xinping Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (XL); (XX)
| | - Jianfeng Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Youbao Zhao
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Elyssa Kirkman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Yee-Seul So
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (XL); (XX)
| |
Collapse
|
39
|
A novel bZIP protein, Gsb1, is required for oxidative stress response, mating, and virulence in the human pathogen Cryptococcus neoformans. Sci Rep 2017. [PMID: 28642475 PMCID: PMC5481450 DOI: 10.1038/s41598-017-04290-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, normally faces diverse stresses in the human host. Here, we report that a novel, basic, leucine-zipper (bZIP) protein, designated Gsb1 (general stress-related bZIP protein 1), is required for its normal growth and diverse stress responses. C. neoformans gsb1Δ mutants grew slowly even under non-stressed conditions and showed increased sensitivity to high or low temperatures. The hypersensitivity of gsb1Δ to oxidative and nitrosative stresses was reversed by addition of a ROS scavenger. RNA-Seq analysis during normal growth revealed increased expression of a number of genes involved in mitochondrial respiration and cell cycle, but decreased expression of several genes involved in the mating-pheromone-responsive MAPK signaling pathway. Accordingly, gsb1Δ showed defective mating and abnormal cell-cycle progression. Reflecting these pleiotropic phenotypes, gsb1Δ exhibited attenuated virulence in a murine model of cryptococcosis. Moreover, RNA-Seq analysis under oxidative stress revealed that several genes involved in ROS defense, cell-wall remodeling, and protein glycosylation were highly induced in the wild-type strain but not in gsb1Δ. Gsb1 localized exclusively in the nucleus in response to oxidative stress. In conclusion, Gsb1 is a key transcription factor modulating growth, stress responses, differentiation, and virulence in C. neoformans.
Collapse
|
40
|
Kelliher CM, Haase SB. Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans. Curr Genet 2017; 63:803-811. [PMID: 28265742 PMCID: PMC5605583 DOI: 10.1007/s00294-017-0688-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/01/2022]
Abstract
Proliferation and host evasion are critical processes to understand at a basic biological level for improving infectious disease treatment options. The human fungal pathogen Cryptococcus neoformans causes fungal meningitis in immunocompromised individuals by proliferating in cerebrospinal fluid. Current antifungal drugs target "virulence factors" for disease, such as components of the cell wall and polysaccharide capsule in C. neoformans. However, mechanistic links between virulence pathways and the cell cycle are not as well studied. Recently, cell-cycle synchronized C. neoformans cells were profiled over time to identify gene expression dynamics (Kelliher et al., PLoS Genet 12(12):e1006453, 2016). Almost 20% of all genes in the C. neoformans genome were periodically activated during the cell cycle in rich media, including 40 genes that have previously been implicated in virulence pathways. Here, we review important findings about cell-cycle-regulated genes in C. neoformans and provide two examples of virulence pathways-chitin synthesis and G-protein coupled receptor signaling-with their putative connections to cell division. We propose that a "comparative functional genomics" approach, leveraging gene expression timing during the cell cycle, orthology to genes in other fungal species, and previous experimental findings, can lead to mechanistic hypotheses connecting the cell cycle to fungal virulence.
Collapse
Affiliation(s)
- Christina M Kelliher
- Department of Biology, Duke University, Box 90338, 130 Science Drive, Durham, NC, 27708-0338, USA
| | - Steven B Haase
- Department of Biology, Duke University, Box 90338, 130 Science Drive, Durham, NC, 27708-0338, USA.
| |
Collapse
|
41
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
42
|
Investigating Conservation of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen, Cryptococcus neoformans. PLoS Genet 2016; 12:e1006453. [PMID: 27918582 PMCID: PMC5137879 DOI: 10.1371/journal.pgen.1006453] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/01/2016] [Indexed: 12/24/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation.
Collapse
|
43
|
van de Veerdonk FL, Joosten LAB, Netea MG. The interplay between inflammasome activation and antifungal host defense. Immunol Rev 2016; 265:172-80. [PMID: 25879292 DOI: 10.1111/imr.12280] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fungal infections cause significant morbidity and mortality in humans, and they are a growing problem due to the increased usage of broad-spectrum antibiotics and immunosuppressive therapies. The equilibrium between the commensal microbial flora and the immune system that protects the host against invasive fungal infection is disturbed during disease, and understanding this disturbed balance is important to develop new therapeutic interventions for the treatment of fungal infection. In the context of tolerating fungi during colonization and eliciting a vigorous immune response to eliminate invading fungal pathogens when needed, the inflammasome has been identified as an integral component of antifungal host defense. It contributes to mucosal host defense by regulating T-helper 17 (Th17) cell responses, and contributes to protective responses such as neutrophil influx during fungal sepsis. Several aspects are important for understanding the role of the inflammasome for antifungal host defense, such as the role of fungal cell wall morphology and its components in triggering the inflammasome, the pattern recognition pathways and downstream signaling cascades involved in the activation of the inflammasome, and the effects of inflammasome activation during fungal infection. The future perspectives of inflammasome research in fungal immunology, with emphasis on targeting the inflammasome for the design of future immunotherapies, is also discussed.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
44
|
Juvvadi PR, Steinbach WJ. Calcineurin Orchestrates Hyphal Growth, Septation, Drug Resistance and Pathogenesis of Aspergillus fumigatus: Where Do We Go from Here? Pathogens 2015; 4:883-93. [PMID: 26694470 PMCID: PMC4693169 DOI: 10.3390/pathogens4040883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022] Open
Abstract
Studies on fungal pathogens belonging to the ascomycota phylum are critical given the ubiquity and frequency with which these fungi cause infections in humans. Among these species, Aspergillus fumigatus causes invasive aspergillosis, a leading cause of death in immunocompromised patients. Fundamental to A. fumigatus pathogenesis is hyphal growth. However, the precise mechanisms underlying hyphal growth and virulence are poorly understood. Over the past 10 years, our research towards the identification of molecular targets responsible for hyphal growth, drug resistance and virulence led to the elucidation of calcineurin as a key signaling molecule governing these processes. In this review, we summarize our salient findings on the significance of calcineurin for hyphal growth and septation in A. fumigatus and propose future perspectives on exploiting this pathway for designing new fungal-specific therapeutics.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA.
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA.
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Choi J, Jung WH, Kronstad JW. The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: Connections with iron homeostasis. J Microbiol 2015; 53:579-87. [PMID: 26231374 DOI: 10.1007/s12275-015-5247-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022]
Abstract
A number of pathogenic species of basidiomycete fungi are either life-threatening pathogens of humans or major economic pests for crop production. Sensing the host is a key aspect of pathogen proliferation during disease, and signal transduction pathways are critically important for detecting environmental conditions and facilitating adaptation. This review focuses on the contributions of the cAMP/protein kinase A (PKA) signaling pathway in Cryptococcus neoformans, a species that causes meningitis in humans, and Ustilago maydis, a model phytopathogen that causes a smut disease on maize. Environmental sensing by the cAMP/PKA pathway regulates the production of key virulence traits in C. neoformans including the polysaccharide capsule and melanin. For U. maydis, the pathway controls the dimorphic transition from budding growth to the filamentous cell type required for proliferation in plant tissue. We discuss recent advances in identifying new components of the cAMP/PKA pathway in these pathogens and highlight an emerging theme that pathway signaling influences iron acquisition.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Division of Life Sciences, and Culture Collection and DNA Bank of Mushrooms, Incheon National University, Incheon, 406-772, Republic of Korea
| | | | | |
Collapse
|
46
|
Mariné M, Brown NA, Riaño-Pachón DM, Goldman GH. On and Under the Skin: Emerging Basidiomycetous Yeast Infections Caused by Trichosporon Species. PLoS Pathog 2015; 11:e1004982. [PMID: 26226483 PMCID: PMC4520462 DOI: 10.1371/journal.ppat.1004982] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Marçal Mariné
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol—CTBE, Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
47
|
Abstract
While sexual reproduction is universal in eukaryotes, and shares conserved core features, the specific aspects of sexual reproduction can differ dramatically from species to species. This is also true in Fungi. Among fungal species, mating determination can vary from tetrapolar with more than a thousand different mating types, to bipolar with only two opposite mating types, and finally to unipolar without the need of a compatible mating partner for sexual reproduction. Cryptococcus neoformans is a human pathogenic fungus that belongs to the Basidiomycota. While C. neoformans has a well-defined bipolar mating system with two opposite mating types, MATa and MATα, it can also undergo homothallic unisexual reproduction from one single cell or between two cells of the same mating type. Recently, it was shown that, as in a-α bisexual reproduction, meiosis is also involved in α-α unisexual reproduction in C. neoformans. Briefly, recombination frequencies, the number of crossovers along chromosomes, as well as frequencies at which aneuploid and diploid progeny are produced, are all comparable between a-α bisexual and α-α unisexual reproduction. The plasticity observed in C. neoformans sexual reproduction highlights the extensive diversity in mating type determination, mating recognition, as well as modes of sexual reproduction across fungal species.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
48
|
Zhuo XB, Zou Y, Huang SJ, Liao J, Hu HG, Zhao QJ, Wu QY. Facile Synthesis of the Pentasaccharide Repeating Unit of the Exopolysaccharide fromCryptococcus neoformansSerotype D. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201400297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Fu C, Sun S, Billmyre RB, Roach KC, Heitman J. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet Biol 2015; 78:65-75. [PMID: 25173822 PMCID: PMC4344436 DOI: 10.1016/j.fgb.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller's ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R B Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Jiang Z, Liu N, Hu D, Dong G, Miao Z, Yao J, He H, Jiang Y, Zhang W, Wang Y, Sheng C. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun (Camb) 2015; 51:14648-51. [DOI: 10.1039/c5cc05699c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Structural simplification of the natural product sampangine led to the discovery of two novel antifungal compounds with excellent activity and low toxicity.
Collapse
Affiliation(s)
- Zhigan Jiang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
- State Key Laboratory of Drug Lead Compound Research
| | - Na Liu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Dandan Hu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Guoqiang Dong
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Zhenyuan Miao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Jianzhong Yao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Haiying He
- State Key Laboratory of Drug Lead Compound Research
- Shanghai
- China
| | - Yuanying Jiang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Wannian Zhang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Wang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Chunquan Sheng
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| |
Collapse
|