1
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Zhao L, Tang Y, Yang J, Lin F, Liu X, Zhang Y, Chen J. Integrative analysis of circadian clock with prognostic and immunological biomarker identification in ovarian cancer. Front Mol Biosci 2023; 10:1208132. [PMID: 37409345 PMCID: PMC10318361 DOI: 10.3389/fmolb.2023.1208132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Objective: To identify circadian clock (CC)-related key genes with clinical significance, providing potential biomarkers and novel insights into the CC of ovarian cancer (OC). Methods: Based on the RNA-seq profiles of OC patients in The Cancer Genome Atlas (TCGA), we explored the dysregulation and prognostic power of 12 reported CC-related genes (CCGs), which were used to generate a circadian clock index (CCI). Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to identify potential hub genes. Downstream analyses including differential and survival validations were comprehensively investigated. Results: Most CCGs are abnormally expressed and significantly associated with the overall survival (OS) of OC. OC patients with a high CCI had lower OS rates. While CCI was positively related to core CCGs such as ARNTL, it also showed significant associations with immune biomarkers including CD8+ T cell infiltration, the expression of PDL1 and CTLA4, and the expression of interleukins (IL-16, NLRP3, IL-1β, and IL-33) and steroid hormones-related genes. WGCNA screened the green gene module to be mostly correlated with CCI and CCI group, which was utilized to construct a PPI network to pick out 15 hub genes (RNF169, EDC4, CHCHD1, MRPL51, UQCC2, USP34, POM121, RPL37, SNRPC, LAMTOR5, MRPL52, LAMTOR4, NDUFB1, NDUFC1, POLR3K) related to CC. Most of them can exert prognostic values for OS of OC, and all of them were significantly associated with immune cell infiltration. Additionally, upstream regulators including transcription factors and miRNAs of key genes were predicted. Conclusion: Collectively, 15 crucial CC genes showing indicative values for prognosis and immune microenvironment of OC were comprehensively identified. These findings provided insight into the further exploration of the molecular mechanisms of OC.
Collapse
Affiliation(s)
- Lianfang Zhao
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Jiayan Yang
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Fang Lin
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Xiaofang Liu
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| | - Yongqiang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianhui Chen
- Prenatal Diagnosis Center, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
3
|
Nassar A, Abdelhamid A, Ramsay G, Bekheit M. Chronomodulated Administration of Chemotherapy in Advanced Colorectal Cancer: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e36522. [PMID: 37090313 PMCID: PMC10120847 DOI: 10.7759/cureus.36522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
In this systematic review, the efficacy and safety of chronomodulated chemotherapy, defined as the delivery of chemotherapy timed according to the human circadian rhythm, were assessed and compared to continuous infusion chemotherapy for patients with advanced colorectal cancer. Electronic English-language studies published until October 2020 were searched. Randomised controlled trials (RCTs) comparing chronomodulated chemotherapy with non-chronomodulated (conventional) chemotherapy for the management of advanced colorectal cancer were included. The main outcomes were the objective response rate (ORR) and system-specific and overall toxicity related to chemotherapy. Electronic databases including Ovid Medline, Ovid Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Review were searched. In total, seven RCTs including 1,137 patients were analysed. Males represented 684 (60%) of the study population. The median age was 60.5 (range = 47.2-64) years. There was no significant difference between chronomodulated and conventional chemotherapy in ORR (risk ratio (RR) = 1.15; 95% confidence interval (CI) = 0.87-1.53). Similarly, there was no significant difference in gastrointestinal toxicity under the random effect model (RR = 1.02; 95% CI = 0.68-1.51). No significant difference was found regarding neurological and skin toxicities (RR = 0.64, 95% CI = 0.32-1.270 and RR = 2.11, 95% CI = 0.33-13.32, respectively). However, patients who received chronomodulated chemotherapy had less haematological toxicity (RR = 0.36, 95% CI = 0.27-0.48). In conclusion, there was no overall difference in ORR or haematologic toxicity between chronomodulated and non-chronomodulated chemotherapy used for patients with advanced colorectal cancer. Chronomodulated chemotherapy can be considered in patients at high risk of haematological toxicities.
Collapse
Affiliation(s)
- Ahmed Nassar
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - Amir Abdelhamid
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - George Ramsay
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
| | - Mohamed Bekheit
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Dr Gray's Hospital, National Health Service (NHS) Grampian, Aberdeen, GBR
- HPB Centre, Elite Integrated Centres of Excellence, Alexandria, EGY
| |
Collapse
|
4
|
Chen M, Zhang L, Liu X, Ma Z, Lv L. PER1 Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Ovarian Cancer. Front Genet 2021; 12:697471. [PMID: 34220965 PMCID: PMC8248530 DOI: 10.3389/fgene.2021.697471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Period circadian protein homolog 1 (PER1) is an important component of the biorhythm molecular oscillation system and plays an important part in the development and progression of mammalian cancer. However, the correlations of PER1 with prognosis and tumor-infiltrating lymphocytes in ovarian cancer (OV) remain unclear. Methods: The Oncomine and TIMER databases were used to examine the expression of PER1 in OV. Kaplan–Meier Plotter and PrognoScan were used to evaluate the relationship between PER1 and prognosis. Kaplan–Meier Plotter was used to analyze the relationships between PER1 and clinicopathological features of OV patients. The relationship between PER1 expression and immune infiltration in OV was investigated using the TIMER database and CIBERSORT algorithm. The STRING database was used to analyze PER1-related protein functional groups, the GeneMANIA online tool was used to analyze gene groups with similar functions to those of PER1, and Network Analyst was used to identify transcription factors that regulate PER1. The correlation between PER1 and immunoinvasion of OV was analyzed using TIMER. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect PER1 expression. Results: PER1 was differentially expressed in different cancer tissues, and its expression in various OV subtypes was lower than that in normal ovarian tissue. OV patients with low PER1 expression had a reduced overall survival rate. Decreased PER1 expression in stage 1 and stage 1+2 OV patients was related to poor prognosis, while increased PER1 expression in stage 3+4 patients and TP53 mutation were related to poor overall survival and progression-free survival. We identified eight genes whose expression was strongly correlated with that of PER1, as well as four transcription factors that regulate PER1. In OV, PER1 expression levels were positively correlated with infiltration levels of cells including neutrophils, regulatory T cells, and M2 macrophages, and closely related to a variety of immune markers. Reduced expression of PER1 was significantly associated with poor overall survival. Conclusion: These findings suggest that PER1 could be used as a prognostic biomarker to determine prognosis and immune infiltration in OV patients.
Collapse
Affiliation(s)
- Mali Chen
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Lili Zhang
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaolong Liu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhen Ma
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Lv
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| |
Collapse
|
5
|
Zhou C, Yu F, Zeng P, Zhang T, Huang H, Chen W, Wu B. Circadian sensitivity to the cardiac glycoside oleandrin is associated with diurnal intestinal P-glycoprotein expression. Biochem Pharmacol 2019; 169:113622. [PMID: 31472126 DOI: 10.1016/j.bcp.2019.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
The cardiac glycoside oleandrin is a main active constituent of the botanical anti-cancer drug candidate PBI-05204, an extract of Nerium oleander. Here, we aimed to determine the circadian sensitivity of mice to oleandrin, and to investigate the role of intestinal P-gp in generating rhythmic drug toxicity. Toxicity and pharmacokinetic experiments were performed with wild-type, Bmal1iKO (intestine-specific Bmal1 knockout) and Bmal1fl/fl (control littermates of Bmal1iKO) mice. The cardiac toxicity (reflected by plasma CK-MB, LDH and cTn-I levels) varied significantly with the times of drug dosing in wild-type mice (a lower toxicity at ZT10 and more severe at ZT2/22). Dosing at ZT2 generated a higher drug exposure than ZT10, supporting a lower toxicity at ZT10. Intracellular accumulation of oleandrin (2.5-10 μM) was reduced in MDCKⅡ-MDR1 than in parental cells. MDR1 overexpression decreased the cell sensitivity to oleandrin toxicity. The net flux ratio (MDCKⅡ-MDR1 versus parental cells) was 2.9 for oleandrin. These data indicated oleandrin as a P-gp substrate. Both mdr1a mRNA and P-gp protein oscillated with the times of the day in small intestine of Bmal1fl/fl mice. Intestinal ablation of Bmal1 down-regulated mdr1a mRNA and P-gp protein, and abrogated their rhythms. Likewise, Bmal1 silencing led to down-regulated mdr1a mRNA and to a loss of its rhythmicity in serum-shocked CT26 cells. Based on luciferase reporter assays, Bmal1 regulated rhythmic mdr1a transcription through the clock output genes Hlf and E4bp4. Intestinal ablation of Bmal1 exacerbated oleandrin toxicity and enhanced drug exposure. Moreover, time dependency of toxicity and drug exposure were lost in Bmal1iKO mice. In conclusion, diurnal intestinal P-gp is a critical factor influencing daily oleandrin exposure and toxicity. Our findings have implications in minimizing oleandrin (and possibly Nerium oleander) toxicity and improving drug efficacy via dosing time optimization.
Collapse
Affiliation(s)
- Cui Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; College of Chemistry and Biology Engineering, Yichun University, Jiangxi, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peng Zeng
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hao Huang
- College of Chemistry and Biology Engineering, Yichun University, Jiangxi, China
| | - Wenying Chen
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Dridi I, Ben-Cherif W, Aouam K, Haouas Z, Ben-Attia M, Reinberg A, Boughattas NA. Circadian variation in hepatic toxicity of the immunosuppressive agent “Mycophenolate Mofetil” in rats. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1052648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Cheng AY, Zhang Y, Mei HJ, Fang S, Ji P, Yang J, Yu L, Guo WC. Construction of a plasmid for overexpression of human circadian gene period2 and its biological activity in osteosarcoma cells. Tumour Biol 2015; 36:3735-43. [DOI: 10.1007/s13277-014-3013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023] Open
|
8
|
Zhao N, Yang K, Yang G, Chen D, Tang H, Zhao D, Zhao C. Aberrant expression of clock gene period1 and its correlations with the growth, proliferation and metastasis of buccal squamous cell carcinoma. PLoS One 2013; 8:e55894. [PMID: 23405233 PMCID: PMC3566125 DOI: 10.1371/journal.pone.0055894] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/03/2013] [Indexed: 01/28/2023] Open
Abstract
Period1 (PER1) is an important core clock gene, which regulates normal cell proliferations and physiological rhythms of human beings. Recent studies have showed aberrant expressions and altered rhythms of PER1 were highly correlated to the carcinogenesis and development of malignant tumors. However, there is no study on the correlation of aberrant expressions and altered rhythms of PER1 with the growth, proliferation and metastasis of buccal squamous cell carcinoma (BSCC). In this study, PER1 and MMP-2 expression in the cancerous and adjacent noncancerous tissues of 38 patients with BSCC and its correlations with patients' clinical pathologic characteristics were investigated. A mouse model of BSCC was also established and mice were sacrificed at 4 different time points in a period of 24 hours. Xenografted tumor weight, proliferation index (PI), and mitotic index (MI) of tumors in the 4 time groups were detected. Results showed that PER1 expression was significantly down-regulated in cancerous tissues of patients with BSCC (P<0.05). PER1 expression was significantly down-regulated in patients of T3∼T4 staging and those with lymph node metastasis compared to that of T1∼T2 staging and those without lymph node metastasis (P<0.05), respectively. PER1 mRNA expression, MI and tumor weight had significant differences among the 4 time groups, which PI all confirmed to circadian rhythms. MI, PI, MMP-2 mRNA and tumor weight had negative correlation with PER1 mRNA expression. Peak value of PER1 mRNA expression and trough values of MI, PI and tumor weight all appeared in middle activity phase, whereas trough value of PER1 mRNA expression and peak values of MI, PI and tumor weight all occurred in middle rest phase. Our study suggested that aberrant expression of PER1 had significant correlation with the growth, proliferation and metastasis of BSCC and it might act as an anti-oncogene.
Collapse
Affiliation(s)
- Ningbo Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| | - Genling Yang
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Dan Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunrong Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Chen R, Yang K, Zhao NB, Zhao D, Chen D, Zhao CR, Tang H. Abnormal expression of PER1 circadian-clock gene in oral squamous cell carcinoma. Onco Targets Ther 2012; 5:403-7. [PMID: 23226027 PMCID: PMC3513907 DOI: 10.2147/ott.s38508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The PER1 circadian-clock gene plays an important role in the regulation of many normal physiological rhythms in vivo. It has been revealed recently that abnormal expression of PER1 correlates closely with the occurrence and development of many cancers. However, the expression and significance of PER1 in oral squamous cell carcinoma (OSCC) remains unknown. The purpose of the present study was to investigate the direct links between aberrant PER1 expression and clinicopathological features of OSCC. Methods PER1 expression in cancerous and adjacent noncancerous tissues from 41 patients with OSCC was detected by immunohistochemical staining and real-time reverse transcriptase polymerase chain reaction, and correlations were sought with clinicopathological features in patients. Results Expression of PER1 mRNA and protein in OSCC was significantly reduced compared with that in adjacent noncancerous tissue (P < 0.05). Expression of PER1 protein in oral phase III–IV SCC specimens was significantly lower than that in phase I–II specimens (P < 0.05), and stage T1–T2 patients expressed significantly higher levels of PER1 protein than T3–T4 patients (P < 0.05). Expression of PER1 in patients without lymph node metastasis was significantly higher than that in those with lymph node metastasis (P < 0.05). PER1 protein expression showed no significant correlation with patient gender and age, or with degree of tumor cell differentiation (P > 0.05). Conclusion Changes in PER1 expression may play an important role in the development, invasion, and metastasis of OSCC, and may also provide novel ideas and methods for investigation of the occurrence, development, and targeted treatment OSCC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Almon RR, Yang E, Lai W, Androulakis IP, DuBois DC, Jusko WJ. Circadian variations in rat liver gene expression: relationships to drug actions. J Pharmacol Exp Ther 2008; 326:700-16. [PMID: 18562560 PMCID: PMC2561907 DOI: 10.1124/jpet.108.140186] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronopharmacology is an important but under-explored aspect of therapeutics. Rhythmic variations in biological processes can influence drug action, including pharmacodynamic responses, due to circadian variations in the availability or functioning of drug targets. We hypothesized that global gene expression analysis can be useful in the identification of circadian-regulated genes involved in drug action. Circadian variations in gene expression in rat liver were explored using Affymetrix gene arrays. A rich time series involving animals analyzed at 18 time points within the 24-h cycle was generated. Of the more than 15,000 probe sets on these arrays, 265 exhibited oscillations with a 24-h frequency. Cluster analysis yielded five distinct circadian clusters, with approximately two thirds of the transcripts reaching maximal expression during the dark/active period of the animal. Of the 265 probe sets, 107 were identified as having potential therapeutic importance. The expression levels of clock genes were also investigated in this study. Five clock genes exhibited circadian variation in the liver, and data suggest that these genes may also be regulated by corticosteroids.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, 107 Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Almon RR, Yang E, Lai W, Androulakis IP, Ghimbovschi S, Hoffman EP, Jusko WJ, Dubois DC. Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1031-47. [PMID: 18667713 DOI: 10.1152/ajpregu.90399.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence and maintenance of biological rhythms linked to the 24-h light-dark cycle are essential to the health and functioning of an organism. Although much is known concerning central clock mechanisms, much less is known about control in peripheral tissues. In this study, circadian regulation of gene expression was examined in rat skeletal muscle. A rich time series involving 54 animals euthanized at 18 distinct time points within the 24-h cycle was performed, and mRNA expression in gastrocnemius muscles was examined using Affymetrix gene arrays. Data mining identified 109 genes that were expressed rhythmically, which could be grouped into eight distinct temporal clusters within the 24-h cycle. These genes were placed into 11 functional categories, which were examined within the context of temporal expression. Transcription factors involved in the regulation of central rhythms were examined, and eight were found to be rhythmically expressed in muscle. Because endogenous glucocorticoids are a major effector of circadian rhythms, genes identified here were compared with those identified in previous studies as glucocorticoid regulated. Of the 109 genes identified here as circadian rhythm regulated, only 55 were also glucocorticoid regulated. Examination of transcription factors involved in circadian control suggests that corticosterone may be the initiator of their rhythmic expression patterns in skeletal muscle.
Collapse
Affiliation(s)
- Richard R Almon
- Dept. of Biological Sciences, State Univ. of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Berger J. A two-clock model of circadian timing in the immune system of mammals. ACTA ACUST UNITED AC 2008; 56:286-91. [PMID: 18289800 DOI: 10.1016/j.patbio.2007.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/12/2007] [Indexed: 11/30/2022]
Abstract
It has been confirmed that clock genes, as well as the pineal hormone, have a role in the hypothalamic suprachiasmatic nucleus, the circadian endogenous pacemaker. It seems that the peripheral clock genes in the cells of the immune system subtly control biorhythms; their seeming lack of impact only showing that they work well. Some biorhythms even seem to be independent of a light/dark circadian regime. This apparent conflict in the mammalian time structure can be resolved by a two-clocks control model involving: (a) the endogenous gene clock, which is dominant in the neural system and (b) the exogenous clock of the immune system. Interactions between these two clocks can explain both the frequently observed individual differences in circadian rhythms and the subtle role of the peripheral clock genes. The endogenous clock facilitates an alternation in the immune system which counters external attacks in daytime and induces repair and advancement by night.
Collapse
Affiliation(s)
- J Berger
- Department of Clinical Sciences, Faculty of Health and Social Studies, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
13
|
Sivaperumal R, Subash S, Subramanian P. Aspartate modulates the circadian patterns of a few biochemical variables in Wistar rats. BIOL RHYTHM RES 2007. [DOI: 10.1080/09291010600950008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Illi B, Gaetano C, Capogrossi MC. How senescent vascular cells lose their Clock age-dependent impairment of circadian rhythmicity in smooth muscle cells. Circ Res 2006; 98:450-2. [PMID: 16514077 DOI: 10.1161/01.res.0000214331.90904.aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Garufi C, Vanni B, Aschelter AM, Zappalà AR, Bria E, Nisticò C, Sperduti I, Cognetti F, Terzoli E. Randomised phase II study of standard versus chronomodulated CPT-11 plus chronomodulated 5-fluorouracil and folinic acid in advanced colorectal cancer patients. Eur J Cancer 2006; 42:608-16. [PMID: 16246545 DOI: 10.1016/j.ejca.2005.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 11/26/2022]
Abstract
In this study, a randomised phase II trial explored the effects of 6-h chronomodulated CPT-11 infusion in advanced colorectal cancer patients. Sixty-eight pre-treated patients were randomly assigned to CPT-11 administered at 180 mg/m2 on day 1, by 1-h infusion (Arm A) or 6-h sinusoidal infusion with peak timing at 5:00 a.m. (Arm B). All patients also received chronomodulated folinic acid/5-fluorouracil (FA/5-FU). Patients in Arm B obtained a 25.7% response rate for 7.0 months duration, a progression-free survival for 8.0 months and a median survival of 28 months. The same data in Arm A were 18.2%, 4.5, 6.0 and 18 months, respectively. No differences in drugs dose-intensity or increased toxicity with prolonged chronomodulated infusion were detected. Major grade 3-4 toxicity was diarrhoea: 10 patients in Arm A and 13 in Arm B. In conclusion, this study has shown that chronomodulated infusion of CPT-11 and FA/5-FU is safe, active and can be integrated with oxaliplatin (EORTC 05011) for the treatment of advanced colorectal cancer.
Collapse
Affiliation(s)
- Carlo Garufi
- Department of Medical Oncology, Istituto Regina Elena, Via Chianesi, 53, 00144 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rainero I, Rivoiro C, Gallone S, Valfrè W, Ferrero M, Angilella G, Rubino E, De Martino P, Savi L, Lo Giudice R, Pinessi L. Lack of association between the 3092 T-->C Clock gene polymorphism and cluster headache. Cephalalgia 2005; 25:1078-81. [PMID: 16232160 DOI: 10.1111/j.1468-2982.2005.00965.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies suggested that genetic factors play a role in cluster headache (CH). However, the type and the number of genes involved in the disease are still unclear. We performed an association study in a cohort of Italian CH patients to evaluate whether a particular allele or genotype of the Clock gene would modify the occurrence and the clinical features of the disease. One hundred and seven CH patients, diagnosed according to the International Classification of Headache Disorders, 2nd Edition, (ICHD-II) criteria, and 210 healthy age, sex and ethnicity-matched controls were genotyped for the 3092 T-->C Clock gene polymorphism (also known as 3111 T-->C). Phenotype and allele frequencies were similarly distributed in CH patients and controls. The clinical features of the disease were not significantly influenced by different genotypes. In conclusion, our study suggests that the 3092 T-->C polymorphism of the Clock gene is unlikely to play an important role in cluster headache.
Collapse
Affiliation(s)
- I Rainero
- Neurology III, Headache Centre, Department of Neuroscience, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, D-91054, Germany.
| | | | | | | | | |
Collapse
|
18
|
Hwang JU, Gu Y, Lee YJ, Yang Z. Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 2005; 16:5385-99. [PMID: 16148045 PMCID: PMC1266434 DOI: 10.1091/mbc.e05-05-0409] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/12/2005] [Accepted: 08/30/2005] [Indexed: 11/11/2022] Open
Abstract
Oscillation regulates a wide variety of processes ranging from chemotaxis in Dictyostelium through segmentation in vertebrate development to circadian rhythms. Most studies on the molecular mechanisms underlying oscillation have focused on processes requiring a rhythmic change in gene expression, which usually exhibit a periodicity of >10 min. Mechanisms that control oscillation with shorter periods (<10 min), presumably independent of gene expression changes, are poorly understood. Oscillatory pollen tube tip growth provides an excellent model to investigate such mechanisms. It is well established that ROP1, a Rho-like GTPase from plants, plays an essential role in polarized tip growth in pollen tubes. In this article, we demonstrate that tip-localized ROP1 GTPase activity oscillates in the same frequency with growth oscillation, and leads growth both spatially and temporally. Tip growth requires the coordinate action of two ROP1 downstream pathways that promote the accumulation of tip-localized Ca2+ and actin microfilaments (F-actin), respectively. We show that the ROP1 activity oscillates in a similar phase with the apical F-actin but apparently ahead of tip-localized Ca2+. Furthermore, our observations support the hypothesis that the oscillation of tip-localized ROP activity and ROP-dependent tip growth in pollen tubes is modulated by the two temporally coordinated downstream pathways, an early F-actin assembly pathway and a delayed Ca2+ gradient-forming pathway. To our knowledge, our report is the first to demonstrate the oscillation of Rho GTPase signaling, which may be a common mechanism underlying the oscillation of actin-dependent processes such as polar growth, cell movement, and chemotaxis.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- College of Life Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
19
|
Luft FC. Rocking around the clock, while time is relative. J Mol Med (Berl) 2005; 83:655-6. [PMID: 16096738 DOI: 10.1007/s00109-005-0701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Friedrich C Luft
- Franz Volhard Clinic, HELIOS Kliniken Berlin, Medical Faculty of the Charité, Humboldt University, Wiltbergstrasse 50, 13125, Berlin-Buch, Germany.
| |
Collapse
|
20
|
Abstract
The hair follicle, a unique characteristic of mammals, represents a stem cell-rich, prototypic neuroectodermal-mesodermal interaction system. This factory for pigmented epithelial fibers is unique in that it is the only organ in the mammalian body which, for its entire lifetime, undergoes cyclic transformations from stages of rapid growth (anagen) to apoptosis-driven regression (catagen) and back to anagen, via an interspersed period of relative quiescence (telogen). While it is undisputed that the biological "clock" that drives hair follicle cycling resides in the hair follicle itself, the molecular nature of the underlying oscillator system remains to be clarified. To meet this challenge is of profound general interest, since numerous key problems of modern biology can be studied exemplarily in this versatile model system. It is also clinically important, since the vast majority of patients with hair growth disorders suffers from an undesired alteration of hair follicle cycling. Here, we sketch basic background information and key concepts that one needs to keep in mind when exploring the enigmatic "hair cycle clock"(HCC), and summarize competing models of the HCC. We invite the reader on a very subjective guided tour, which focuses on our own trials, errors, and findings toward the distant goal of unravelling one of the most fascinating mysteries of biology: Why does the hair follicle cycle at all? How does it do it? What are the key players in the underlying molecular controls? Attempting to offer at least some meaningful answers, we share our prejudices and perspectives, and define crucial open questions.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Martinistr. 52, D-20426 Hamburg, Germany.
| | | |
Collapse
|
21
|
|