1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Qi T, Hu Y, Liu M, Tian L, Peng Z, Xu H, Zhang C. Abnormal alanine aminotransferase levels in patients with moderate or severe ovarian hyperstimulation result in an increased risk of obstetric complications. Int J Gynaecol Obstet 2023; 162:913-921. [PMID: 37010882 DOI: 10.1002/ijgo.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES To explore the effect of abnormally elevated serum alanine aminotransferase (ALT) on pregnancy outcomes in patients with moderate and severe ovarian hyperstimulation syndrome (OHSS) at disease onset. METHODS This was a single-center retrospective cohort study conducted between January 1, 2014 and October 31, 2021. A total of 3550 fresh in vitro fertilization/intracytoplasmic sperm injection embryo transfer cycles were included, using Golan's three-degree, five-level classification to diagnose patients with OHSS. According to the patient's ALT level after diagnosis of OHSS, 123 (3.46%) patients with moderate-to-severe OHSS were divided into two groups. A control group included 3427 (96.54%) non-OHSS patients, and 91 (2.56%) abnormal ALT patients were matched with the control group for propensity scores. RESULTS There was no difference in baseline data between the abnormal ALT and matched control groups. The incidence of obstetric complications was significantly higher in the abnormal ALT group than in the matched control group (P < 0.05). After adjusting for confounding factors, the incidence of obstetric complications in the abnormal ALT group was still higher than that in the normal ALT group (P < 0.05). CONCLUSION In patients with moderate and severe OHSS, higher ALT levels resulted in an increased risk of obstetric and neonatal complications.
Collapse
Affiliation(s)
- Tiange Qi
- Renmin Hospital Postgraduate Training Base united, Jinzhou Medical University, Shiyan, China
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yueyue Hu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Mei Liu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Liu Tian
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Zhiyu Peng
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Hongyi Xu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Changjun Zhang
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
De Luccia TPB, Ono E, Menon R, Borbely AU, Mattar R, Richardson L, da Silva ALM, Botelho RM, da Rocha MLTLF, Daher S. The effect of Gestational Diabetes Mellitus on the fetal compartment. J Reprod Immunol 2021; 145:103314. [PMID: 33836321 DOI: 10.1016/j.jri.2021.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/20/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
In indicated preterm births such a Gestational Diabetes Mellitus (GDM), little is known about the role of the amnion membranes. Investigating the role of amnion membrane inflammation in response GDM may suggest novel pathophysiologic mechanisms. We hypothesize that increased GDM inflammatory mediators may weaken the amnion membrane predisposing them to infection. Maternal and fetal serum and amnion membrane biopsies were collected from 20 GDM and 38 normoglycemic subjects (control) who underwent elective cesarean sections. Cytokines and adipokines were evaluated in serum and amnion culture supernatant samples. Amnion membrane biopsies from GDM and control subjects were studied: fresh frozen for RNA analysis for Toll-like receptor expression; cultured with LPS to test membrane permeability, and inflammation LPS + anti-TLR4 for testing mechanism. GDM was associated with higher fetal serum leptin (p = 0.004) and IL-10 (p = 0.04) compared to controls. Amnion membrane explants from GDM had higher levels of IL-6 (p = 0.019), and lower expression of Claudin-4 (p = 0.007) and increased permeability (p = 0.046) compared to controls. GDM membranes treated with LPS showed an increased expression of IL-10 (p = 0.013); IL-6 (p = 0.004) and TNF-α (p = 0.0005) but did not affect membrane permeability. LPS and anti-TLR4 antibody treatment reduced the production of TNF-α in controls (p = 0.03) and GDM (p = 0.007) compared to LPS alone. Fetal inflammatory response seems more balanced in GDM and does not impact membrane permeability function even with an infectious stimulus. Light fetal membrane inflammatory response may explain lack of preterm labor in GDM. Concluding, benign inflammation in the membranes may not be harmful for pregnancy maintenance.
Collapse
Affiliation(s)
- Thiago P B De Luccia
- Departamento de Obstetrícia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), Rua Pedro de Toledo 669, 9 andar - 04939032, São Paulo, SP, Brazil
| | - Erika Ono
- Departamento de Obstetrícia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), Rua Pedro de Toledo 669, 9 andar - 04939032, São Paulo, SP, Brazil
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| | - Alexandre Urban Borbely
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Alagoas, Campus A.C. Simões. Av. Lourival Melo Mota, s/n 57072-970, Maceio, Alagoas, Brazil.
| | - Rosiane Mattar
- Departamento de Obstetrícia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), Rua Pedro de Toledo 669, 9 andar - 04939032, São Paulo, SP, Brazil
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ana Lucia Mendes da Silva
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Alagoas, Campus A.C. Simões. Av. Lourival Melo Mota, s/n 57072-970, Maceio, Alagoas, Brazil
| | - Rayane Martins Botelho
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Alagoas, Campus A.C. Simões. Av. Lourival Melo Mota, s/n 57072-970, Maceio, Alagoas, Brazil
| | - Maria Luisa Toledo Leite Ferreira da Rocha
- Serviço de Ginecologia e Obstetrícia do Hospital do Servidor Público Estadual Francisco Morato de Oliveira (IAMSPE), Rua Pedro de Toledo, 1800, 04029-000, São Paulo, SP, Brazil.
| | - Silvia Daher
- Departamento de Obstetrícia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), Rua Pedro de Toledo 669, 9 andar - 04939032, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Rouzaire M, Comptour A, Belville C, Bouvier D, Sapin V, Gallot D, Blanchon L. Cigarette smoke condensate affects the retinoid pathway in human amnion. Placenta 2017; 58:98-104. [PMID: 28962704 DOI: 10.1016/j.placenta.2017.08.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The preterm premature rupture of membranes (PPROM) is a frequent pathology responsible of more than 30% of preterm births. Tobacco smoking is one of the most frequently described risk factors identified and contributes to the pre term weakening of fetal membranes. As previously demonstrated, all-trans retinoic acid (atRA) regulates several genes involved in the extracellular matrix dynamics, an essential actor in fetal membrane ruptures. We hypothesized that cigarette smoke may affect this pathway in human amnion. METHODS Amnion was obtained from full-term fetal membranes collected from non-smoking women after cesarean births and used either as explants or for the isolation of derived epithelial cells. The pro-healing and transcriptomic effects of atRA were studied by a scratch assay experiment and quantitative RT-PCR, respectively, after treatment with dimethyl sulfoxyde (DMSO), atRA, DMSO + cigarette smoke condensate (CSC), or atRA + CSC. RESULTS Our results show a strong alteration of the retinoid pathway after CSC treatment on amnion-derived epithelial cells and explants. We first demonstrated that CSC inhibits the activity of the RARE reporter gene in amnion-derived epithelial cells. Then, atRA's effects on both the transcription of its target genes and wound healing were demonstrated to be inhibited or at least decreased by the CSC in human amnion epithelial cells. DISCUSSION Here, we demonstrated that CSC altered the retinoid signal, already known to have roles in fetal membrane physiopathology. These results highlight a potential negative action of maternal smoking on the retinoid pathway in human amnion and more generally on pregnancy.
Collapse
Affiliation(s)
- Marion Rouzaire
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Aurélie Comptour
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Biochemistry and Molecular Biology Department, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Biochemistry and Molecular Biology Department, F-63000 Clermont-Ferrand, France.
| | - Denis Gallot
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Obstetrics and Gynecology Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Team "Translational Approach to Epithelial Injury and Repair", Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Prat C, Belville C, Comptour A, Marceau G, Clairefond G, Chiambaretta F, Sapin V, Blanchon L. Myocilin expression is regulated by retinoic acid in the trabecular meshwork-derived cellular environment. Exp Eye Res 2017; 155:91-98. [PMID: 28153738 DOI: 10.1016/j.exer.2017.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness and is usually classified as angle closure and open angle glaucoma (OAG). Primary open angle glaucoma represents the most frequent clinical presentation leading to ganglion cell death and optic nerve degeneration as a main consequence of an intraocular pressure' (IOP) increase. The mechanisms of this IOP increase in such pathology remain unclear but one protein called Myocilin could be a part of the puzzle in the trabecular meshwork (TM). Previously described to be transcriptionally regulated by glucocorticoids, the comprehension of the trabecular regulation of Myocilin' expression has only weakly progressed since 15 years. Due to the essential molecular and cellular implications of retinoids' pathway in eye development and physiology, we investigate the potential role of the retinoic acid in such regulation and expression. This study demonstrates that the global retinoids signaling machinery is present in immortalized TM cells and that Myocilin (MYOC) expression is upregulated by retinoic acid alone or combined with a glucocorticoid co-treatment. This regulation by retinoic acid acts through the MYOC promoter which contains a critical cluster of four retinoic acid responsive elements (RAREs), with the RARE-DR2 presenting the strongest effect and binding the RARα/RXRα heterodimer. All together, these results open up new perspectives for the molecular understanding glaucoma pathophysiology and provide further actionable clues on Myocilin gene regulation.
Collapse
Affiliation(s)
- Cécile Prat
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Corinne Belville
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; GReD, CNRS UMR6293-Clermont Université-INSERM U1103, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Aurélie Comptour
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Geoffroy Marceau
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Gael Clairefond
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| | - Frédéric Chiambaretta
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France.
| | - Vincent Sapin
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Loïc Blanchon
- EA7281 - Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
6
|
Rouzaire M, Comptour A, Belville C, Bouvier D, Clairefond G, Ponelle F, Sapin V, Gallot D, Blanchon L. All-trans retinoic acid promotes wound healing of primary amniocytes through the induction of LOXL4, a member of the lysyl oxidase family. Int J Biochem Cell Biol 2016; 81:10-19. [PMID: 27769742 DOI: 10.1016/j.biocel.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/23/2016] [Accepted: 10/07/2016] [Indexed: 01/19/2023]
Abstract
Thirty percent of preterm births directly result from preterm premature rupture of fetal membranes (PPROM). Clinical management currently proposes using a collagen plug to mechanically stop loss of amniotic fluid. Vitamin A and its active metabolite (retinoic acid) have well-known pro-healing properties and could thus make good candidates as a proposable adjuvant to this mechanical approach. Here we investigate the molecular mechanisms involved in the pro-healing properties of all-trans retinoic acid (atRA) in fetal membranes via an approach using an in vitro primary amniocyte wound model and transcriptomics. The results demonstrate that atRA promotes migration in primary amniocytes, improving wound healing in vitro by up to 90%. This effect is mediated by the induction of LOXL4, which plays a crucial role in the dynamics of the extracellular matrix by regulating collagen reticulation. This new insight into how atRA exerts its pro-healing properties prompts us to propose using atRA as a candidate strategy to help prevent future PPROM.
Collapse
Affiliation(s)
- Marion Rouzaire
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Aurélie Comptour
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Corinne Belville
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; Clermont Université, Auvergne University, GReD, 63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Biochemistry and Molecular Biology Department, 63000 Clermont-Ferrand, France
| | - Gaël Clairefond
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Flora Ponelle
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Biochemistry and Molecular Biology Department, 63000 Clermont-Ferrand, France.
| | - Denis Gallot
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Obstetrics and Gynecology Department, 63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Clermont Université, Auvergne University, EA7281- Retinoids, Reproduction, Developmental Diseases, Medicine School, 63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Comptour A, Rouzaire M, Belville C, Bouvier D, Gallot D, Blanchon L, Sapin V. Nuclear retinoid receptors and pregnancy: placental transfer, functions, and pharmacological aspects. Cell Mol Life Sci 2016; 73:3823-37. [PMID: 27502420 PMCID: PMC11108506 DOI: 10.1007/s00018-016-2332-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Animal models of vitamin A (retinol) deficiency have highlighted its crucial role in reproduction and placentation, whereas an excess of retinoids (structurally or functionally related entities) can cause toxic and teratogenic effects in the embryo and foetus, especially in the first trimester of human pregnancy. Knock-out experimental strategies-targeting retinoid nuclear receptors RARs and RXRs have confirmed that the effects of vitamin A are mediated by retinoic acid (especially all-trans retinoic acid) and that this vitamin is essential for the developmental process. All these data show that the vitamin A pathway and metabolism are as important for the well-being of the foetus, as they are for that of the adult. Accordingly, during this last decade, extensive research on retinoid metabolism has yielded detailed knowledge on all the actors in this pathway, spurring the development of antagonists and agonists for therapeutic and research applications. Natural and synthetic retinoids are currently used in clinical practice, most often on the skin for the treatment of acne, and as anti-oncogenic agents in acute promyelocytic leukaemia. However, because of the toxicity and teratogenicity of retinoids during pregnancy, their pharmacological use needs a sound knowledge of their metabolism, molecular aspects, placental transfer, and action.
Collapse
Affiliation(s)
- Aurélie Comptour
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Marion Rouzaire
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Corinne Belville
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
- GReD, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Damien Bouvier
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
- Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Denis Gallot
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
- Obstetrics and Gynecology Department, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Loïc Blanchon
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Vincent Sapin
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France.
- Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.
- Laboratoire de Biochimie Médicale, 4R3, Faculté de Médecine, 28 Place Henri-Dunant, BP38, 63001, Clermont-Ferrand Cedex, France.
| |
Collapse
|
8
|
Comptour A, Rouzaire M, Belville C, Bonnin N, Daniel E, Chiambaretta F, Blanchon L, Sapin V. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing. Sci Rep 2016; 6:32688. [PMID: 27597564 PMCID: PMC5011693 DOI: 10.1038/srep32688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics.
Collapse
Affiliation(s)
- Aurélie Comptour
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Marion Rouzaire
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- Clermont Université, Université d’Auvergne, GReD, F-63000 Clermont-Ferrand, France
| | - Nicolas Bonnin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Estelle Daniel
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Prat C, Bouvier D, Comptour A, Marceau G, Belville C, Clairefond G, Blanc P, Gallot D, Blanchon L, Sapin V. All-trans-retinoic acid regulates aquaporin-3 expression and related cellular membrane permeability in the human amniotic environment. Placenta 2015; 36:881-7. [DOI: 10.1016/j.placenta.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
10
|
Kruithof EKO, Dunoyer-Geindre S. Human tissue-type plasminogen activator. Thromb Haemost 2014; 112:243-54. [PMID: 24718307 DOI: 10.1160/th13-06-0517] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 03/07/2014] [Indexed: 11/05/2022]
Abstract
Tissue-type plasminogen activator (t-PA ) plays an important role in the removal of intravascular fibrin deposits and has several physiological roles and pathological activities in the brain. Its production by many other cell types suggests that t-PA has additional functions outside the vascular and central nervous system. Activity of t-PA is regulated at the level of its gene transcription, its mRNA stability and translation, its storage and regulated release, its interaction with cofactors that enhance its activity, its inhibition by inhibitors such as plasminogen activator inhibitor type 1 or neuroserpin, and its removal by clearance receptors. Gene transcription of t-PA is modulated by a large number of hormones, growth factors, cytokines or drugs and t-PA gene responses may be tissue-specific. The aim of this review is to summarise current knowledge on t-PA function and regulation of its pericellular activity, with an emphasis on regulation of its gene expression.
Collapse
Affiliation(s)
- E K O Kruithof
- Egbert K.O. Kruithof, Division of Angiology and Hemostasis, Department of internal medicine, University Hospital of Geneva and Faculty of Medicine of the University of Geneva, University Medical Center CMU 9094, 1 Rue Michel Servet, CH1211 Geneva 4, Switzerland, Tel.: +41 22 3795493 or +41 22 3795567, E-mail:
| | - S Dunoyer-Geindre
- Sylvie Dunoyer-Geindre, Division of Angiology and Hemostasis, Department of internal medicine, University Hospital of Geneva and Faculty of Medicine of the University of Geneva, University Medical Center CMU 9094, 1 Rue Michel Servet, CH1211 Geneva 4, Switzerland, Tel.: +41 22 3795493 or +41 22 3795567, E-mail:
| |
Collapse
|
11
|
Cakstina I, Riekstina U, Boroduskis M, Nakurte I, Ancans J, Zile MH, Muiznieks I. Primary culture of avian embryonic heart forming region cells to study the regulation of vertebrate early heart morphogenesis by vitamin A. BMC DEVELOPMENTAL BIOLOGY 2014; 14:10. [PMID: 24552295 PMCID: PMC3939001 DOI: 10.1186/1471-213x-14-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022]
Abstract
Background Important knowledge about the role of vitamin A in vertebrate heart development has been obtained using the vitamin A-deficient avian in ovo model which enables the in vivo examination of very early stages of vertebrate heart morphogenesis. These studies have revealed the critical role of the vitamin A-active form, retinoic acid (RA) in the regulation of several developmental genes, including the important growth regulatory factor, transforming growth factor-beta2 (TGFβ2), involved in early events of heart morphogenesis. However, this in ovo model is not readily available for elucidating details of molecular mechanisms determining RA activity, thus limiting further examination of RA-regulated early heart morphogenesis. In order to obtain insights into RA-regulated gene expression during these early events, a reliable in vitro model is needed. Here we describe a cell culture that closely reproduces the in ovo observed regulatory effects of RA on TGFβ2 and on several developmental genes linked to TGFβ signaling during heart morphogenesis. Results We have developed an avian heart forming region (HFR) cell based in vitro model that displays the characteristics associated with vertebrate early heart morphogenesis, i.e. the expression of Nkx2.5 and GATA4, the cardiogenesis genes, of vascular endothelial growth factor (VEGF-A), the vasculogenesis gene and of fibronectin (FN1), an essential component in building the heart, and the expression of the multifunctional genes TGFβ2 and neogenin (NEO). Importantly, we established that the HFR cell culture is a valid model to study RA-regulated molecular events during heart morphogenesis and that the expression of TGFβ2 as well as the expression of several TGFβ2-linked developmental genes is regulated by RA. Conclusions Our findings reported here offer a biologically relevant experimental in vitro system for the elucidation of RA-regulated expression of TGFβ2 and other genes involved in vertebrate early cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Inese Cakstina
- Laboratory of Biodosimetry and Bioanalytical Methods, Department of Biology, University of Latvia, Riga, Latvia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Blanchon L, Accoceberry M, Belville C, Delabaere A, Prat C, Lemery D, Sapin V, Gallot D. [Rupture of membranes: pathophysiology, diagnosis, consequences and management]. ACTA ACUST UNITED AC 2013; 42:105-16. [PMID: 23395133 DOI: 10.1016/j.jgyn.2012.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/22/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Rupture of membranes (ROM) depends on mechanical stretch, extracellular matrix components imbalance and increased apoptosis. It occurs in 2 to 3% of all pregnancies before 37 weeks' gestation (WG) and in up to 10% at term. Main consequences are labor induction and risk of maternal-fetal infection. ROM is associated with one third of preterm births and about 20% of perinatal mortality. This review deals with recent knowledge concerning ROM including diagnosis and management. In many cases, ROM is easily identified by clinical examination. In other cases, the use of vaginal pH appears to be less efficient than the use of immunochromatographic strips based on IGFBP-1 or PAMG-1 detection. Before 34WG, conservative management consists in in utero transfer, antibioprophylaxis and corticosteroids. After 37WG, delivery is the most appropriate option. Between 34 and 37WG, recent studies demonstrate that induction of labour does not improve pregnancy outcomes. Therefore, expectant management can be the first option between 34 and 37WG when no active infection is suspected especially in case of unfavourable cervix.
Collapse
Affiliation(s)
- L Blanchon
- R2D2-EA7281, faculté de médecine, université d'Auvergne, place Henri-Dunant, 63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Blanchon L, Marceau G, Borel V, Prat C, Herbet A, Bouvier D, Gallot D, Sapin V. [Implications of retinoid pathway in human fetal membranes: study of target genes]. ACTA ACUST UNITED AC 2011; 39:370-2. [PMID: 21596610 DOI: 10.1016/j.gyobfe.2011.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
Abstract
Retinoids (active derivatives of vitamin A) were already demonstrated to be important morphogenes and their implication at the placental and fetal level was already established. A new field of research is now developed in order to show their role on fetal membranes constituted by amnion and chorion. To describe the role of retinoids on these membranes, our studies were focused on target gene research. Firstly, all metabolism enzymes needed to vitamin A pathways were demonstrated to be present and active in signal transduction. Secondly, a bioinformatic analysis was performed to assess a list of potential target genes that could be classified in different biological pathways (inflammation, retinoids, hormones, vascularization, extracellular matrix and water homeostasis). Then, it was demonstrated that the gene coding for PLAT, implied in the degradation of extracellular matrix during programmed or premature rupture of membranes, is regulated by retinoids in a two steps mechanism. Finally, preliminary data showed that some aquaporins, which control water transport across membranes, are expressed and regulated by retinoids in the fetal membranes. A disregulation in pathologies like oligo or poly-hydramnios can be anticipated. Improvement of our knowledge about the retinoid implications is a key point in order to obtain a precise and complete documented cartography of the vitamin A (regulating) in amniotic membranes (regulated) that will permit the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- L Blanchon
- GReD, UMR CNRS 6247, Inserm U 931, faculté de médecine, Clermont-Université, 28, place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Goumy C, Coste K, Marceau G, Gouas L, Tchirkov A, Vago P, Gallot D, Sapin V. Fetal skin fibroblasts: a cell model for studying the retinoid pathway in congenital diaphragmatic hernia. ACTA ACUST UNITED AC 2010; 88:195-200. [PMID: 20063272 DOI: 10.1002/bdra.20647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although there is strong evidence that genetic factors play a pathogenic role in congenital diaphragmatic hernia (CDH), few causal genes have been identified in humans. A number of studies, essentially in animal models, have suggested that disruption of the retinoid signaling pathway plays a major role in the pathogenesis of CDH. Our hypothesis is that human fetal skin fibroblasts express some metabolic and molecular actors of the retinoid pathway and that they offer convenient cellular material for investigating the molecular retinoid pathway defects associated with CDH. METHODS We first established the expression of receptors, enzymes and binding proteins involved in the retinoic acid (RA) pathway in non-CDH fetal skin fibroblasts using RT-PCR and immunocytochemistry approaches. We then studied the expression of these genes in skin fibroblasts from seven fetuses with isolated and nonisolated CDH. RESULTS Fetal skin fibroblasts expressed enzymes involved in RA metabolism as well as nuclear receptors for signal transduction. Basal levels of retinoic acid receptor, retinaldehyde dehydrogenase 2, and CYP26 (cytochrome P450 RAI) expression were altered in two of seven fetuses. Interestingly, these genes were previously described as abnormally expressed in CDH physiopathology. CONCLUSION Our results suggest that human fetal skin fibroblasts could be useful for studying retinoid signaling pathway disruption in the context of CDH. Our proposal is strengthened by the fact that we identified CDH fetuses for which molecular and metabolic actors of the retinoid pathway were not detected.
Collapse
Affiliation(s)
- Carole Goumy
- Clermont Université, UFR Médecine, Histologie Embryologie Cytogénétique, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|