1
|
Gorjipour F, Bohloolighashghaei S, Sotoudeheian M, Pazoki Toroudi H. Fetal adnexa-derived allogeneic mesenchymal stem cells for cardiac regeneration: the future trend of cell-based therapy for age-related adverse conditions. Hum Cell 2025; 38:61. [PMID: 39998714 DOI: 10.1007/s13577-025-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Heart failure is known as the leading cause of mortality and morbidity in adults, not only in USA but worldwide. Since the world's population is aging, the burden of cardiovascular disorders is increasing. Mesenchymal stem/stromal cells (MSCs) from a patient's bone marrow or other tissues have been widely used as the primary source of stem cells for cellular cardiomyoplasty. The incongruencies that exist between various cell-therapy approaches for cardiac diseases could be attributed to variations in cell processing methods, quality of the process, and cell donors. Off-the-shelf preparations of MSCs, enabled by batch processing of the cells and controlled cell processing factories in regulated facilities, may offer opportunities to overcome these problems. In this study, for the first time, we focused on the fetal membranes and childbirth byproducts as a promising source of cells for regenerative medicine. While many studies have described the advantages of cells derived from these organs, their advantage as a source of younger cells has not been sufficiently covered by the literature. Thus, herein, we highlight challenges that may arise from the impairment of the regenerative capacity of MSCs due to donor age and how allograft cells from fetal adnexa can be a promising substitute for the aged patients' stem cells for myocardial regeneration. Moreover, obstacles to the use of off-the-shelf cell-therapy preparations in regenerative medicine are briefly summarized here.
Collapse
Affiliation(s)
- Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamidreza Pazoki Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang J, Li R. Effects, methods and limits of the cryopreservation on mesenchymal stem cells. Stem Cell Res Ther 2024; 15:337. [PMID: 39343920 PMCID: PMC11441116 DOI: 10.1186/s13287-024-03954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of cell capable of regulating the immune system, as well as exhibiting self-renewal and multi-lineage differentiation potential. Mesenchymal stem cells have emerged as an essential source of seed cells for therapeutic cell therapy. It is crucial to cryopreserve MSCs in liquid nitrogen prior to clinical application while preserving their functionality. Furthermore, efficient cryopreservation greatly enhances MSCs' potential in a range of biological domains. Nevertheless, there are several limits on the MSC cryopreservation methods now in use, necessitating thorough biosafety assessments before utilizing cryopreserved MSCs. Therefore, in order to improve the effectiveness of cryopreserved MSCs in clinical stem cell treatment procedures, new technological techniques must be developed immediately. The study offers an exhaustive analysis of the state-of-the-art MSC cryopreservation techniques, their effects on MSCs, and the difficulties encountered when using cryopreserved MSCs in clinical applications.
Collapse
Affiliation(s)
- Jialing Wang
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China
| | - Rui Li
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China.
| |
Collapse
|
3
|
Colella A, Biondi G, Marrano N, Francioso E, Fracassi L, Crovace AM, Recchia A, Natalicchio A, Paradies P. Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study. Vet Sci 2024; 11:380. [PMID: 39195834 PMCID: PMC11359947 DOI: 10.3390/vetsci11080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs' unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
Collapse
Affiliation(s)
- Antonella Colella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Edda Francioso
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Laura Fracassi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Alberto M. Crovace
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| |
Collapse
|
4
|
Park SJ, Kim DS, Choi M, Han KH, Han JS, Yoo KH, Moon KS. Preclinical Evaluation of interferon-gamma primed human Wharton's jelly-derived mesenchymal stem cells. Hum Exp Toxicol 2023; 42:9603271231171650. [PMID: 37092667 DOI: 10.1177/09603271231171650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The potential of human mesenchymal stem cells (MSCs) for cell therapy has been investigated in numerous immune-mediated conditions; MSCs are considered one of the most promising cellular therapeutics to treat intractable diseases. Recently, approaches to prime MSCs have been investigated, thereby generating cellular products with enhanced potential for a variety of clinical applications. Interferon-gamma (IFN-γ) priming is a current approach used to increase the therapeutic efficacy of MSCs. In this study, we determined the systemic toxicity, tumorigenicity and biodistribution of IFN-γ-primed Wharton's jelly-derived (WJ)-MSCs in male and female BALB/c-nu/nu mice. There were no deaths or pathologic lesions in the mice treated with 5 × 106 cells/kg IFN-γ-primed MSCs in the repeated dose study. In the tumorigenicity study, one of the subcutaneously treated mice showed bronchioloalveolar adenoma in the lung but tested negative for human-specific anti-mitochondrial antibody, suggesting the spontaneous murine origin of the adenoma. A biodistribution study using real-time quantitative polymerase chain reaction demonstrated the systemic IFN-γ-primed MSC clearance by day 28. Based on the toxicity, biodistribution, and tumorigenicity studies, we concluded that IFN-γ-primed MSCs at 5 × 106 cells/kg do not induce tumor formation and adverse changes.
Collapse
Affiliation(s)
- Sang-Jin Park
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Clinical Development, CELLnLIFE Research Center, CELLnLIFE Inc., Seoul, Republic of Korea
| | - Myeongjin Choi
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ji-Seok Han
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
5
|
Cai Q, Yin F, Hao L, Jiang W. Research Progress of Mesenchymal Stem Cell Therapy for Severe COVID-19. Stem Cells Dev 2021; 30:459-472. [PMID: 33715385 DOI: 10.1089/scd.2020.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) refers to a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sixty million confirmed cases have been reported worldwide until November 29, 2020. Unfortunately, the novel coronavirus is extremely contagious and the mortality rate of severe and critically ill patients is high. Thus, there is no definite and effective treatment in clinical practice except for antiviral therapy and supportive therapy. Mesenchymal stem cells (MSCs) are not only characterized by low immunogenicity and homing but also have anti-inflammatory and immunomodulation characteristics. Furthermore, they can inhibit the occurrence and development of a cytokine storm, inhibit lung injury, and exert antipulmonary fibrosis and antioxidative stress, therefore MSC therapy is expected to become one of the effective therapies to treat severe COVID-19. This article will review the possible mechanisms of MSCs in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Liming Hao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wenhua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
6
|
Chen S, Sato Y, Tada Y, Suzuki Y, Takahashi R, Okanojo M, Nakashima K. Facile bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells in bioreactors. Stem Cells Transl Med 2021; 10:1329-1342. [PMID: 34008349 PMCID: PMC8380445 DOI: 10.1002/sctm.20-0501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The conventional planar culture of adherent cells is inefficient for large‐scale manufacturing of cell and gene therapy products. We developed a facile and efficient bead‐to‐bead cell‐transfer method for serial subculture and large‐scale expansion of human mesenchymal stem cells (hMSCs) with microcarriers in bioreactors. We first compared culture medium with and without nucleosides and found the former maintained the expression of surface markers of hMSCs during their prolonged culture and enabled faster cell proliferation. Subsequently, we developed our bead‐to‐bead cell transfer method to subculture hMSCs and found that intermittent agitation after adding fresh microcarriers to cell‐populated microcarriers could promote spontaneous cell migration to fresh microcarriers, reduce microcarrier aggregation, and improve cell yield. This method enabled serial subculture of hMSCs in spinner flasks from passage 4 to passage 9 without using proteolytic enzymes, which showed faster cell proliferation than the serial planar cultures undergoing multiple enzyme treatment. Finally, we used the medium containing nucleosides and our bead‐to‐bead cell transfer method for cell culture scale‐up from 4‐ to 50‐L cultures in single‐use bioreactors. We achieved a 242‐fold increase in the number of cells to 1.45 × 1010 after 27‐day culture and found that the cells harvested from the bioreactors maintained proliferation ability, expression of their surface markers, tri‐lineage differentiation potential and immunomodulatory property. This study shows the promotive effect of nucleosides on hMSC expansion and the potential of using our bead‐to‐bead transfer method for larger‐scale manufacturing of hMSCs for cell therapy.
Collapse
Affiliation(s)
- Shangwu Chen
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Yushi Sato
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Yasuhiko Tada
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Yuma Suzuki
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Ryosuke Takahashi
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Masahiro Okanojo
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Katsuhiko Nakashima
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
7
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
8
|
Krull AA, Setter DO, Gendron TF, Hrstka SCL, Polzin MJ, Hart J, Dudakovic A, Madigan NN, Dietz AB, Windebank AJ, van Wijnen AJ, Staff NP. Alterations of mesenchymal stromal cells in cerebrospinal fluid: insights from transcriptomics and an ALS clinical trial. Stem Cell Res Ther 2021; 12:187. [PMID: 33736701 PMCID: PMC7977179 DOI: 10.1186/s13287-021-02241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02241-9.
Collapse
Affiliation(s)
- Ashley A Krull
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Deborah O Setter
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sybil C L Hrstka
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Michael J Polzin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joseph Hart
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicolas N Madigan
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony J Windebank
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Kerstan A, Niebergall-Roth E, Esterlechner J, Schröder HM, Gasser M, Waaga-Gasser AM, Goebeler M, Rak K, Schrüfer P, Endres S, Hagenbusch P, Kraft K, Dieter K, Ballikaya S, Stemler N, Sadeghi S, Tappenbeck N, Murphy GF, Orgill DP, Frank NY, Ganss C, Scharffetter-Kochanek K, Frank MH, Kluth MA. Ex vivo-expanded highly pure ABCB5 + mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: process validation and first in-human data. Cytotherapy 2021; 23:165-175. [PMID: 33011075 PMCID: PMC8310651 DOI: 10.1016/j.jcyt.2020.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIM Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. METHODS The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. RESULTS As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32-100%) at 12 weeks and early relief of pain. CONCLUSIONS The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.
Collapse
Affiliation(s)
- Andreas Kerstan
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Ana M Waaga-Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Goebeler
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Katrin Rak
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Schrüfer
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Endres
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Petra Hagenbusch
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | - George F Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Christoph Ganss
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Mark A Kluth
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
10
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
11
|
Cifuentes SJ, Priyadarshani P, Castilla-Casadiego DA, Mortensen LJ, Almodóvar J, Domenech M. Heparin/collagen surface coatings modulate the growth, secretome, and morphology of human mesenchymal stromal cell response to interferon-gamma. J Biomed Mater Res A 2020; 109:951-965. [PMID: 32786025 DOI: 10.1002/jbm.a.37085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Abstract
The therapeutic potential of human mesenchymal stromal cells (h-MSC) is dependent on the viability and secretory capacity of cells both modulated by the culture environment. Our previous studies introduced heparin and collagen I (HEP/COL) alternating stacked layers as a potential substrate to enhance the secretion of immunosuppressive factors of h-MSCs. Herein, we examined the impact of HEP/COL multilayers on the growth, morphology, and secretome of bone marrow and adipose-derived h-MSCs. The physicochemical properties and stability of the HEP/COL coatings were confirmed at 0 and 30 days. Cell growth was examined using cell culture media supplemented with 2 and 10% serum for 5 days. Results showed that HEP/COL multilayers supported h-MSC growth in 2% serum at levels equivalent to 10% serum. COL and HEP as single component coatings had limited impact on cell growth. Senescent studies performed over three sequential passages showed that HEP/COL multilayers did not impair the replicative capacity of h-MSCs. Examination of 27 cytokines showed significant enhancements in eight factors, including intracellular indoleamine 2, 3-dioxygenase, on HEP/COL multilayers when stimulated with interferon-gamma (IFN-γ). Image-based analysis of cell micrographs showed that serum influences h-MSC morphology; however, HEP-ended multilayers generated distinct morphological changes in response to IFN-γ, suggesting an optical detectable assessment of h-MSCs immunosuppressive potency. This study supports HEP/COL multilayers as a culture substrate for undifferentiated h-MSCs cultured in reduced serum conditions.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| | - Priyanka Priyadarshani
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, Georgia, USA.,School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | | | - Luke J Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, Georgia, USA.,School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Jorge Almodóvar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA.,Department of Chemical Engineering, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico, USA
| |
Collapse
|
12
|
Ullah I, Lee R, Oh KB, Hwang S, Kim Y, Hur TY, Ock SA. Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1837-1847. [PMID: 32106662 PMCID: PMC7649066 DOI: 10.5713/ajas.19.0796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. METHODS The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. RESULTS The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. CONCLUSION 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ran Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
13
|
Karaöz E, Tepeköy F. Differentiation Potential and Tumorigenic Risk of Rat Bone Marrow Stem Cells Are Affected By Long-Term In Vitro Expansion. Turk J Haematol 2019; 36:255-265. [PMID: 31284704 PMCID: PMC6863016 DOI: 10.4274/tjh.galenos.2019.2019.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) have the capacity for extensive expansion and adipogenic, osteogenic, chondrogenic, myogenic, and neural differentiation in vitro. The aim of our study was to determine stemness, differentiation potential, telomerase activity, and ultrastructural characteristics of long-term cultured rat bone marrow (rBM)-MSCs. Materials and Methods: rBM-MSCs from passages 3, 50, and 100 (P3, P50, and P100) were evaluated through immunocytochemistry, reverse transcription-polymerase chain reaction, telomerase activity assays, and electron microscopy. Results: A dramatic reduction in the levels of myogenic markers actin and myogenin was detected in P100. Osteogenic markers Coll1, osteonectin (Sparc), and osteocalcin as well as neural marker c-Fos and chondrogenic marker Coll2 were significantly reduced in P100 compared to P3 and P50. Osteogenic marker bone morphogenic protein-2 (BMP2) and adipogenic marker peroxisome proliferator-activated receptor gamma (Pparγ) expression was reduced in late passages. The expression of stemness factor Rex-1 was lower in P100, whereas Oct4 expression was decreased in P50 compared to P3 and P100. Increased telomerase activity was observed in long-term cultured cells, signifying tumorigenic risk. Electron microscopic evaluations revealed ultrastructural changes such as smaller number of organelles and increased amount of autophagic vacuoles in the cytoplasm in long-term cultured rBM-MSCs. Conclusion: This study suggests that long-term culture of rBM-MSCs leads to changes in differentiation potential and increased tumorigenic risk.
Collapse
Affiliation(s)
- Erdal Karaöz
- İstinye University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey,İstinye University Center for Stem Cell and Tissue Engineering Research and Practice, İstanbul, Turkey,Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), İstanbul, Turkey
| | - Filiz Tepeköy
- İstinye University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey,Altınbaş University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| |
Collapse
|
14
|
Alizadeh AH, Briah R, Villagomez DAF, King WA, Koch TG. Cell Identity, Proliferation, and Cytogenetic Assessment of Equine Umbilical Cord Blood Mesenchymal Stromal Cells. Stem Cells Dev 2018; 27:1729-1738. [PMID: 30251918 DOI: 10.1089/scd.2018.0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of the present work was to determine proliferation capacity, immunophenotype and genome integrity of mesenchymal stromal cells (MSCs) from horse umbilical cord blood (UCB) at passage stage 5 and 10. Passage 4 cryopreserved UCB-MSCs from six unrelated donors were evaluated. Immunophenotypic analysis of UCB-MSC revealed a cell identity consistent with equine MSC phenotype by high expression of CD90, CD44, CD29, and very low expression of CD4, CD11a/18, CD73, and MHC class I and II antigens. Proliferative differences were noted among the UCB-MSC cultures. UCB-MSCs karyotype characteristics at passage 5 (eg, 2n = 64; XY, or XX) included 20% polyploidy and 62% aneuploidy. At passage 10, the proportion of polyploidy and aneuploidy was 21% and 82%, respectively, with the increase in aneuploidy being significant compared with passage 5. Furthermore, conventional GTG-banded karyotyping revealed several structural chromosome abnormalities at both passage 5 and 10. The clinical relevance of such chromosome instability is unknown, but determination of MSC cytogenetic status and monitoring of patient response to MSC therapies would help address this question.
Collapse
Affiliation(s)
- Amir H Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ritesh Briah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Daniel A F Villagomez
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Departamento de Producción Animal, Universidad de Guadalajara, Zapopan, Mexico
| | - William A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27:1303-1321. [DOI: 10.1089/scd.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
16
|
Alvino VV, Fernández-Jiménez R, Rodriguez-Arabaolaza I, Slater S, Mangialardi G, Avolio E, Spencer H, Culliford L, Hassan S, Sueiro Ballesteros L, Herman A, Ayaon-Albarrán A, Galán-Arriola C, Sánchez-González J, Hennessey H, Delmege C, Ascione R, Emanueli C, Angelini GD, Ibanez B, Madeddu P. Transplantation of Allogeneic Pericytes Improves Myocardial Vascularization and Reduces Interstitial Fibrosis in a Swine Model of Reperfused Acute Myocardial Infarction. J Am Heart Assoc 2018; 7:JAHA.117.006727. [PMID: 29358198 PMCID: PMC5850145 DOI: 10.1161/jaha.117.006727] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transplantation of adventitial pericytes (APCs) promotes cardiac repair in murine models of myocardial infarction. The aim of present study was to confirm the benefit of APC therapy in a large animal model. METHODS AND RESULTS We performed a blind, randomized, placebo-controlled APC therapy trial in a swine model of reperfused myocardial infarction. A first study used human APCs (hAPCs) from patients undergoing coronary artery bypass graft surgery. A second study used allogeneic swine APCs (sAPCs). Primary end points were (1) ejection fraction as assessed by cardiac magnetic resonance imaging and (2) myocardial vascularization and fibrosis as determined by immunohistochemistry. Transplantation of hAPCs reduced fibrosis but failed to improve the other efficacy end points. Incompatibility of the xenogeneic model was suggested by the occurrence of a cytotoxic response following in vitro challenge of hAPCs with swine spleen lymphocytes and the failure to retrieve hAPCs in transplanted hearts. We next considered sAPCs as an alternative. Flow cytometry, immunocytochemistry, and functional/cytotoxic assays indicate that sAPCs are a surrogate of hAPCs. Transplantation of allogeneic sAPCs benefited capillary density and fibrosis but did not improve cardiac magnetic resonance imaging indices of contractility. Transplanted cells were detected in the border zone. CONCLUSIONS Immunologic barriers limit the applicability of a xenogeneic swine model to assess hAPC efficacy. On the other hand, we newly show that transplantation of allogeneic sAPCs is feasible, safe, and immunologically acceptable. The approach induces proangiogenic and antifibrotic benefits, though these effects were not enough to result in functional improvements.
Collapse
Affiliation(s)
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Sadie Slater
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Helen Spencer
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Lucy Culliford
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Sakinah Hassan
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | | | - Andrew Herman
- School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
| | - Ali Ayaon-Albarrán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Adult Cardiac Surgery Department, La Paz University Hospital, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Helena Hennessey
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Catherine Delmege
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Gianni Davide Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
17
|
Medeiros Tavares Marques JC, Cornélio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 2017; 7:17837. [PMID: 29259202 PMCID: PMC5736717 DOI: 10.1038/s41598-017-16224-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Although human mesenchymal stem cells (hMSCs) are a powerful tool for cell therapy, prolonged culture times result in replicative senescence or acquisition of tumorigenic features. To identify a molecular signature for senescence, we compared the transcriptome of senescent and young hMSCs with normal karyotype (hMSCs/n) and with a constitutional inversion of chromosome 3 (hMSC/inv). Senescent and young cells from both lineages showed differentially expressed genes (DEGs), with higher levels in senescent hMSCs/inv. Among the 30 DEGs in senescent hMSC/inv, 11 are new candidates for biomarkers of cellular senescence. The functional categories most represented in senescent hMSCs were related to cellular development, cell growth/proliferation, cell death, cell signaling/interaction, and cell movement. Mapping of DEGs onto biological networks revealed matrix metalloproteinase-1, thrombospondin 1, and epidermal growth factor acting as topological bottlenecks. In the comparison between senescent hMSCs/n and senescent hMSCs/inv, other functional annotations such as segregation of chromosomes, mitotic spindle formation, and mitosis and proliferation of tumor lines were most represented. We found that many genes categorized into functional annotations related to tumors in both comparisons, with relation to tumors being highest in senescent hMSCs/inv. The data presented here improves our understanding of the molecular mechanisms underlying the onset of cellular senescence as well as tumorigenesis.
Collapse
Affiliation(s)
- Joana Cristina Medeiros Tavares Marques
- Faculdade de Ciências da Saúde do Trairi (FACISA), Universidade Federal do Rio Grande do Norte (UFRN), Rua Traíri, S/N, Centro, Santa Cruz, Rio Grande do Norte (RN), 59200-000, Brazil
| | - Déborah Afonso Cornélio
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil
| | - Vivian Nogueira Silbiger
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - André Ducati Luchessi
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - Sandro de Souza
- Instituto do Cérebro, Instituto de Metrópole Digital, UFRN, Av. Nascimento de Castro, 2155, UFRN, 59056-450, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
18
|
Chromosome copy number variation in telomerized human bone marrow stromal cells; insights for monitoring safe ex-vivo expansion of adult stem cells. Stem Cell Res 2017; 25:6-17. [PMID: 28988007 DOI: 10.1016/j.scr.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/14/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Adult human bone marrow stromal cells (hBMSC) cultured for cell therapy require evaluation of potency and stability for safe use. Chromosomal aberrations upsetting genomic integrity in such cells have been contrastingly described as "Limited" or "Significant". Previously reported stepwise acquisition of a spontaneous neoplastic phenotype during three-year continuous culture of telomerized cells (hBMSC-TERT20) didn't alter a diploid karyotype measured by spectral karyotype analysis (SKY). Such screening may not adequately monitor abnormal and potentially tumorigenic hBMSC in clinical scenarios. We here used array comparative genomic hybridization (aCGH) to more stringently compare non-tumorigenic parental hBMSC-TERT strains with their tumorigenic subcloned populations. Confirmation of a known chromosome 9p21 microdeletion at locus CDKN2A/B, showed it also impinged upon the adjacent MTAP gene. Compared to reference diploid human fibroblast genomic DNA, the non-tumorigenic hBMSC-TERT4 cells had a copy number variation (CNV) in at least 14 independent loci. The pre-tumorigenic hBMSC-TERT20 cell strain had further CNV including 1q44 gain enhancing SMYD3 expression and 11q13.1 loss downregulating MUS81 expression. Bioinformatic analysis of gene products reflecting 11p15.5 CNV gain in tumorigenic hBMSC-TERT20 cells highlighted networks implicated in tumorigenic progression involving cell cycle control and mis-match repair. We provide novel biomarkers for prospective risk assessment of expanded stem cell cultures.
Collapse
|
19
|
Kovac M, Vasicek J, Kulikova B, Bauer M, Curlej J, Balazi A, Chrenek P. Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnol Prog 2017; 33:1601-1613. [DOI: 10.1002/btpr.2519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michal Kovac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Jaromir Vasicek
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Research Centre AgroBioTech, Slovak University of Agriculture; Nitra Slovak Republic
| | - Barbora Kulikova
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Miroslav Bauer
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Faculty of Natural Sciences; Constantine the Philosopher University; Nitra Slovak republic
| | - Jozef Curlej
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
| | - Andrej Balazi
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Peter Chrenek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| |
Collapse
|
20
|
Kohno Y, Mizuno M, Ozeki N, Katano H, Komori K, Fujii S, Otabe K, Horie M, Koga H, Tsuji K, Matsumoto M, Kaneko H, Takazawa Y, Muneta T, Sekiya I. Yields and chondrogenic potential of primary synovial mesenchymal stem cells are comparable between rheumatoid arthritis and osteoarthritis patients. Stem Cell Res Ther 2017; 8:115. [PMID: 28511664 PMCID: PMC5434623 DOI: 10.1186/s13287-017-0572-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells derived from the synovial membrane (synovial MSCs) are a candidate cell source for regenerative medicine of cartilage and menisci due to their high chondrogenic ability. Regenerative medicine can be expected for RA patients with the inflammation well-controlled as well as OA patients and transplantation of synovial MSCs would also be a possible therapeutic treatment. Some properties of synovial MSCs vary dependent on the diseases patients have, and whether or not the pathological condition of RA affects the chondrogenesis of synovial MSCs remains controversial. The purpose of this study was to compare the properties of primary synovial MSCs between RA and OA patients. METHODS Human synovial tissue was harvested during total knee arthroplasty from the knee joints of eight patients with RA and OA respectively. Synovial nucleated cells were cultured for 14 days. Total cell yields, surface markers, and differentiation potentials were analyzed for primary synovial MSCs. RESULTS Nucleated cell number per 1 mg synovium was 8.4 ± 3.9 thousand in RA and 8.0 ± 0.9 thousand in OA. Total cell number after 14-day culture/1 mg synovium was 0.7 ± 0.4 million in RA and 0.5 ± 0.3 million in OA, showing no significant difference between in RA and OA. Cells after 14-day culture were mostly positive for CD44, CD73, CD90, CD105, negative for CD45 both in RA and OA. There was no significant difference for the cartilage pellet weight and sGAG content per pellet between in RA and OA. Both oil red O-positive colony rate and alizarin red-positive colony rate were similar in RA and OA. CONCLUSIONS Yields, surface markers and chondrogenic potential of primary synovial MSCs in RA were comparable to those in OA. Synovium derived from RA patients can be the cell source of MSCs for cartilage and meniscus regeneration.
Collapse
Affiliation(s)
- Yuji Kohno
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuru Mizuno
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutake Ozeki
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keiichiro Komori
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shizuka Fujii
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Koji Otabe
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masafumi Horie
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mikio Matsumoto
- Department of Orthopaedic Surgery, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Haruka Kaneko
- Department of Orthopaedic Surgery, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Yuji Takazawa
- Department of Orthopaedic Surgery, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,National Hospital Organization Disaster Medical Center, 3256 Midoricho, Tachikawa-shi, Tokyo, 190-0014, Japan
| | - Ichiro Sekiya
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
21
|
Shilina MA, Grinchuk TM, Nikolsky NN. Genetic stability of human endometrial mesenchymal stem cells assessed with morphological and molecular karyotyping. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hanselmann RG, Welter C. Origin of Cancer: An Information, Energy, and Matter Disease. Front Cell Dev Biol 2016; 4:121. [PMID: 27909692 PMCID: PMC5112236 DOI: 10.3389/fcell.2016.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/14/2016] [Indexed: 02/01/2023] Open
Abstract
Cells are open, highly ordered systems that are far away from equilibrium. For this reason, the first function of any cell is to prevent the permanent threat of disintegration that is described by thermodynamic laws and to preserve highly ordered cell characteristics such as structures, the cell cycle, or metabolism. In this context, three basic categories play a central role: energy, information, and matter. Each of these three categories is equally important to the cell and they are reciprocally dependent. We therefore suggest that energy loss (e.g., through impaired mitochondria) or disturbance of information (e.g., through mutations or aneuploidy) or changes in the composition or distribution of matter (e.g., through micro-environmental changes or toxic agents) can irreversibly disturb molecular mechanisms, leading to increased local entropy of cellular functions and structures. In terms of physics, changes to these normally highly ordered reaction probabilities lead to a state that is irreversibly biologically imbalanced, but that is thermodynamically more stable. This primary change—independent of the initiator—now provokes and drives a complex interplay between the availability of energy, the composition, and distribution of matter and increasing information disturbance that is dependent upon reactions that try to overcome or stabilize this intracellular, irreversible disorder described by entropy. Because a return to the original ordered state is not possible for thermodynamic reasons, the cells either die or else they persist in a metastable state. In the latter case, they enter into a self-driven adaptive and evolutionary process that generates a progression of disordered cells and that results in a broad spectrum of progeny with different characteristics. Possibly, 1 day, one of these cells will show an autonomous and aggressive behavior—it will be a cancer cell.
Collapse
Affiliation(s)
- Rainer G Hanselmann
- Institute of Human Genetics, Saarland UniversityHomburg, Germany; Beratungszentrum für HygieneFreiburg, Germany
| | - Cornelius Welter
- Institute of Human Genetics, Saarland University Homburg, Germany
| |
Collapse
|
23
|
Bétous R, Renoud M, Hoede C, Gonzalez I, Jones N, Longy M, Sensebé L, Cazaux C, Hoffmann J. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress. Stem Cells Transl Med 2016; 6:68-76. [PMID: 28170194 PMCID: PMC5442744 DOI: 10.5966/sctm.2015-0401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine2017;6:68–76
Collapse
Affiliation(s)
- Rémy Bétous
- Equipe Labellisée La Ligue Contre Le Cancer, Paris, France
- Laboratoire d'Excellence Toulouse Cancer Labex Toucan, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France
- University Paul Sabatier, Toulouse, France
| | - Marie‐Laure Renoud
- University Paul Sabatier, Toulouse, France
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France
- INSERM U1031, UMR5273, Toulouse, France
| | - Claire Hoede
- Institut National de la Recherche Agronomique (INRA), UR 875, Unité de Mathématique et Informatique Appliquées, PF Bioinfo Genotoul, Castanet Tolosan, France
| | - Ignacio Gonzalez
- Institut National de la Recherche Agronomique (INRA), UR 875, Unité de Mathématique et Informatique Appliquées, PF Bioinfo Genotoul, Castanet Tolosan, France
| | - Natalie Jones
- INSERM U916 Vinco, Université de Bordeaux, Institut Bergonié, Bordeaux, France
| | - Michel Longy
- INSERM U916 Vinco, Université de Bordeaux, Institut Bergonié, Bordeaux, France
| | - Luc Sensebé
- University Paul Sabatier, Toulouse, France
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France
- INSERM U1031, UMR5273, Toulouse, France
| | - Christophe Cazaux
- Equipe Labellisée La Ligue Contre Le Cancer, Paris, France
- Laboratoire d'Excellence Toulouse Cancer Labex Toucan, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France
- University Paul Sabatier, Toulouse, France
| | - Jean‐Sébastien Hoffmann
- Equipe Labellisée La Ligue Contre Le Cancer, Paris, France
- Laboratoire d'Excellence Toulouse Cancer Labex Toucan, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France
- University Paul Sabatier, Toulouse, France
| |
Collapse
|
24
|
Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci 2016; 17:ijms17071164. [PMID: 27447618 PMCID: PMC4964536 DOI: 10.3390/ijms17071164] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches.
Collapse
|
25
|
Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, Ong HK, Cheong SK, Kamarul T. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. PeerJ 2016; 4:e1536. [PMID: 26788424 PMCID: PMC4715434 DOI: 10.7717/peerj.1536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022] Open
Abstract
Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
Collapse
Affiliation(s)
- Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia , Serdang, Selangor , Malaysia
| | - Huynh Ky
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, Cantho, Vietnam
| | - Dilan A Satharasinghe
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Woan Charn Liew
- Institute of Bioscience, Universiti Putra Malaysia , Serdang, Selangor , Malaysia
| | - Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia; Cryocord Sdn Bhd, Cyberjaya, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Center of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
26
|
Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, Tan Y, Wintergerst KA, Li Y, Li Y. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia. PLoS One 2016; 11:e0145838. [PMID: 26756576 PMCID: PMC4710504 DOI: 10.1371/journal.pone.0145838] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations. METHODS hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6) differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice. RESULTS The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo. CONCLUSIONS IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.
Collapse
Affiliation(s)
- Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xuejin Su
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Meiyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yi Tan
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Kupper A. Wintergerst
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Yan Li
- Department of Orthopedic Surgery, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (Yan Li); (Yulin Li)
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- * E-mail: (Yan Li); (Yulin Li)
| |
Collapse
|
27
|
Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines. Stem Cells Int 2015; 2016:4626048. [PMID: 26839561 PMCID: PMC4709772 DOI: 10.1155/2016/4626048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/13/2015] [Indexed: 12/24/2022] Open
Abstract
Although human pluripotent stem cells (hPSCs) can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS) prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS) showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs) prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS) displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.
Collapse
|
28
|
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Chromosomal Abnormalities in Embryonic and Somatic Stem Cells. Cytogenet Genome Res 2015; 147:1-9. [PMID: 26583376 DOI: 10.1159/000441645] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
The potential use of stem cells (SCs) for tissue engineering, regenerative medicine, disease modeling, toxicological studies, drug delivery, and as in vitro model for the study of basic developmental processes implies large-scale in vitro culture. Here, after a brief description of the main techniques used for karyotype analysis, we will give a detailed overview of the chromosome abnormalities described in pluripotent (embryonic and induced pluripotent SCs) and somatic SCs, and the possible causes of their origin during culture.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie, Universitx00E0; degli Studi di Pavia, Pavia, Italy
| | | | | | | |
Collapse
|
29
|
Sharma S, Bhonde R. Mesenchymal stromal cells are genetically stable under a hostile in vivo–like scenario as revealed by in vitro micronucleus test. Cytotherapy 2015; 17:1384-95. [DOI: 10.1016/j.jcyt.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
|
30
|
Pavlova GV, Vergun AA, Rybalkina EY, Butovskaya PR, Ryskov AP. Identification of structural DNA variations in human cell cultures after long-term passage. Cell Cycle 2015; 14:200-5. [PMID: 25607645 PMCID: PMC4353222 DOI: 10.4161/15384101.2014.974427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Random amplified polymorphic DNA (RAPD) analysis was adapted for genomic identification of cell cultures and evaluation of DNA stability in cells of different origin at different culture passages. DNA stability was observed in cultures after no more than 5 passages. Adipose-derived stromal cells demonstrated increased DNA instability. RAPD fragments from different cell lines after different number of passages were cloned and sequenced. The chromosomal localization of these fragments was identified and single-nucleotide variations in RAPD fragments isolated from cell lines after 8–12 passages were revealed. Some of them had permanent localization, while most variations demonstrated random distribution and can be considered as de novo mutations.
Collapse
Affiliation(s)
- G V Pavlova
- a Institute of Gene Biology, Russian Academy of Sciences ; Moscow , Russia
| | | | | | | | | |
Collapse
|
31
|
Kim SY, Im K, Park SN, Kwon J, Kim JA, Choi Q, Hwang SM, Han SH, Kwon S, Oh IH, Lee DS. Asymmetric aneuploidy in mesenchymal stromal cells detected by in situ karyotyping and fluorescence in situ hybridization: suggestions for reference values for stem cells. Stem Cells Dev 2015; 24:77-92. [PMID: 25019198 DOI: 10.1089/scd.2014.0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytogenetic testing is important to ensure patient safety before therapeutic application of mesenchymal stromal cells (MSCs). However, the standardized methods and criteria for the screening of chromosomal abnormalities of MSCs have not yet been determined. We investigated the frequency of cytogenetic aberrations in MSCs using G-banding and fluorescence in situ hybridization (FISH) and suggest reference values for aneuploidy in MSCs. Cytogenetic analysis was performed on 103 consecutive cultures from 68 MSCs (25 adipose-origin, 20 bone marrow-origin, 18 cord blood-origin, and 5 neural stem cells; 8 from adipose tissue of patients with breast cancer and 60 from healthy donors). We compared the MSC aneuploidy patterns with those of hematological malignancies and benign hematological diseases. Interphase FISH showed variable aneuploid clone proportions (1%-20%) in 68 MSCs. The aneuploidy patterns were asymmetric, and aneuploidy of chromosomes 16, 17, 18, and X occurred most frequently. Clones with polysomy were significantly more abundant than those with monosomy. The cutoff value of maximum polysomy rates (upper 95th percentile value) was 13.0%. By G-banding, 5 of the 61 MSCs presented clonal chromosomal aberrations. Aneuploidy was asymmetric in the malignant hematological diseases, while it was symmetric in the benign hematological diseases. We suggest an aneuploidy cutoff value of 13%, and FISH for aneuploidy of chromosomes 16, 17, 18, and X would be informative to evaluate the genetic stability of MSCs. Although it is unclear whether the aneuploid clones might represent the senescent cell population or transformed cells, more attention should be focused on the safety of MSCs, and G-banding combined with FISH should be performed.
Collapse
Affiliation(s)
- Seon Young Kim
- 1 Department of Laboratory Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sepúlveda JC, Tomé M, Fernández ME, Delgado M, Campisi J, Bernad A, González MA. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 2015; 32:1865-77. [PMID: 24496748 DOI: 10.1002/stem.1654] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/12/2014] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) possess unique paracrine and immunosuppressive properties, which make them useful candidates for cellular therapy. Here, we address how cellular senescence influences the therapeutic potential of human MSCs (hMSCs). Senescence was induced in bone marrow-derived hMSC cultures with gamma irradiation. Control and senescent cells were tested for their immunoregulatory activity in vitro and in vivo, and an extensive molecular characterization of the phenotypic changes induced by senescence was performed. We also compared the gene expression profiles of senescent hMSCs with a collection of hMSCs used in an ongoing clinical study of Graft Versus Host disease (GVHD). Our results show that senescence induces extensive phenotypic changes in hMSCs and abrogates their protective activity in a murine model of LPS-induced lethal endotoxemia. Although senescent hMSCs retain an ability to regulate the inflammatory response on macrophages in vitro, and, in part retain their capacity to significantly inhibit lymphocyte proliferation, they have a severely impaired migratory capacity in response to proinflammatory signals, which is associated with an inhibition of the AP-1 pathway. Additionally, expression analysis identified PLEC, C8orf48, TRPC4, and ZNF14, as differentially regulated genes in senescent hMSCs that were similarly regulated in those hMSCs which failed to produce a therapeutic effect in a GVHD trial. All the observed phenotypic alterations were confirmed in replicative-senescent hMSCs. In conclusion, this study highlights important changes in the immunomodulatory phenotype of senescent hMSCs and provides candidate gene signatures which may be useful to evaluate the therapeutic potential of hMSCs used in future clinical studies.
Collapse
Affiliation(s)
- Juan Carlos Sepúlveda
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Potentialities of Adipose-Derived Mesenchymal Stem Cells Collected from Liposuction for Use in Cellular Therapy. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
34
|
Doan CC, Le TL, Hoang NS, Doan NT, Le VD, Do MS. Differentiation of umbilical cord lining membrane-derived mesenchymal stem cells into endothelial-like cells. IRANIAN BIOMEDICAL JOURNAL 2014; 18:67-75. [PMID: 24518546 DOI: 10.6091/ibj.1261.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. METHODS In this study, isolated cells were characterized for expression of MSC-specific markers and osteogenic and adipogenic differentiation. They were induced to differentiate into endothelial-like cells and then examined for expression of the endothelial-specific markers, karyotype, and functional behavior of cells. RESULTS Isolated cells expressed MSC-specific markers and differentiated into adipocytes and osteoblasts. After endothelial differentiation, they expressed CD31, vWF, VE-cadherin, VEGFR1, and VEGFR2 at both mRNA and protein level, but their morphological changes were not apparent when compared with those of undifferentiated cells. There were no significant changes in karyotype of differentiated cells. Furthermore, angiogenesis assay and LDL uptake assay showed that differentiated cells were able to form the capillary-like structures and uptake LDL, respectively. CONCLUSION The results indicated that umbilical CL-MSC could differentiate into functional endothelial-like cells. Also, they are suitable for basic and clinical studies to cure several vascular-related diseases.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Faculty of Biology, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam.,Dept. of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thanh Long Le
- Dept. of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Dept. of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Ngoc Trung Doan
- Faculty of Biology, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam
| | - Van Dong Le
- Dept. of Immunology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Minh Si Do
- Faculty of Biology, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam
| |
Collapse
|
35
|
Oliveira PH, da Silva CL, Cabral JM. Concise Review: Genomic Instability in Human Stem Cells: Current Status and Future Challenges. Stem Cells 2014; 32:2824-32. [DOI: 10.1002/stem.1796] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Pedro H. Oliveira
- Institut Pasteur; Microbial Evolutionary Genomics, Département Génomes et Génétique; Paris France
- CNRS; UMR3525 Paris France
| | - Cláudia Lobato da Silva
- Institute for Biotechnology and Bioengineering, Department of Bioengineering; Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| | - Joaquim M.S. Cabral
- Institute for Biotechnology and Bioengineering, Department of Bioengineering; Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
36
|
Afonso Cornélio D, Batistuzzo de Medeiros SR. Genetic evaluation of mesenchymal stem cells. Rev Bras Hematol Hemoter 2014; 36:238-40. [PMID: 25031159 PMCID: PMC4207913 DOI: 10.1016/j.bjhh.2014.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
37
|
Cornélio DA, Tavares JCM, Pimentel TVCDA, Cavalcanti GB, Batistuzzo de Medeiros SR. Cytokinesis-block micronucleus assay adapted for analyzing genomic instability of human mesenchymal stem cells. Stem Cells Dev 2014; 23:823-38. [PMID: 24328548 DOI: 10.1089/scd.2013.0383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells used in cell therapy research. One of the problems involving hMSCs is the possibility of genetic instability during in vitro expansion required to obtain a suitable number of cells for clinical applications. The cytokinesis-block micronucleus (CBMN) assay measures genetic instability by analyzing the presence of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) in binucleated cells. The present study describes modifications in the CBMN assay methodology to analyze genetic instability in hMSCs isolated from the umbilical vein and in vitro expanded. The best protocol to achieve binucleated hMSCs with preserved cytoplasm was as follows: cytochalasin B concentration (4.0 μg/mL), use of hypotonic treatment (3 min), and the fixative solution (9 methanol:1 acetic acid). These adaptations were reproduced in three hMSC primary cell cultures and also in XP4PA and A549 cell lines. The frequency of hMSCs treated with mitomycin-C presenting MN was lower than that with other nuclear alterations, indicating that the hMSCs contain mechanisms to avoid a high level of chromosomal breaks. However, a high frequency of cells with NPBs was detected and spontaneous anaphase bridges under normal hMSC in vitro culture were observed. Considering that anaphase bridges are characteristic alterations in tumor cells, the CBMN assay is indicated as an important tool associated with other genetic analyses in order to ensure the safe clinical use of hMSCs in cell therapy.
Collapse
Affiliation(s)
- Déborah Afonso Cornélio
- 1 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte , Natal, Brazil
| | | | | | | | | |
Collapse
|
38
|
Hwang SM, See CJ, Choi J, Kim SY, Choi Q, Kim JA, Kwon J, Park SN, Im K, Oh IH, Lee DS. The application of an in situ karyotyping technique for mesenchymal stromal cells: a validation and comparison study with classical G-banding. Exp Mol Med 2013; 45:e68. [PMID: 24357832 PMCID: PMC3880460 DOI: 10.1038/emm.2013.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 12/02/2022] Open
Abstract
The cytogenetic analysis of mesenchymal stromal cells (MSCs) is essential for verifying the safety and stability of MSCs. An in situ technique, which uses cells grown on coverslips for karyotyping and minimizes cell manipulation, is the standard protocol for the chromosome analysis of amniotic fluids. Therefore, we applied the in situ karyotyping technique in MSCs and compared the quality of metaphases and karyotyping results with classical G-banding and chromosomal abnormalities with fluorescence in situ hybridization (FISH). Human adipose- and umbilical cord-derived MSC cell lines (American Type Culture Collection PCS-500-011, PCS-500-010) were used for evaluation. The quality of metaphases was assessed by analyzing the chromosome numbers in each metaphase, the overlaps of chromosomes and the mean length of chromosome 1. FISH was performed in the interphase nuclei of MSCs for 6q, 7q and 17q abnormalities and for the enumeration of chromosomes via oligo-FISH in adipose-derived MSCs. The number of chromosomes in each metaphase was more variable in classical G-banding. The overlap of chromosomes and the mean length of chromosome 1 as observed via in situ karyotyping were comparable to those of classical G-banding (P=0.218 and 0.674, respectively). Classical G-banding and in situ karyotyping by two personnel showed normal karyotypes for both cell lines in five passages. No numerical or structural chromosomal abnormalities were found by the interphase-FISH. In situ karyotyping showed equivalent karyotype results, and the quality of the metaphases was not inferior to classical G-banding. Thus, in situ karyotyping with minimized cell manipulation and the use of less cells would be useful for karyotyping MSCs.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Cha-ja See
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jungeun Choi
- Department of Laboratory Medicine, Korea University Hospital, Seoul, Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Qute Choi
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jiseok Kwon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center, Department of Cellular Medicine, Research Center for Stem Cell Therapeutics Evaluation, Catholic University of Korea, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 2013; 4:e950. [PMID: 24309937 PMCID: PMC3877551 DOI: 10.1038/cddis.2013.480] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022]
Abstract
Cultured human umbilical cord mesenchymal stem cells (hUC-MSCs) are being tested in several clinical trials and encouraging outcomes have been observed. To determine whether in vitro expansion influences the genomic stability of hUC-MSCs, we maintained nine hUC-MSC clones in long-term culture and comparatively analyzed them at early and late passages. All of the clones senesced in culture, exhibiting decreased telomerase activity and shortened telomeres. Two clones showed no DNA copy number variations (CNVs) at passage 30 (P30). Seven clones had ≥1 CNVs at P30 compared with P3, and one of these clones appeared trisomic chromosome 10 at the late passage. No tumor developed in immunodeficient mice injected with hUC-MSCs, regardless of whether the cells had CNVs at the late passage. mRNA-Seq analysis indicated that pathways of cell cycle control and DNA damage response were downregulated during in vitro culture in hUC-MSC clones that showed genomic instability, but the same pathways were upregulated in the clones with good genomic stability. These results demonstrated that hUC-MSCs can be cultured for many passages and attain a large number of cells, but most of the cultured hUC-MSCs develop genomic alterations. Although hUC-MSCs with genomic alterations do not undergo malignant transformation, periodic genomic monitoring and donor management focusing on genomic stability are recommended before these cells are used for clinical applications.
Collapse
|
40
|
Pan Q, Fouraschen SMG, de Ruiter PE, Dinjens WNM, Kwekkeboom J, Tilanus HW, van der Laan LJW. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med (Maywood) 2013; 239:105-15. [PMID: 24227633 DOI: 10.1177/1535370213506802] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem/stromal cells (MSCs) have been explored in a number of clinical trials as a possible method of treating various diseases. However, the effect of long-term cell expansion in vitro on physiological function and genetic stability is still poorly understood. In this study, MSC cultures derived from bone marrow and liver were evaluated for the presence of aberrant cells following long-term expansion. In 46 independent cultures, four batches of transformed MSCs (TMCs) were found, which were all beyond the culture period of five weeks. These aberrant cells were first identified based on the appearance of abnormal cytology and the acquirement of growth advantage. Despite common MSC markers being diminished or absent, TMCs remain highly susceptible to lysis by allogenic natural killer (NK) cells. When transplanted into immunodeficient mice, TMCs formed sarcoma-like tumors, whereas parental MSCs did not form tumors in mice. Using a combination of high-resolution genome-wide DNA array and short-tandem repeat profiling, we confirmed the origin of TMCs and excluded the possibility of human cell line contamination. Additional genomic duplication and deletions were observed in TMCs, which may be associated with the transformation event. Using gene and microRNA expression arrays, a number of genes were identified that were differentially expressed between TMCs and their normal parental counterparts, which may potentially serve as biomarkers to screen cultures for evidence of early transformation events. In conclusion, the spontaneous transformation of MSCs resulting in tumorigenesis is rare and occurs after relatively long-term (beyond five weeks) culture. However, as an added safety measure, cultures of MSCs can potentially be screened based on a novel gene expression signature.
Collapse
Affiliation(s)
- Qiuwei Pan
- Department of Gastroenterology & Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam NL-3015 CE, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Bentivegna A, Miloso M, Riva G, Foudah D, Butta V, Dalprà L, Tredici G. DNA Methylation Changes during In Vitro Propagation of Human Mesenchymal Stem Cells: Implications for Their Genomic Stability? Stem Cells Int 2013; 2013:192425. [PMID: 24288545 PMCID: PMC3833027 DOI: 10.1155/2013/192425] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for the treatment of numerous diseases. A major problem for MSC therapeutic use is represented by the very low amount of MSCs which can be isolated from different tissues; thus ex vivo expansion is indispensable. Long-term culture, however, is associated with extensive morphological and functional changes of MSCs. In addition, the concern that they may accumulate stochastic mutations which lead the risk of malignant transformation still remains. Overall, the genome of human MSCs (hMSCs) appears to be apparently stable throughout culture, though transient clonal aneuploidies have been detected. Particular attention should be given to the use of low-oxygen environment in order to increase the proliferative capacity of hMSCs, since data on the effect of hypoxic culture conditions on genomic stability are few and contradictory. Furthermore, specific and reproducible epigenetic changes were acquired by hMSCs during ex vivo expansion, which may be connected and trigger all the biological changes observed. In this review we address current issues on long-term culture of hMSCs with a 360-degree view, starting from the genomic profiles and back, looking for an epigenetic interpretation of their genetic stability.
Collapse
Affiliation(s)
- Angela Bentivegna
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Mariarosaria Miloso
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Gabriele Riva
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Dana Foudah
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Valentina Butta
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Leda Dalprà
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Giovanni Tredici
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
42
|
Opiela J, Samiec M, Bochenek M, Lipiński D, Romanek J, Wilczek P. DNA Aneuploidy in Porcine Bone Marrow–Derived Mesenchymal Stem Cells Undergoing Osteogenic and AdipogenicIn VitroDifferentiation. Cell Reprogram 2013; 15:425-34. [DOI: 10.1089/cell.2012.0099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jolanta Opiela
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Michał Bochenek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Daniel Lipiński
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, 60-632 Poznan, Poland
| | - Joanna Romanek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Piotr Wilczek
- Foundation of Cardiac Surgery Development, 41-800 Zabrze, Poland
| |
Collapse
|
43
|
Abstract
Development of antitumor preparations with low toxicity and high selectivity of action is one of the top priorities of cancer gene therapy. Mesenchymal stem cells possess natural tropism towards tumors, a property that makes possible their use as a vehicle for targeted delivery of therapeutic genes into tumors of various etiologies. At present, genes encoding enzymes (cytosine deaminase, thymidine kinase, carboxyl esterase), cytokines (IL-2, IL-4, IL-12, IFN-beta) and apoptosis inducing factors (TRAIL) are used as therapeutic genes. Mesenchymal stem cells, as demonstrated using experimental models of tumors of various etiologies as well as animals with metastases in brain and lungs, are able to successfully deliver therapeutic genes into tumors and produce significant antitumor effect. However, to effectively use this therapeutic strategy in clinic, one still has to solve a number of technical problems.
Collapse
|
44
|
Kreke M, Smith RR, Marbán L, Marbán E. Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction. Expert Rev Cardiovasc Ther 2013; 10:1185-94. [PMID: 23098154 DOI: 10.1586/erc.12.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart disease is a major cause of morbidity and mortality. Cellular therapies hold significant promise for patients with heart disease. Heart-derived progenitor cells are capable of repairing a diseased heart through modulation of growth factor milieu and temporary engraftment leading to endogenous repair. The proof-of-concept CADUCEUS clinical trial using cardiosphere-derived cells has shown evidence of therapeutic cardiac tissue regeneration. Future clinical trials are now being planned to generate additional safety and efficacy data in the hopes of building toward an approved cellular therapy for heart disease.
Collapse
|
45
|
Wang CY, Liu LN, Zhao ZB. The role of ROS toxicity in spontaneous aneuploidy in cultured cells. Tissue Cell 2012; 45:47-53. [PMID: 23107981 DOI: 10.1016/j.tice.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/23/2012] [Accepted: 09/23/2012] [Indexed: 12/24/2022]
Abstract
It is well known that the karyotype of animal cells cultured in vitro tends to become aneuploid as the culture ages. Aneuploidy can cause genetic instability, alter the biological properties of cells, and affect their application in genetic studies and cell engineering. Understanding the causes and mechanisms of aneuploidy is primary to control its occurrence in cultured cells, and is also helpful to understand the mechanisms of tumorigenesis because aneuploidy is a hallmark of tumor cells. This review underscores the potential role of reactive oxygen species (ROS) toxicity in spontaneous aneuploidy of cultured cells. The underlying mechanisms and possible sources of ROS are also discussed.
Collapse
Affiliation(s)
- Cheng-Ye Wang
- Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China.
| | | | | |
Collapse
|
46
|
Harkness L, Novikov SM, Beermann J, Bozhevolnyi SI, Kassem M. Identification of Abnormal Stem Cells Using Raman Spectroscopy. Stem Cells Dev 2012; 21:2152-9. [DOI: 10.1089/scd.2011.0600] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Linda Harkness
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, Odense, Denmark
| | - Sergey M. Novikov
- Institute of Technology and Innovation (ITI), Technical Faculty, University of Southern Denmark, Odense, Denmark
| | - Jonas Beermann
- Institute of Technology and Innovation (ITI), Technical Faculty, University of Southern Denmark, Odense, Denmark
| | - Sergey I. Bozhevolnyi
- Institute of Technology and Innovation (ITI), Technical Faculty, University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, Odense, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JMS. Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res 2012; 9:225-36. [PMID: 22903042 DOI: 10.1016/j.scr.2012.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
Recent studies have described the occurrence of chromosomal abnormalities and mitochondrial dysfunction in human stem/stromal cells (SCs), particularly after extensive passaging in vitro and/or expansion under low oxygen tensions. To deepen this knowledge we investigated the influence of hypoxia (2% O(2)) and prolonged passaging (>P10) of human bone marrow stromal cells (BMSCs) and adipose-derived stromal cells (ASCs) on the expression of genes involved in DNA repair and cell-cycle regulation pathways, as well as on the occurrence of microsatellite instability and changes in telomere length. Our results show that hypoxic conditions induce an immediate and concerted down-regulation of genes involved in DNA repair and damage response pathways (MLH1, RAD51, BRCA1, and Ku80), concomitantly with the occurrence of microsatellite instability while maintaining telomere length. We further searched for mutations occurring in the mitochondrial genome, and monitored changes in intracellular ATP content, membrane potential and mitochondrial DNA content. Hypoxia led to a simultaneous decrease in ATP content and in the number of mitochondrial genomes, whereas the opposite effect was observed after prolonged passaging. Moreover, we show that neither hypoxia nor prolonged passaging significantly affected the integrity of the mitochondrial genome. Ultimately, we present evidence on how hypoxia selectively impacts the cellular response of BMSCs and ASCs, thus pointing for the need to optimize oxygen tension according to the cell source.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Instituto Superior Técnico (IST), Technical University of Lisbon, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
48
|
Harris VK, Faroqui R, Vyshkina T, Sadiq SA. Characterization of autologous mesenchymal stem cell-derived neural progenitors as a feasible source of stem cells for central nervous system applications in multiple sclerosis. Stem Cells Transl Med 2012. [PMID: 23197858 DOI: 10.5966/sctm.2012-0015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone marrow mesenchymal stem cell-derived neural progenitors (MSC-NPs) are a potential therapeutic source of cells that have been shown to be efficacious in a preclinical model of multiple sclerosis (MS). To examine the feasibility of using MSC-NPs as an autologous source of cells to promote central nervous system (CNS) repair in MS, this study characterized human MSC-NPs from a panel of both MS and non-MS donors. Expanded MSCs showed similar characteristics in terms of growth and cell surface phenotype, regardless of the donor disease status. MSC-NPs derived from all MSCs showed a consistent pattern of gene expression changes that correlated with neural commitment and increased homogeneity. Furthermore, the reduced expression of mesodermal markers and reduced capacity for adipogenic or osteogenic differentiation in MSC-NPs compared with MSCs suggested that MSC-NPs have reduced potential of unwanted mesodermal differentiation upon CNS transplantation. The immunoregulatory function of MSC-NPs was similar to that of MSCs in their ability to suppress T-cell proliferation and to promote expansion of FoxP3-positive T regulatory cells in vitro. In addition, MSC-NPs promoted oligodendroglial differentiation from brain-derived neural stem cells that correlated with the secretion of bioactive factors. Our results provide a set of identity characteristics for autologous MSC-NPs and suggest that the in vitro immunoregulatory and trophic properties of these cells may have therapeutic value in the treatment of MS.
Collapse
Affiliation(s)
- Violaine K Harris
- Multiple Sclerosis Research Center of New York, New York, New York 10019, USA
| | | | | | | |
Collapse
|
49
|
Miettinen JA, Salonen RJ, Ylitalo K, Niemelä M, Kervinen K, Säily M, Koistinen P, Savolainen ER, Mäkikallio TH, Huikuri HV, Lehenkari P. The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction. J Transl Med 2012; 10:66. [PMID: 22462635 PMCID: PMC3366890 DOI: 10.1186/1479-5876-10-66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/02/2012] [Indexed: 12/16/2022] Open
Abstract
Background Treatment of acute myocardial infarction with stem cell transplantation has achieved beneficial effects in many clinical trials. The bone marrow microenvironment of ST-elevation myocardial infarction (STEMI) patients has never been studied even though myocardial infarction is known to cause an imbalance in the acid-base status of these patients. The aim of this study was to assess if the blood gas levels in the bone marrow of STEMI patients affect the characteristics of the bone marrow cells (BMCs) and, furthermore, do they influence the change in cardiac function after autologous BMC transplantation. The arterial, venous and bone marrow blood gas concentrations were also compared. Methods Blood gas analysis of the bone marrow aspirate and peripheral blood was performed for 27 STEMI patients receiving autologous stem cell therapy after percutaneous coronary intervention. Cells from the bone marrow aspirate were further cultured and the bone marrow mesenchymal stem cell (MSC) proliferation rate was determined by MTT assay and the MSC osteogenic differentiation capacity by alkaline phosphatase (ALP) activity assay. All the patients underwent a 2D-echocardiography at baseline and 4 months after STEMI. Results As expected, the levels of pO2, pCO2, base excess and HCO3 were similar in venous blood and bone marrow. Surprisingly, bone marrow showed significantly lower pH and Na+ and elevated K+ levels compared to arterial and venous blood. There was a positive correlation between the bone marrow pCO2 and HCO3 levels and MSC osteogenic differentiation capacity. In contrast, bone marrow pCO2 and HCO3 levels displayed a negative correlation with the proliferation rate of MSCs. Patients with the HCO3 level below the median value exhibited a more marked change in LVEF after BMC treatment than patients with HCO3 level above the median (11.13 ± 8.07% vs. 2.67 ± 11.89%, P = 0.014). Conclusions Low bone marrow pCO2 and HCO3 levels may represent the optimal environment for BMCs in terms of their efficacy in autologous stem cell therapy in STEMI patients.
Collapse
Affiliation(s)
- Johanna A Miettinen
- Department of Internal Medicine, Institute of Clinical Medicine, University of Oulu, Oulu FIN-90014, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Patel AN, Genovese J. Potential clinical applications of adult human mesenchymal stem cell (Prochymal®) therapy. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2011; 4:61-72. [PMID: 24198531 PMCID: PMC3781758 DOI: 10.2147/sccaa.s11991] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In vitro, in vivo animal, and human clinical data show a broad field of application for mesenchymal stem cells (MSCs). There is overwhelming evidence of the usefulness of MSCs in regenerative medicine, tissue engineering, and immune therapy. At present, there are a significant number of clinical trials exploring the use of MSCs for the treatment of various diseases, including myocardial infarction and stroke, in which oxygen suppression causes widespread cell death, and others with clear involvement of the immune system, such as graft-versus-host disease, Crohn’s disease, and diabetes. With no less impact, MSCs have been used as cell therapy to treat defects in bone and cartilage and to help in wound healing, or in combination with biomaterials in tissue engineering development. Among the MSCs, allogeneic MSCs have been associated with a regenerative capacity due to their unique immune modulatory properties. Their immunosuppressive capability without evidence of immunosuppressive toxicity at a global level define their application in the treatment of diseases with a pathogenesis involving uncontrolled activity of the immune system. Until now, the limitation in the number of totally characterized autologous MSCs available represents a major obstacle to their use for adult stem cell therapy. The use of premanufactured allogeneic MSCs from controlled donors under optimal conditions and their application in highly standardized clinical trials would lead to a better understanding of their real applications and reduce the time to clinical translation.
Collapse
Affiliation(s)
- Amit N Patel
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|