1
|
Plećaš A, Kapuralin K, Grandverger L, Mitrečić D, Alić I. Thy1-YFP: an effective tool for single cell tracing from neuronal progenitors to mature functionally active neurons. Cell Death Discov 2025; 11:18. [PMID: 39843432 PMCID: PMC11754755 DOI: 10.1038/s41420-025-02297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
The differentiation of mouse neurons is a complex process involving cell maturation and branching, occurring during both, embryonic development and differentiation in vitro. To study mouse neuronal morphology, we used the Thy1 YFP-16 mouse strain. Although this mouse strain was described over twenty years ago, detailed studies on projections outgrowth and morphology of neurons are still lacking. The main goal of our study was to analyse the differentiation patterns of neural stem cells, including markers of differentiation, colocalization patterns, synaptic markers and the tracing of cell projections during differentiation in vitro. The neural stem cells were isolated from embryos at embryonic day 14.5 as well as newborn pups and differentiated into neurons and astrocytes. Our data showed a significant decrease of neural stem cells markers and a substantial increase in neuronal markers during differentiation, analysed by immunocytochemistry, quantitative PCR and western blot. To assess synaptic maturation, neurons were further analysed by quantitative PCR and immunocytochemistry. Expression of synaptic markers were increased during differentiation in vitro. At the 7th day in vitro differentiation, expression of synaptic markers in both YFP positive and YFP negative neurons were at comparable levels. Finally, our data revealed a significant increase in all measured morphological parameters: Filament Area, Filament Length, Filament No. Terminal Points and Sholl Intersections in YFP positive/MAP2 positive neurons compared to YFP negative/MAP2 positive neurons. These findings suggest that YFP is an effective tool for cell tracing both in vivo and in vitro, making it valuable for morphological studies during development as well as in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ante Plećaš
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| | - Katarina Kapuralin
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Leonarda Grandverger
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Mitrečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Alić
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Yang YC, Wang GH, Chou P, Hsueh SW, Lai YC, Kuo CC. Dynamic electrical synapses rewire brain networks for persistent oscillations and epileptogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313042121. [PMID: 38346194 PMCID: PMC10895348 DOI: 10.1073/pnas.2313042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan333, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei100, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan333, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei100, Taiwan
| |
Collapse
|
3
|
Yang X, Su D, Yu X, Zeng P, Liang H, Zhang G, Song B, Jiang S. Hot Spot Engineering in Hierarchical Plasmonic Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205659. [PMID: 36905245 DOI: 10.1002/smll.202205659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Indexed: 06/02/2023]
Abstract
The controllable nanogap structures offer an effective way to obtain strong and tunable localized surface plasmon resonance (LSPR). A novel hierarchical plasmonic nanostructure (HPN) is created by incorporating a rotating coordinate system into colloidal lithography. In this nanostructure, the hot spot density is increased drastically by the long-range ordered morphology with discrete metal islands filled in the structural units. Based on the Volmer-Weber growth theory, the precise HPN growth model is established, which guides the hot spot engineering for improved LSPR tunability and strong field enhancement. The hot spot engineering strategy is examined by the application of HPNs as the surface-enhanced Raman spectroscopy (SERS) substrate. It is universally suitable for various SERS characterization excited at different wavelengths. Based on the HPN and hot spot engineering strategy, single-molecule level detection and long-range mapping can be realized simultaneously. In that sense, it offers a great platform and guides the future design for various LSPR applications like surface-enhanced spectra, biosensing, and photocatalysis.
Collapse
Affiliation(s)
- Xi Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dong Su
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xie Yu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Pei Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Guangzu Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Boxiang Song
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shenglin Jiang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Tan S, Mo X, Qin H, Dong B, Zhou J, Long C, Yang L. Biocytin-Labeling in Whole-Cell Recording: Electrophysiological and Morphological Properties of Pyramidal Neurons in CYLD-Deficient Mice. Molecules 2023; 28:molecules28104092. [PMID: 37241833 DOI: 10.3390/molecules28104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Biocytin, a chemical compound that is an amide formed from the vitamin biotin and the amino acid L-lysine, has been used as a histological dye to stain nerve cells. Electrophysiological activity and morphology are two key characteristics of neurons, but revealing both the electrophysiological and morphological properties of the same neuron is challenging. This article introduces a detailed and easy-to-operate procedure for single-cell labeling in combination with whole-cell patch-clamp recording. Using a recording electrode filled with a biocytin-containing internal solution, we demonstrate the electrophysiological and morphological characteristics of pyramidal (PNs), medial spiny (MSNs) and parvalbumin neurons (PVs) in brain slices, where the electrophysiological and morphological properties of the same individual cell are elucidated. We first introduce a protocol for whole-cell patch-clamp recording in various neurons, coupled with the intracellular diffusion of biocytin delivered by the glass capillary of the recording electrode, followed by a post hoc procedure to reveal the architecture and morphology of biocytin-labeled neurons. An analysis of action potentials (APs) and neuronal morphology, including the dendritic length, number of intersections, and spine density of biocytin-labeled neurons, were performed using ClampFit and Fiji Image (ImageJ), respectively. Next, to take advantage of the techniques introduced above, we uncovered defects in the APs and the dendritic spines of PNs in the primary motor cortex (M1) of deubiquitinase cylindromatosis (CYLD) knock-out (Cyld-/-) mice. In summary, this article provides a detailed methodology for revealing the morphology as well as the electrophysiological activity of a single neuron that will have many applications in neurobiology.
Collapse
Affiliation(s)
- Shuyi Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiuping Mo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huihui Qin
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Binbin Dong
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiankui Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Single-Cell Labeling Strategies to Dissect Neuronal Structures and Local Functions. BIOLOGY 2023; 12:biology12020321. [PMID: 36829594 PMCID: PMC9953318 DOI: 10.3390/biology12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The brain network consists of ten billion neurons and is the most complex structure in the universe. Understanding the structure of complex brain networks and neuronal functions is one of the main goals of modern neuroscience. Since the seminal invention of Golgi staining, single-cell labeling methods have been among the most potent approaches for dissecting neuronal structures and neural circuits. Furthermore, the development of sparse single-cell transgenic methods has enabled single-cell gene knockout studies to examine the local functions of various genes in neural circuits and synapses. Here, we review non-transgenic single-cell labeling methods and recent advances in transgenic strategies for sparse single neuronal labeling. These methods and strategies will fundamentally contribute to the understanding of brain structure and function.
Collapse
|
6
|
Understanding the Role of ATP Release through Connexins Hemichannels during Neurulation. Int J Mol Sci 2023; 24:ijms24032159. [PMID: 36768481 PMCID: PMC9916920 DOI: 10.3390/ijms24032159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Neurulation is a crucial process in the formation of the central nervous system (CNS), which begins with the folding and fusion of the neural plate, leading to the generation of the neural tube and subsequent development of the brain and spinal cord. Environmental and genetic factors that interfere with the neurulation process promote neural tube defects (NTDs). Connexins (Cxs) are transmembrane proteins that form gap junctions (GJs) and hemichannels (HCs) in vertebrates, allowing cell-cell (GJ) or paracrine (HCs) communication through the release of ATP, glutamate, and NAD+; regulating processes such as cell migration and synaptic transmission. Changes in the state of phosphorylation and/or the intracellular redox potential activate the opening of HCs in different cell types. Cxs such as Cx43 and Cx32 have been associated with proliferation and migration at different stages of CNS development. Here, using molecular and cellular biology techniques (permeability), we demonstrate the expression and functionality of HCs-Cxs, including Cx46 and Cx32, which are associated with the release of ATP during the neurulation process in Xenopus laevis. Furthermore, applications of FGF2 and/or changes in intracellular redox potentials (DTT), well known HCs-Cxs modulators, transiently regulated the ATP release in our model. Importantly, the blockade of HCs-Cxs by carbenoxolone (CBX) and enoxolone (ENX) reduced ATP release with a concomitant formation of NTDs. We propose two possible and highly conserved binding sites (N and E) in Cx46 that may mediate the pharmacological effect of CBX and ENX on the formation of NTDs. In summary, our results highlight the importance of ATP release mediated by HCs-Cxs during neurulation.
Collapse
|
7
|
Benedikt J, Malpica-Nieves CJ, Rivera Y, Méndez-González M, Nichols CG, Veh RW, Eaton MJ, Skatchkov SN. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules 2022; 12:biom12121812. [PMID: 36551240 PMCID: PMC9775384 DOI: 10.3390/biom12121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium.
Collapse
Affiliation(s)
- Jan Benedikt
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Christian J. Malpica-Nieves
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| | - Yomarie Rivera
- Department of Chiropractic, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | | | - Colin G. Nichols
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Charité, 10115 Berlin, Germany
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| |
Collapse
|
8
|
Turegano-Lopez M, Santuy A, Kastanauskaite A, Rodriguez JR, DeFelipe J, Merchan-Perez A. Single-Neuron Labeling in Fixed Tissue and Targeted Volume Electron Microscopy. Front Neuroanat 2022; 16:852057. [PMID: 35528948 PMCID: PMC9070053 DOI: 10.3389/fnana.2022.852057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
The structural complexity of nervous tissue makes it very difficult to unravel the connectivity between neural elements at different scales. Numerous methods are available to trace long-range projections at the light microscopic level, and to identify the actual synaptic connections at the electron microscopic level. However, correlating mesoscopic and nanoscopic scales in the same cell, cell population or brain region is a problematic, laborious and technically demanding task. Here we present an effective method for the 3D reconstruction of labeled subcellular structures at the ultrastructural level, after single-neuron labeling in fixed tissue. The brain is fixed by intracardial perfusion of aldehydes and thick vibratome sections (250 μm) are obtained. Single cells in these vibratome sections are intracellularly injected with horseradish peroxidase (HRP), so that the cell body and its processes can be identified. The thick sections are later flat-embedded in epoxy resin and re-sectioned into a series of thinner (7 μm) sections. The sections containing the regions of interest of the labeled cells are then imaged with automated focused ion beam milling and scanning electron microscopy (FIB-SEM), acquiring long series of high-resolution images that can be reconstructed, visualized, and analyzed in 3D. With this methodology, we can accurately select any cellular segment at the light microscopic level (e.g., proximal, intermediate or distal dendrites, collateral branches, axonal segments, etc.) and analyze its synaptic connections at the electron microscopic level, along with other ultrastructural features. Thus, this method not only facilitates the mapping of the synaptic connectivity of single-labeled neurons, but also the analysis of the surrounding neuropil. Since the labeled processes can be located at different layers or subregions, this method can also be used to obtain data on the differences in local synaptic organization that may exist at different portions of the labeled neurons.
Collapse
Affiliation(s)
- Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid – Instituto Cajal, Madrid, Spain
| | - Andrea Santuy
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Jose-Rodrigo Rodriguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Alahmadi A, Ramji DP. Monitoring Modified Lipoprotein Uptake and Macropinocytosis Associated with Macrophage Foam Cell Formation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:247-255. [PMID: 35237968 DOI: 10.1007/978-1-0716-1924-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Macrophage foam cell formation plays a crucial role in the initiation and progression of atherosclerosis. Macrophages uptake native and modified low density lipoprotein (LDL) through either receptor-dependent or receptor-independent mechanisms to transform into lipid laden foam cells. Foam cells are involved in the formation of fatty streak that is seen during the early stages of atherosclerosis development and therefore represents a promising therapeutic target. Normal or modified lipoproteins labeled with fluorescent dyes such as 1,1'-dioctadecyl-3-3-3',3'-tetramethylindocarbocyanine perchlorate (Dil) are often used to monitor their internalization during foam cell formation. In addition, the fluorescent dye Lucifer Yellow (LY) is widely used as a marker for macropinocytosis activity. In this chapter, we describe established methods for monitoring modified lipoprotein uptake and macropinocytosis during macrophage foam cell formation.
Collapse
Affiliation(s)
- Alaa Alahmadi
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Danielsen EM. Intestinal permeation enhancers: Lessons learned from studies using an organ culture model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183474. [PMID: 32946886 DOI: 10.1016/j.bbamem.2020.183474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023]
Abstract
Permeation enhancers (PEs) are compounds aimed to increase intestinal uptake of oral drugs with poor bioavailability. This mini-review focuses on results recently obtained with PEs using an intestinal organ culture model. The model predicts which paracellular/transcellular pathways across the epithelium are susceptible to different classes of PEs (mainly surfactants and cell penetrating peptides). PEs: 1) generate a transmembrane transcellular pathway, 2) block apical endocytosis (first step in apical-to-basolateral transcytosis), and 3) perturb normal cell membrane integrity. The results argue that surfactants and cell penetrating peptides are not suitable for use in formulations aimed to exploit transcytosis in oral drug delivery.
Collapse
Affiliation(s)
- E Michael Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Venn AA, Bernardet C, Chabenat A, Tambutté E, Tambutté S. Paracellular transport to the coral calcifying medium: effects of environmental parameters. J Exp Biol 2020; 223:jeb227074. [PMID: 32675232 DOI: 10.1242/jeb.227074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Coral calcification relies on the transport of ions and molecules to the extracellular calcifying medium (ECM). Little is known about paracellular transport (via intercellular junctions) in corals and other marine calcifiers. Here, we investigated whether the permeability of the paracellular pathway varied in different environmental conditions in the coral Stylophora pistillata Using the fluorescent dye calcein, we characterised the dynamics of calcein influx from seawater to the ECM and showed that increases in paracellular permeability (leakiness) induced by hyperosmotic treatment could be detected by changes in calcein influx rates. We then used the calcein-imaging approach to investigate the effects of two environmental stressors on paracellular permeability: seawater acidification and temperature change. Under conditions of seawater acidification (pH 7.2) known to depress pH in the ECM and the calcifying cells of S. pistillata, we observed a decrease in half-times of calcein influx, indicating increased paracellular permeability. By contrast, high temperature (31°C) had no effect, whereas low temperature (20°C) caused decreases in paracellular permeability. Overall, our study establishes an approach to conduct further in vivo investigation of paracellular transport and suggests that changes in paracellular permeability could form an uncharacterised aspect of the physiological response of S. pistillata to seawater acidification.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Coralie Bernardet
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Apolline Chabenat
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| |
Collapse
|
12
|
Campolo M, Lanza M, Filippone A, Paterniti I, Casili G, Scuderi SA, Ardizzone A, Cuzzocrea S, Esposito E. Evaluation of a Product Containing Xyloglucan and Pea Protein on Skin Barrier Permeability. Skin Pharmacol Physiol 2020; 33:231-236. [PMID: 32846412 DOI: 10.1159/000509372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The skin acts as a mechanical and protective barrier against viral, fungal, and bacterial infections. Skin conditions such as atopic dermatitis and psoriasis are characterized by alterations of the skin barrier, often caused by injury and by bacterial infections. In the last years, non-pharmacological interventions have gained great importance in epidermis-related diseases. Xyloglucan (XG) is a polysaccharide that possesses a "mucin-like" molecular structure that confers mucoadhesive properties, allowing XG-containing formulations to act as a protective barrier for the management of different diseases. Moreover, there is also increasing interest in the use of proteins due to their film-forming features. This study aimed to evaluate the barrier-protective properties of a product containing XG and pea protein (PP) in an in vitro model, assessing its effects on the membrane permeability of keratinocytes infected by Staphylococcus aureus. METHODS HaCaT keratinocytes were pretreated with XG and PP for 3 h and then infected with S. aureus cells (106 bacteria/well) at a multiplicity of infection of 10 for 1 h. The number of bacterial colonies and membrane integrity were measured, respectively. RESULTS We observed that pretreatment with XG and PP in human HaCaT keratinocytes infected with S. aureus significantly increased trans-epithelial electrical resistance (a marker of skin barrier function) measurement, reduced lucifer yellow (a marker of membrane integrity) permeation across the monolayer, and released lactate dehydrogenase (a marker of tissue damage). Moreover, XG and PP pretreatment was able to reduce bacterial adherence, avoiding S. aureus infection. CONCLUSION In summary, we demonstrated that the product containing XG and PP was able to maintain barrier permeability preserving its integrity, and therefore, it can be considered as an interesting approach for the management of epidermis-related diseases.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah A Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy,
| |
Collapse
|
13
|
Mühlberger M, Unterweger H, Band J, Lehmann C, Heger L, Dudziak D, Alexiou C, Lee G, Janko C. Loading of Primary Human T Lymphocytes with Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Does Not Impair Their Activation after Polyclonal Stimulation. Cells 2020; 9:cells9020342. [PMID: 32024193 PMCID: PMC7072432 DOI: 10.3390/cells9020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
For the conversion of immunologically cold tumors, characterized by a low T cell infiltration, into hot tumors, it is necessary to enrich T cells in the tumor area. One possibility is the use of magnetic fields to direct T cells into the tumor. For this purpose, primary T cells that were freshly isolated from human whole blood were loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate). Cell toxicity and particle uptake were investigated by flow cytometry and atomic emission spectroscopy. The optimum loading of the T cells without any major effect on their viability was achieved with a particle concentration of 75 µg Fe/mL and a loading period of 24 h. The cellular content of SPIONCitrate was sufficient to attract these T cells with a magnet which was monitored by live-cell imaging. The functionality of the T cells was only slightly influenced by SPIONCitrate, as demonstrated by in vitro stimulation assays. The proliferation rate as well as the expression of co-stimulatory and inhibitory surface molecules (programmed cell death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain containing 3 (Tim-3), C-C motif chemokine receptor 7 (CCR7), CD25, CD45RO, CD69) was investigated and found to be unchanged. Our results presented here demonstrate the feasibility of loading primary human T lymphocytes with superparamagnetic iron oxide nanoparticles without influencing their viability and functionality while achieving sufficient magnetizability for magnetically controlled targeting. Thus, the results provide a strong fundament for the transfer to tumor models and ultimately for new immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Christian Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Geoffrey Lee
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
- Correspondence: ; Tel.: +49-9131-85-33142
| |
Collapse
|
14
|
Mühlberger M, Janko C, Unterweger H, Friedrich RP, Friedrich B, Band J, Cebulla N, Alexiou C, Dudziak D, Lee G, Tietze R. Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy. Int J Nanomedicine 2019; 14:8421-8432. [PMID: 31749616 PMCID: PMC6817714 DOI: 10.2147/ijn.s218488] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: "hot" tumors are infiltrated with T lymphocytes, "cold" tumors are not infiltrated and "immune excluded" tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for "hot" tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate) to the tumor by an externally applied magnetic field. METHODS SPIONCitrate were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field. RESULTS SPIONCitrate displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPIONCitrate-loaded T cells were strongly attracted by a small external magnet. CONCLUSION T cells can be "magnetized" by incorporation of SPIONCitrate for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPIONCitrate are potential suitable candidates for magnetic T cell targeting.
Collapse
Affiliation(s)
- Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nadine Cebulla
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Geoffrey Lee
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Wang A, Wang R, Cui D, Huang X, Yuan L, Liu H, Fu Y, Liang L, Wang W, He Q, Shi C, Guan X, Teng Z, Zhao G, Li Y, Gao Y, Han H. The Drainage of Interstitial Fluid in the Deep Brain is Controlled by the Integrity of Myelination. Aging Dis 2019; 10:937-948. [PMID: 31595193 PMCID: PMC6764732 DOI: 10.14336/ad.2018.1206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
In searching for the drainage route of the interstitial fluid (ISF) in the deep brain, we discovered a regionalized ISF drainage system as well as a new function of myelin in regulating the drainage. The traced ISF from the caudate nucleus drained to the ipsilateral cortex along myelin fiber tracts, while in the opposite direction, its movement to the adjacent thalamus was completely impeded by a barrier structure, which was identified as the converged, compact myelin fascicle. The regulating and the barrier effects of myelin were unchanged in AQP4-knockout rats but were impaired as the integrity of boundary structure of drainage system was destroyed in a demyelinated rat model. We thus proposed that the brain homeostasis was maintained within each ISF drainage division locally, rather than across the brain as a whole. A new brain division system and a new pathogenic mechanism of demyelination are therefore proposed.
Collapse
Affiliation(s)
- Aibo Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Dehua Cui
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xinrui Huang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Huipo Liu
- Institute of Applied Physics and Computational Mathematics, Beijing, China.
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China.
| | - Lei Liang
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Wei Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Chunyan Shi
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xiangping Guan
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Yajuan Gao
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| |
Collapse
|
16
|
Development of a microcolumn one-site immunometric assay for a protein biomarker: Analysis of alpha 1-acid glycoprotein. J Chromatogr A 2019; 1610:460558. [PMID: 31564560 DOI: 10.1016/j.chroma.2019.460558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/26/2022]
Abstract
A one-site immunometric assay based on affinity microcolumns was developed for the analysis of alpha1-acid glycoprotein (AGP) as a model protein biomarker. In this assay, a sample containing AGP was incubated with an excess amount of a labeled binding agent, such as fluorescein-labeled anti-AGP antibodies or Fab fragments. The excess binding agent was removed by passing this mixture through a microcolumn that contained an immobilized form of AGP, while the signal was measured for the binding agent-AGP complex in the non-retained fraction. Theoretical and practical factors were both considered in selecting the concentration of labeled binding agent, the incubation time of this agent with the sample, and the application conditions for this mixture onto the microcolumn. The effects of using various labeling methods and intact antibodies vs Fab fragments were also considered. The final assay was performed with fluorescein-labeled anti-AGP antibodies and a 2.1 mm i.d. × 1.0 cm AGP microcolumn operated at 0.30 mL min-1. This method required only 1 µL of serum or plasma, had a detection limit of 0.63 nM AGP, and gave a potential throughput of 2 min per sample. This assay was used to measure AGP in normal serum and plasma from patients with systemic lupus erythematosus, giving good agreement with the literature and a reference method. The same approach and guidelines can be used to create assays for other protein biomarkers by changing the labeled binding agent and immobilized protein within the microcolumn.
Collapse
|
17
|
Fei YD, Wang Q, Hou JW, Li W, Cai XX, Yang YL, Zhang LH, Wei ZX, Chen TZ, Wang YP, Li YG. Macrophages facilitate post myocardial infarction arrhythmias: roles of gap junction and KCa3.1. Am J Cancer Res 2019; 9:6396-6411. [PMID: 31588225 PMCID: PMC6771231 DOI: 10.7150/thno.34801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Effective therapeutic targets against post-myocardial infarction (MI) arrhythmias remain to be discovered. We aimed to investigate the role of macrophages in post-MI arrhythmias. Methods: Mononuclear cell accumulation, macrophage polarization from M0 to M1 subset, and gap junction formation were analyzed in MI patients and MI mice by flow cytometry, immunofluorescence and patch clamping. Differentially expressed genes were identified by RNA sequencing. Macrophages and cardiomyocytes were cocultured in vitro, and the effects of gap junction and KCa3.1 on electrophysiological properties were assessed by patch clamping. The effects of KCa3.1 inhibition on post-MI arrhythmias were assessed by intracardiac stimulation and ambulatory electrocardiograms in vivo. Results: Percentage of pro-inflammatory mononuclear cells were significantly elevated in patients with post-MI arrhythmias compared with MI patients without arrhythmias and healthy controls (p<0.001). Macrophages formed gap junction with cardiomyocytes in MI border zones of MI patient and mice, and pro-inflammatory macrophages were significantly increased 3 days post-MI (p<0.001). RNA sequencing identified Kcnn4 as the most differentially expressed gene encoding ion channel, and the upregulation is mainly attributed to macrophage accumulation and polarization into pro-inflammatory subset. In vitro coculture experiments demonstrated that connection with M0 macrophages via gap junction slightly shortened the action potential durations (APDs) of cardiomyocytes. However, the APD90 of cardiomyocytes connected with M1 macrophages were significantly prolonged (p<0.001), which were effectively attenuated by gap junction inhibition (p=0.002), KCa3.1 inhibition (p=0.008), KCa3.1 silencing (p<0.001) and store-operated Ca2+ channel inhibition (p=0.005). In vivo results demonstrated that KCa3.1 inhibition significantly decreased the QTc durations (p=0.031), intracardiac stimulation-induced ventricular arrhythmia durations (p=0.050) and incidence of premature ventricular contractions (p=0.030) in MI mice. Conclusion: Macrophage polarization leads to APD heterogeneity and post-MI arrhythmias via gap junction and KCa3.1 activation. The results provide evidences of a novel mechanism of post-MI heterogeneous repolarization and arrhythmias, rendering macrophages and KCa3.1 to be potential therapeutic targets.
Collapse
|
18
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
19
|
Farhoodi R, Lansdell BJ, Kording KP. Quantifying How Staining Methods Bias Measurements of Neuron Morphologies. Front Neuroinform 2019; 13:36. [PMID: 31191283 PMCID: PMC6541099 DOI: 10.3389/fninf.2019.00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The process through which neurons are labeled is a key methodological choice in measuring neuron morphology. However, little is known about how this choice may bias measurements. To quantify this bias we compare the extracted morphology of neurons collected from the same rodent species, experimental condition, gender distribution, age distribution, brain region and putative cell type, but obtained with 19 distinct staining methods. We found strong biases on measured features of morphology. These were largest in features related to the coverage of the dendritic tree (e.g., the total dendritic tree length). Understanding measurement biases is crucial for interpreting morphological data.
Collapse
Affiliation(s)
- Roozbeh Farhoodi
- Department of Mathematics, Sharif University of Technology, Tehran, Iran
| | | | - Konrad Paul Kording
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Danielsen EM, Hansen GH. Probing paracellular - versus transcellular tissue barrier permeability using a gut mucosal explant culture system. Tissue Barriers 2019; 7:1601955. [PMID: 30999787 DOI: 10.1080/21688370.2019.1601955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Intestinal permeation enhancers (PEs), i.e. agents improving oral delivery of therapeutic drugs with poor bioavailability, may typically act by two principally different mechanisms: to increase either transcellular -or paracellular passage across the epithelium. With the aim to define these different modes of action in a small intestinal mucosal explant system, the transcellular-acting PE sodium dodecyl sulfate (SDS) was compared to the paracellular-acting PE ethylenediaminetetraacetic acid (EDTA), using several fluorescent polar - and lipophilic probes. Here, SDS rendered the enterocyte cell membranes leaky for the relatively small polar tracers Lucifer yellow and a 3 kD Texas red-conjugated dextran, but most conspicuously SDS blocked constitutive endocytosis from the brush border. In contrast, the main action of EDTA was to increase paracellular passage across the epithelium of both polar probes, including 10 - and 70 kDa dextrans and lipophilic probes, visualized by distinct stripy lateral staining of enterocytes and/or accumulation in the lamina propria. In addition, EDTA caused a loss of epithelial cell polarity by opening tight junctions for diffusion of domain-specific basolateral/apical cell membrane protein markers into the opposite domains. By transmission electron microscopy, SDS caused the formation of vacuoles and vesicle-like structures at the lateral cell membranes. In contrast, EDTA led to a bulging of the whole enterocyte apex, resulting in a "cobblestone" appearance of the epithelium, probably caused by an extreme contraction of the perijunctional actomyosin ring. We conclude that the mucosal explant system is a convenient model for predicting transcellular/paracellular modes of action of novel prospective PEs.
Collapse
Affiliation(s)
- E Michael Danielsen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Gert H Hansen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
21
|
Shekhawat P, Bagul M, Edwankar D, Pokharkar V. Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. Eur J Pharm Sci 2019; 132:72-85. [PMID: 30797937 DOI: 10.1016/j.ejps.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Eprosartan mesylate is an angiotensin receptor blocker which suffers from extremely poor bioavailability owing to its poor solubility and poor permeability. The rationale of the present work was to design the drug delivery system capable of overcoming these constraints. Nanoformulation of eprosartan mesylate was developed using ultrasonic wave-assisted liquid-antisolvent technique. Nanoformulation was further freeze dried with the addition of 1% of mannitol resulting in formation of re-dispersible EPM nanopowder. To prove our proof of principle, the re-dispersed nanopowder with z-average particle size 165.2 ± 1.8 nm was evaluated enormously for in-vitro dissolution behaviour and permeability assay through Caco-2 cell model. In-vitro dissolution study was performed at pH 1.2, pH 4.5 and pH 6.8. Result demonstrates enhanced dissolution from EPM nanopowder with negligible pH dependence. Transport studies accomplished using validated Caco-2 based cell model showed 11-fold enhanced apparent permeability of redispersed nanopowder when compared to pure EPM and corresponding physical mixture (p < 0.0001). In-vivo study reveals, exceptionally strong variations in plasma concentration of EPM through nanopowder (62 mg/kg) formulation when compared with physical mixture and pure EPM (62 mg/kg) group. Moreover, study manifests that 5-fold lower dose (12.4 mg/kg) of developed formulation yields higher exposure (4600 ± 36 ng·mL-1·h) than pure EPM (2349 ± 34 ng·mL-1·h) and corresponding physical mixture (2456 ± 49 ng·mL-1·h) at therapeutic dose (62 mg/kg). Further, L-NAME induced hypertensive model was undertaken to investigate effect of reduced dose of EPM nanopowder on systolic blood pressure, biochemical analysis and histopathology of heart. Results revealed pronounced antihypertensive potential of re-dispersed EPM nanopowder at 5-fold lower dose (12.4 mg/kg). In conclusion, our study indicates that nanopowder delivery might be the promising approach for providing enhanced oral bioavailability at lower dose.
Collapse
Affiliation(s)
- Prachi Shekhawat
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, India
| | - Milind Bagul
- Raptim Research Limited, Mahape, Navi Mumbai, Maharashtra, India
| | - Diptee Edwankar
- Raptim Research Limited, Mahape, Navi Mumbai, Maharashtra, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, India.
| |
Collapse
|
22
|
Calatayud M, Xiong C, Du Laing G, Raber G, Francesconi K, van de Wiele T. Salivary and Gut Microbiomes Play a Significant Role in in Vitro Oral Bioaccessibility, Biotransformation, and Intestinal Absorption of Arsenic from Food. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14422-14435. [PMID: 30403856 PMCID: PMC6300781 DOI: 10.1021/acs.est.8b04457] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 05/18/2023]
Abstract
The release of a toxicant from a food matrix during the gastrointestinal digestion is a crucial determinant of the toxicant's oral bioavailability. We present a modified setup of the human simulator of the gut microbial ecosystem (SHIME), with four sequential gastrointestinal reactors (oral, stomach, small intestine, and colon), including the salivary and colonic microbiomes. Naturally arsenic-containing rice, mussels, and nori seaweed were digested in the presence of microorganisms and in vitro oral bioaccessibility, bioavailability, and metabolism of arsenic species were evaluated following analysis by using HPLC/mass spectrometry. When food matrices were digested with salivary bacteria, the soluble arsenic in the gastric digestion stage increased for mussel and nori samples, but no coincidence impact was found in the small intestinal and colonic digestion stages. However, the simulated small intestinal absorption of arsenic was increased in all food matrices (1.2-2.7 fold higher) following digestion with salivary microorganisms. No significant transformation of the arsenic species occurred except for the arsenosugars present in mussels and nori. In those samples, conversions between the oxo arsenosugars were observed in the small intestinal digestion stage whereupon the thioxo analogs became major metabolites. These results expand our knowledge on the likely metabolism and oral bioavailabiltiy of arsenic during human digestion, and provide valuable information for future risk assessments of dietary arsenic.
Collapse
Affiliation(s)
- Marta Calatayud
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Chan Xiong
- Institute
of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
- (C.X.) Phone: +43 (0)316
380-5318; e-mail:
| | - Gijs Du Laing
- Department
of Green Chemistry and Technology, Ghent
University, 9000 Ghent, Belgium
| | - Georg Raber
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kevin Francesconi
- Institute
of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tom van de Wiele
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- (T.V.d.W.) Phone: +32 9
264 59 76; fax: + 32 9 264 62 48; e-mail:
| |
Collapse
|
23
|
Cardoso-Gustavson P, Dias MG, Costa FOB, de Moura Leite Camargos G, da Cruz Centeno D. Imaging of glyphosate uptake and identification of early microscopic markers in leaves of C3 and C4 glyphosate-resistant and -susceptible species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:502-513. [PMID: 30075454 DOI: 10.1016/j.ecoenv.2018.07.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Details of glyphosate uptake are not fully elucidated, and although this herbicide promotes important alterations in the plant phenotype few hours after its application (early responses), a detailed description of the presumable changes in plant anatomy is still poorly assessed by now. Due to glyphosate effects over leaf permeability, the use of an inert fluorescent tracer may allow the observation of the uptake event in situ. In addition, microscopic markers might put a light on the recognition of glyphosate-resistant (GR) and -susceptible (GS) species or varieties, which may vary in C3 and C4 species due to their putative distinct leaf anatomy. Here we aimed (i) to provide a new technique to track the route of glyphosate formulation towards leaf tissues using a fluorescent tracer, and (ii) to describe the early specific microscopic alterations in GR and GS -C3 or -C4 caused by the glyphosate formulation. Roundup Transorb® was applied in seedlings cultivated in a greenhouse and response alterations in leaf anatomy were described. Lucifer Yellow CH (LYCH) was applied over the same region where glyphosate formulation was previously applied to track the alterations in leaf permeability caused by this herbicide. LYCH successfully tracked the glyphosate formulation uptake, reaching the vascular bundles of GS species, and becoming retained in leaf tissues of GR species. All species exhibited a decrease in chlorophyll content at the site of glyphosate application regardless of their photosynthetic metabolism or susceptibility. GS species showed alterations in chloroplast morphology and activity of non-enzymatic antioxidants (carotenoids and flavonoids), in addition to symptoms indicating a process of accelerated cell senescence. A specific type of cell necrosis (hypersensitive response) was observed in GR-C4 species as a way to prevent the translocation of this herbicide, while GR-C3 species accumulated phenolic compounds inside the vacuole, probably sequestrating and inactivating the glyphosate action. This study provides a reliable tool to track glyphosate formulation uptake in situ and is the first attempt to the identification of early specific microscopic markers caused by glyphosate formulation.
Collapse
Affiliation(s)
- Poliana Cardoso-Gustavson
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil; Oxiteno S.A., Research and Development, Agrochemicals, 09380-440 Mauá, Brazil.
| | - Marcia Gonçalves Dias
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil
| | - Fernanda Oliveira Barreto Costa
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil; Oxiteno S.A., Research and Development, Agrochemicals, 09380-440 Mauá, Brazil
| | | | - Danilo da Cruz Centeno
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil
| |
Collapse
|
24
|
Probing the Action of Permeation Enhancers Sodium Cholate and N-dodecyl-β-D-maltoside in a Porcine Jejunal Mucosal Explant System. Pharmaceutics 2018; 10:pharmaceutics10040172. [PMID: 30279382 PMCID: PMC6320951 DOI: 10.3390/pharmaceutics10040172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
The small intestinal epithelium constitutes a major permeability barrier for the oral administration of therapeutic drugs with poor bioavailability, and permeation enhancers (PEs) are required to increase the paracellular and/or transcellular uptake of such drugs. Many PEs act as surfactants by perturbing cell membrane integrity and causing permeabilization by leakage or endocytosis. The aim of the present work was to study the action of sodium cholate (NaC) and N-dodecyl-β-D-maltoside (DDM), using a small intestinal mucosal explant system. At 2 mM, both NaC and DDM caused leakage into the enterocyte cytosol of the fluorescent probe Lucifer Yellow, but they also blocked the constitutive endocytotic pathway from the brush border. In addition, an increased paracellular passage of 3-kDa Texas Red Dextran into the lamina propria was observed. By electron microscopy, both PEs disrupted the hexagonal organization of microvilli of the brush border and led to the apical extrusion of vesicle-like and amorphous cell debris to the lumen. In conclusion, NaC and DDM acted in a multimodal way to increase the permeability of the jejunal epithelium both by paracellular and transcellular mechanisms. However, endocytosis, commonly thought to be an uptake mechanism that may be stimulated by PEs, was not involved in the transcellular process.
Collapse
|
25
|
Yang Y, Mah A, Yuk IH, Grewal PS, Pynn A, Cole W, Gao D, Zhang F, Chen J, Gennaro L, Schöneich C. Investigation of Metal-Catalyzed Antibody Carbonylation With an Improved Protein Carbonylation Assay. J Pharm Sci 2018; 107:2570-2580. [DOI: 10.1016/j.xphs.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
|
26
|
Pietak A, Levin M. Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:52-68. [PMID: 29626560 PMCID: PMC10464501 DOI: 10.1016/j.pbiomolbio.2018.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Positional information describes pre-patterns of morphogenetic substances that alter spatio-temporal gene expression to instruct development of growth and form. A wealth of recent data indicate bioelectrical properties, such as the transmembrane potential (Vmem), are involved as instructive signals in the spatiotemporal regulation of morphogenesis. However, the mechanistic relationships between Vmem and molecular positional information are only beginning to be understood. Recent advances in computational modeling are assisting in the development of comprehensive frameworks for mechanistically understanding how endogenous bioelectricity can guide anatomy in a broad range of systems. Vmem represents an extraordinarily strong electric field (∼1.0 × 106 V/m) active over the thin expanse of the plasma membrane, with the capacity to influence a variety of downstream molecular signaling cascades. Moreover, in multicellular networks, intercellular coupling facilitated by gap junction channels may induce directed, electrodiffusive transport of charged molecules between cells of the network to generate new positional information patterning possibilities and characteristics. Given the demonstrated role of Vmem in morphogenesis, here we review current understanding of how Vmem can integrate with molecular regulatory networks to control single cell state, and the unique properties bioelectricity adds to transport phenomena in gap junction-coupled cell networks to facilitate self-assembly of morphogen gradients and other patterns. Understanding how Vmem integrates with biochemical regulatory networks at the level of a single cell, and mechanisms through which Vmem shapes molecular positional information in multicellular networks, are essential for a deep understanding of body plan control in development, regeneration and disease.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts, USA; Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
27
|
Danielsen EM, Hansen GH. Impact of cell-penetrating peptides (CPPs) melittin and Hiv-1 Tat on the enterocyte brush border using a mucosal explant system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1589-1599. [DOI: 10.1016/j.bbamem.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022]
|
28
|
Danielsen EM, Hansen GH. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system. Tissue Barriers 2018; 5:e1361900. [PMID: 28837408 DOI: 10.1080/21688370.2017.1361900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular passage can be achieved by cell membrane permeabilization and/or by endocytic uptake and subsequent transcytosis. One broad class of PEs is surfactants which act by inserting into the cell membrane, thereby perturbing its integrity, but little is known about how the dynamics of the membrane are affected. In the present work, the interaction of the surfactants lauroyl-L-carnitine, 1-decanoyl-rac-glycerol, and nonaethylene glycol monododecyl ether with the intestinal epithelium was studied in organ cultured pig jejunal mucosal explants. As expected, at 2 mM, these agents rapidly permeabilized the enterocytes for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border microvilli. Such a membrane fusogenic activity could also explain the observed formation of vesicle-like structures and large vacuoles along the lateral cell membranes of the enterocytes induced by the PEs. We conclude that the surfactant action of the PEs selected in this study not only permeabilized the enterocytes, but profoundly changed the dynamic properties of their constituent cell membranes.
Collapse
Affiliation(s)
- E Michael Danielsen
- a Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Gert H Hansen
- a Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
29
|
Sears JC, Broadie K. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci 2018; 10:440. [PMID: 29375303 PMCID: PMC5770364 DOI: 10.3389/fnmol.2017.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.
Collapse
Affiliation(s)
- James C. Sears
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
30
|
Bose A, Basu R, Maulik M, Das Sarma J. Loss of Cx43-Mediated Functional Gap Junction Communication in Meningeal Fibroblasts Following Mouse Hepatitis Virus Infection. Mol Neurobiol 2018; 55:6558-6571. [PMID: 29327203 PMCID: PMC7090783 DOI: 10.1007/s12035-017-0861-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 10/28/2022]
Abstract
Mouse hepatitis virus (MHV) infection causes meningoencephalitis by disrupting the neuro-glial and glial-pial homeostasis. Recent studies suggest that MHV infection alters gap junction protein connexin 43 (Cx43)-mediated intercellular communication in brain and primary cultured astrocytes. In addition to astrocytes, meningeal fibroblasts also express high levels of Cx43. Fibroblasts in the meninges together with the basal lamina and the astrocyte endfeet forms the glial limitans superficialis as part of the blood-brain barrier (BBB). Alteration of glial-pial gap junction intercellular communication (GJIC) in MHV infection has the potential to affect the integrity of BBB. Till date, it is not known if viral infection can modulate Cx43 expression and function in cells of the brain meninges and thus affect BBB permeability. In the present study, we have investigated the effect of MHV infection on Cx43 localization and function in mouse brain meningeal cells and primary meningeal fibroblasts. Our results show that MHV infection reduces total Cx43 levels and causes its intracellular retention in the perinuclear compartments reducing its surface expression. Reduced trafficking of Cx43 to the cell surface in MHV-infected cells is associated with loss functional GJIC. Together, these data suggest that MHV infection can directly affect expression and cellular distribution of Cx43 resulting in loss of Cx43-mediated GJIC in meningeal fibroblasts, which may be associated with altered BBB function observed in acute infection.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
31
|
Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández‐Lodeiro J, Fernández‐Lodeiro A, Djafari J, Capelo JL, Lodeiro C. Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes: A Dual-Color Flag. ChemistryOpen 2018; 7:9-52. [PMID: 29318095 PMCID: PMC5754553 DOI: 10.1002/open.201700135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
Red and green are two of the most-preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune-staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most-relevant results on the use of red and green fluorescent dyes in the fields of bio-, chemo- and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron-dipyrromethene (BODIPY), 7-nitobenz-2-oxa-1,3-diazole-4-yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P-oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed.
Collapse
Affiliation(s)
- Elisabete Oliveira
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Emilia Bértolo
- Biomolecular Research GroupSchool of Human and Life SciencesCanterbury Christ Church UniversityCanterburyCT1 1QUUK
| | - Cristina Núñez
- Research UnitHospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS)27003LugoSpain
| | - Viviane Pilla
- Instituto de FísicaUniversidade Federal de Uberlândia-UFUAv. João Naves de Ávila 2121Uberlândia, MG38400-902Brazil
| | - Hugo M. Santos
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Javier Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Adrian Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Jamila Djafari
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - José Luis Capelo
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Carlos Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| |
Collapse
|
32
|
Kennedy T, Broadie K. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J Neurosci 2017; 37:9844-9858. [PMID: 28887386 PMCID: PMC5637114 DOI: 10.1523/jneurosci.0723-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/29/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function.SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Department of Biological Sciences,
- Department of Cell and Developmental Biology, and
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
33
|
Muffly MK, Chen MI, Claure RE, Drover DR, Efron B, Fitch WL, Hammer GB. Small-Volume Injections. Anesth Analg 2017; 125:1192-1199. [DOI: 10.1213/ane.0000000000001976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 2017; 77:522-547. [PMID: 27582044 PMCID: PMC5412853 DOI: 10.1002/dneu.22447] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017.
Collapse
Affiliation(s)
- I Martha Skerrett
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| | - Jamal B Williams
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| |
Collapse
|
35
|
Alberto AVP, Bonavita AG, Fidalgo-Neto AA, Berçot F, Alves LA. Single-cell Microinjection for Cell Communication Analysis. J Vis Exp 2017. [PMID: 28287521 DOI: 10.3791/50836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gap junctions are intercellular channels that allow the communication of neighboring cells. This communication depends on the contribution of a hemichannel by each neighboring cell to form the gap junction. In mammalian cells, the hemichannel is formed by six connexins, monomers with four transmembrane domains and a C and N terminal within the cytoplasm. Gap junctions permit the exchange of ions, second messengers, and small metabolites. In addition, they have important roles in many forms of cellular communication within physiological processes such as synaptic transmission, heart contraction, cell growth and differentiation. We detail how to perform a single-cell microinjection of Lucifer Yellow to visualize cellular communication via gap-junctions in living cells. It is expected that in functional gap junctions, the dye will diffuse from the loaded cell to the connected cells. It is a very useful technique to study gap junctions since you can evaluate the diffusion of the fluorescence in real time. We discuss how to prepare the cells and the micropipette, how to use a micromanipulator and inject a low molecular weight fluorescent dye in an epithelial cell line.
Collapse
Affiliation(s)
| | - André G Bonavita
- Institute Oswaldo Cruz, Laboratory of Cellular Communication, Oswaldo Cruz Foundation
| | | | - Filipe Berçot
- Institute Oswaldo Cruz, Laboratory of Cellular Communication, Oswaldo Cruz Foundation
| | - Luiz A Alves
- Institute Oswaldo Cruz, Laboratory of Cellular Communication, Oswaldo Cruz Foundation;
| |
Collapse
|
36
|
Blum E, Procacci P, Conte V, Sartori P, Hanani M. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Exp Cell Res 2017; 350:236-241. [DOI: 10.1016/j.yexcr.2016.11.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/08/2023]
|
37
|
Kirtane AR, Narayan P, Liu G, Panyam J. Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0293-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Antonatou E, Hoogewijs K, Kalaitzakis D, Baudot A, Vassilikogiannakis G, Madder A. Singlet Oxygen-Induced Furan Oxidation for Site-Specific and Chemoselective Peptide Ligation. Chemistry 2016; 22:8457-61. [PMID: 27113264 DOI: 10.1002/chem.201601113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 01/06/2023]
Abstract
A novel chemoselective ligation methodology has been developed for the facile construction of peptide-based fluorescent probes. Furan-containing peptides were activated by singlet oxygen and covalently engaged by nitrogen nucleophiles to yield stable conjugates. Singlet oxygen was compatible with sensitive amino acid residues within the peptides and a range of fluorophores, bearing different functionalities, were successfully incorporated, illustrating the broad scope of the developed strategy.
Collapse
Affiliation(s)
- Eirini Antonatou
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Gent, Belgium
| | - Kurt Hoogewijs
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Gent, Belgium.,Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Andreas Baudot
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Gent, Belgium
| | | | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Gent, Belgium.
| |
Collapse
|
39
|
Niskanen J, Zhang I, Xue Y, Golberg D, Maysinger D, Winnik FM. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine (Lond) 2016; 11:447-63. [PMID: 26891593 DOI: 10.2217/nnm.15.214] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM To evaluate the response of cells to boron nitride nanotubes (BNNTs) carrying fluorescent probes or drugs in their inner channel by assessment of the cellular localization of the fluorescent cargo, evaluation of the in vitro release and biological activity of a drug (curcumin) loaded in BNNTs. METHODS Cells treated with curcumin-loaded BNNTs and stimulated with lipopolysaccharide were assessed for nitric oxide release and stimulation of IL-6 and TNF-α. The cellular trafficking of two cell-permeant dyes and a non-cell-permeant dye loaded within BNNTs was imaged. RESULTS BNNTs loaded with up to 13 wt% fluorophores were internalized by cells and controlled release of curcumin triggered cellular pathways associated with the known anti-inflammatory effects of the drug. CONCLUSION The overall findings indicate that BNNTs can function as nanocarriers of biologically relevant probes/drugs allowing one to examine/control their local intracellular localization and biochemical effects, leading the way to applications as intracellular nanosensors.
Collapse
Affiliation(s)
- Jukka Niskanen
- Université de Montréal, Faculté de Pharmacie et Département de Chimie, CP 6128 Succursale Centre Ville, Montréal, QC, H3C 3J7, Canada
| | - Issan Zhang
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6, Montréal, Québec, Canada
| | - Yanming Xue
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dmitri Golberg
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6, Montréal, Québec, Canada
| | - Françoise M Winnik
- Université de Montréal, Faculté de Pharmacie et Département de Chimie, CP 6128 Succursale Centre Ville, Montréal, QC, H3C 3J7, Canada.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
40
|
Navarro JRG, Wennmalm S, Godfrey J, Breitholtz M, Edlund U. Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing. Biomacromolecules 2016; 17:1101-9. [DOI: 10.1021/acs.biomac.5b01716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien R. G. Navarro
- Fiber
and Polymer Technology, Royal Institute of Technology (KTH), Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Stefan Wennmalm
- Science
for Life Laboratory, Department of Applied Physics, KTH-Royal Institute of Technology, SE-171 65 Solna, Sweden
| | - Jamie Godfrey
- Fiber
and Polymer Technology, Royal Institute of Technology (KTH), Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Magnus Breitholtz
- Department
of Environmental Science and Analytical Chemistry, Stockholm University, SE-114
18 Stockholm, Sweden
| | - Ulrica Edlund
- Fiber
and Polymer Technology, Royal Institute of Technology (KTH), Teknikringen 56, SE-100 44 Stockholm, Sweden
| |
Collapse
|
41
|
Schwartz S, Fixler D, Popovtzer R, Shefi O. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles. JOURNAL OF BIOPHOTONICS 2015; 8:944-951. [PMID: 25755202 DOI: 10.1002/jbio.201400136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/01/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right).
Collapse
Affiliation(s)
- Shmulik Schwartz
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel.
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
42
|
Mwilu SK, Okello VA, Osonga FJ, Miller S, Sadik OA. A new substrate for alkaline phosphatase based on quercetin pentaphosphate. Analyst 2015; 139:5472-81. [PMID: 25180235 DOI: 10.1039/c4an00931b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the characterization and application of quercetin pentaphosphate (QPP), a new fluorimetric substrate for the detection of alkaline phosphatase (ALP) activity. QPP exhibits major absorbance peaks at 260/410 nm and a strong fluorescence at λex/λem = 425/510 nm at alkaline pH. The product of enzymatic reaction between QPP and ALP has a strong absorbance peak at 324 nm with no fluorescence at the investigated wavelengths. The product generated from the enzymatic reaction was found to be proportional to ALP activity, and the ALP activity was monitored by the absorbance difference at 310 nm and 410 nm. The change in absorbance was found to be proportional to the ALP concentration with a linear detection range and a limit of detection of 0.01-16 U L(-1) and 0.766 U L(-1), respectively. The enzyme activity was also monitored by evaluating the change in fluorescence emission at 530 nm with a linear range of 0.01-8 U L(-1) and a detection limit of 0.062 U L(-1). Further, the validity of the new substrate for ALP in conjugated form was tested using Bacillus globigii spores as the model sample. A detection limit of 5998 spores per mL was obtained using QPP as the substrate. Unlike the parent compound, QPP substrate exhibits stability in solution for over three and half months and was stable under storage for over 12 months. The results obtained demonstrate the effectiveness of QPP for ALP and compare well with other fluorescent substrates, such as Fluorescein, Alexa Fluor and Cy5.
Collapse
Affiliation(s)
- Samuel K Mwilu
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring (CASE), State University of New York-Binghamton, P. O. Box 6000, Binghamton, NY 13902, USA.
| | | | | | | | | |
Collapse
|
43
|
Ikeda M, Hojo Y, Komatsuzaki Y, Okamoto M, Kato A, Takeda T, Kawato S. Hippocampal spine changes across the sleep-wake cycle: corticosterone and kinases. J Endocrinol 2015; 226:M13-27. [PMID: 26034071 DOI: 10.1530/joe-15-0078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
The corticosterone (CORT) level changes along the circadian rhythm. Hippocampus is sensitive to CORT, since glucocorticoid receptors are highly expressed. In rat hippocampus fixed in a living state every 3 h, we found that the dendritic spine density of CA1 pyramidal neurons increased upon waking (within 3 h), as compared with the spine density in the sleep state. Particularly, the large-head spines increased. The observed change in the spine density may be due to the change in the hippocampal CORT level, since the CORT level at awake state (∼30 nM) in cerebrospinal fluid was higher than that at sleep state (∼3 nM), as observed from our earlier study. In adrenalectomized (ADX) rats, such a wake-induced increase of the spine density disappeared. S.c. administration of CORT into ADX rats rescued the decreased spine density. By using isolated hippocampal slices, we found that the application of 30 nM CORT increased the spine density within 1 h and that the spine increase was mediated via PKA, PKC, ERK MAPK, and LIMK signaling pathways. These findings suggest that the moderately rapid increase of the spine density on waking might mainly be caused by the CORT-driven kinase networks.
Collapse
Affiliation(s)
- Muneki Ikeda
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Masahiro Okamoto
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Asami Kato
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Taishi Takeda
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Suguru Kawato
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| |
Collapse
|
44
|
Weir RK, Forghany R, Smith SE, Patterson PH, McAllister AK, Schumann CM, Bauman MD. Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation. Brain Behav Immun 2015; 48:139-46. [PMID: 25816799 PMCID: PMC5671487 DOI: 10.1016/j.bbi.2015.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Maternal infection during pregnancy increases the risk for neurodevelopmental disorders in offspring. Rodent models have played a critical role in establishing maternal immune activation (MIA) as a causal factor for altered brain and behavioral development in offspring. We recently extended these findings to a species more closely related to humans by demonstrating that rhesus monkeys (Macaca mulatta) prenatally exposed to MIA also develop abnormal behaviors. Here, for the first time, we present initial evidence of underlying brain pathology in this novel nonhuman primate MIA model. Pregnant rhesus monkeys were injected with a modified form of the viral mimic polyI:C (poly ICLC) or saline at the end of the first trimester. Brain tissue was collected from the offspring at 3.5 years and blocks of dorsolateral prefrontal cortex (BA46) were used to analyze neuronal dendritic morphology and spine density using the Golgi-Cox impregnation method. For each case, 10 layer III pyramidal cells were traced in their entirety, including all apical, oblique and basal dendrites, and their spines. We further analyzed somal size and apical dendrite trunk morphology in 30 cells per case over a 30 μm section located 100±10 μm from the soma. Compared to controls, apical dendrites of MIA-treated offspring were smaller in diameter and exhibited a greater number of oblique dendrites. These data provide the first evidence that prenatal exposure to MIA alters dendritic morphology in a nonhuman primate MIA model, which may have profound implications for revealing the underlying neuropathology of neurodevelopmental disorders related to maternal infection.
Collapse
Affiliation(s)
- Ruth K. Weir
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA,Corresponding author (for editorial process), Ruth Weir Ph.D. Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA, USA ; The MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA. 916-703-0341
| | - Reihaneh Forghany
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA
| | - Stephen E.P. Smith
- Dept. of Immunology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | | | | | - Cynthia M. Schumann
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA
| | - Melissa D. Bauman
- The Department of Psychiatry and MIND Institute, University of California, Davis, CA, 95817, USA
| |
Collapse
|
45
|
Boesmans W, Hao MM, Vanden Berghe P. Optical Tools to Investigate Cellular Activity in the Intestinal Wall. J Neurogastroenterol Motil 2015; 21:337-51. [PMID: 26130630 PMCID: PMC4496899 DOI: 10.5056/jnm15096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate activity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our understanding of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Feldman-Goriachnik R, Belzer V, Hanani M. Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions. Glia 2015; 63:2121-2132. [DOI: 10.1002/glia.22881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Vitali Belzer
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| |
Collapse
|
47
|
Poulsen JN, Warwick R, Duroux M, Hanani M, Gazerani P. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia. Exp Cell Res 2015; 336:94-9. [PMID: 25999145 DOI: 10.1016/j.yexcr.2015.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
Communications between satellite glial cells and neighboring neurons within sensory ganglia may contribute to neuropathic and inflammatory pain. To elucidate the role of satellite glial cells in chemotherapy-induced pain, we examined the effects of oxaliplatin on the gap junction-mediated coupling between these cells. We also examined whether the gap junction blocker, carbenoxolone, can reverse the coupling. Primary cultures of mice trigeminal ganglia, 24-48h after cell isolation, were used. Satellite glial cells were injected with Lucifer yellow in the presence or absence of oxaliplatin (60 μM). In addition, the effect of carbenoxolone (100 μM) on coupling, and the expression of connexin 43 proteins were evaluated. Dye coupling between adjacent satellite glial cells was significantly increased (2.3-fold, P<0.05) following a 2h incubation with oxaliplatin. Adding carbenoxolone to the oxaliplatin-treated cultures reversed oxaliplatin-evoked coupling to baseline (P<0.05). Immunostaining showed no difference between expression of connexin 43 in control and oxaliplatin-treated cultures. Our findings indicated that oxaliplatin-increased gap junction-mediated coupling between satellite glial cells in primary cultures of mouse trigeminal ganglia, and carbenoxolone reversed this effect. Hence, it is proposed that increased gap junction-mediated coupling was seen between satellite glial cells in TG. This observation together with our previous data obtained from a behavioral study suggests that this phenomenon might contribute to chemotherapy-induced nociception following oxaliplatin treatment.
Collapse
Affiliation(s)
- Jeppe Nørgaard Poulsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7D3, Aalborg East DK-9220, Denmark
| | - Rebekah Warwick
- Laboratory of Experimental Surgery, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel
| | - Meg Duroux
- Laboratory for Cancer Biology, Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 3B, Aalborg East DK-9220, Denmark
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel
| | - Parisa Gazerani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7D3, Aalborg East DK-9220, Denmark; Laboratory for Cancer Biology, Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 3B, Aalborg East DK-9220, Denmark.
| |
Collapse
|
48
|
Danielsen EM. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface. Histochem Cell Biol 2014; 143:545-56. [DOI: 10.1007/s00418-014-1302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
|
49
|
Carbone SE, Jovanovska V, Nurgali K, Brookes SJH. Human enteric neurons: morphological, electrophysiological, and neurochemical identification. Neurogastroenterol Motil 2014; 26:1812-6. [PMID: 25293378 PMCID: PMC4265287 DOI: 10.1111/nmo.12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/13/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Access to tissue, difficulties with dissection, and poor visibility of enteric ganglia have hampered electrophysiological recordings of human enteric neurons. Here, we report a method to combine intracellular recording with simultaneous morphological identification of neurons in the intact myenteric plexus of human colon ex vivo. METHODS Specimens of human colon were dissected into flat-sheet preparations with the myenteric plexus exposed. Myenteric neurons were impaled with conventional microelectrodes containing 5% 5,6-carboxyfluorescein in 20 mM Tris buffer and 1 M KCl. KEY RESULTS Electrophysiological recordings identified myenteric neurons with S and AH type properties (n = 13, N = 7) which were dye filled and classified during the recording as Dogiel type I (n = 10), Dogiel type II (n = 2), or filamentous (n = 1) cells. This classification was confirmed after fixation, in combination with immunohistochemical characterization. CONCLUSIONS & INFERENCES This method allows electrophysiological characterization with simultaneous identification of morphology. It can be used to identify recorded cells immediately after impalement and greatly facilitates recordings of human myenteric neurons in freshly dissected specimens of tissue. It can also be combined with immunohistochemical labeling of recorded cells.
Collapse
Affiliation(s)
- S E Carbone
- College of Health and Biomedicine, Western Centre for Health, Research and Education, Victoria UniversitySt Albans, VIC, Australia
| | - V Jovanovska
- College of Health and Biomedicine, Western Centre for Health, Research and Education, Victoria UniversitySt Albans, VIC, Australia
| | - K Nurgali
- College of Health and Biomedicine, Western Centre for Health, Research and Education, Victoria UniversitySt Albans, VIC, Australia
| | - S J H Brookes
- Discipline of Human Physiology, Centre for Neuroscience, Flinders UniversityAdelaide, SA, Australia
| |
Collapse
|
50
|
Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease. Microbes Infect 2014; 16:893-901. [PMID: 25150689 DOI: 10.1016/j.micinf.2014.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/11/2014] [Accepted: 08/13/2014] [Indexed: 01/30/2023]
Abstract
Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.
Collapse
|