1
|
Athmuri DN, Bhattacharyya J, Bhatnagar N, Shiekh PA. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: a biomaterials perspective. J Mater Chem B 2024; 12:10490-10515. [PMID: 39302443 DOI: 10.1039/d4tb01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements. Consequently, biomaterials have gained considerable attention to alleviate hypoxia and oxidative stress in cardiovascular diseases. Numerous oxygen releasing and antioxidant biomaterials have been developed and proven to alleviate hypoxia and oxidative stress. This review article summarizes the mechanisms involved in cardiovascular pathologies due to hypoxia and oxidative stress, as well as the treatment modalities currently in practice. The applications, benefits and possible shortcomings of these approaches have been discussed. Additionally, the review explores the role of novel biomaterials in combating the limitations of existing approaches, primarily focusing on the development of oxygen-releasing and antioxidant biomaterials for cardiac repair and regeneration. It also directs attention to various other potential applications with critical insights for further advancement in this area.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jayanta Bhattacharyya
- Bio-therapeutics Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
2
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Motta I, Soccio M, Guidotti G, Lotti N, Pasquinelli G. Hydrogels for Cardio and Vascular Tissue Repair and Regeneration. Gels 2024; 10:196. [PMID: 38534614 DOI: 10.3390/gels10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, affects the heart and arteries with a variety of clinical manifestations, the most dramatic of which are myocardial infarction (MI), abdominal aortic aneurysm (AAA), and intracranial aneurysm (IA) rupture. In MI, necrosis of the myocardium, scar formation, and loss of cardiomyocytes result from insufficient blood supply due to coronary artery occlusion. Beyond stenosis, the arteries that are structurally and functionally connected to the cardiac tissue can undergo pathological dilation, i.e., aneurysmal dilation, with high risk of rupture. Aneurysms of the intracranial arteries (IAs) are more commonly seen in young adults, whereas those of the abdominal aorta (AAA) are predominantly seen in the elderly. IAs, unpredictably, can undergo rupture and cause life-threatening hemorrhage, while AAAs can result in rupture, internal bleeding and high mortality rate. In this clinical context, hydrogels, three-dimensional networks of water-seizing polymers, have emerged as promising biomaterials for cardiovascular tissue repair or protection due to their biocompatibility, tunable properties, and ability to encapsulate and release bioactive molecules. This review provides an overview of the current state of research on the use of hydrogels as an innovative platform to promote cardiovascular-specific tissue repair in MI and functional recovery or protection in aneurysmal dilation.
Collapse
Affiliation(s)
- Ilenia Motta
- Alma Mater Institute on Healthy Planet, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Gao H, Liu S, Qin S, Yang J, Yue T, Ye B, Tang Y, Feng J, Hou J, Danzeng D. Injectable hydrogel-based combination therapy for myocardial infarction: a systematic review and Meta-analysis of preclinical trials. BMC Cardiovasc Disord 2024; 24:119. [PMID: 38383333 PMCID: PMC10882925 DOI: 10.1186/s12872-024-03742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION This study evaluates the effectiveness of a combined regimen involving injectable hydrogels for the treatment of experimental myocardial infarction. PATIENT CONCERNS Myocardial infarction is an acute illness that negatively affects quality of life and increases mortality rates. Experimental models of myocardial infarction can aid in disease research by allowing for the development of therapies that effectively manage disease progression and promote tissue repair. DIAGNOSIS Experimental animal models of myocardial infarction were established using the ligation method on the anterior descending branch of the left coronary artery (LAD). INTERVENTIONS The efficacy of intracardiac injection of hydrogels, combined with cells, drugs, cytokines, extracellular vesicles, or nucleic acid therapies, was evaluated to assess the functional and morphological improvements in the post-infarction heart achieved through the combined hydrogel regimen. OUTCOMES A literature review was conducted using PubMed, Web of Science, Scopus, and Cochrane databases. A total of 83 papers, including studies on 1332 experimental animals (rats, mice, rabbits, sheep, and pigs), were included in the meta-analysis based on the inclusion and exclusion criteria. The overall effect size observed in the group receiving combined hydrogel therapy, compared to the group receiving hydrogel treatment alone, resulted in an ejection fraction (EF) improvement of 8.87% [95% confidence interval (CI): 7.53, 10.21] and a fractional shortening (FS) improvement of 6.31% [95% CI: 5.94, 6.67] in rat models, while in mice models, the improvements were 16.45% [95% CI: 11.29, 21.61] for EF and 5.68% [95% CI: 5.15, 6.22] for FS. The most significant improvements in EF (rats: MD = 9.63% [95% CI: 4.02, 15.23]; mice: MD = 23.93% [95% CI: 17.52, 30.84]) and FS (rats: MD = 8.55% [95% CI: 2.54, 14.56]; mice: MD = 5.68% [95% CI: 5.15, 6.22]) were observed when extracellular vesicle therapy was used. Although there have been significant results in large animal experiments, the number of studies conducted in this area is limited. CONCLUSION The present study demonstrates that combining hydrogel with other therapies effectively improves heart function and morphology. Further preclinical research using large animal models is necessary for additional study and validation.
Collapse
Affiliation(s)
- Han Gao
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Song Liu
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Shanshan Qin
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jiali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Bengui Ye
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yue Tang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Feng
- School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Chengdu, Sichuan, China.
| | - Dunzhu Danzeng
- School of Medicine, Tibet University, Lhasa, Tibet, China.
| |
Collapse
|
5
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Patel L, Worch JC, Dove AP, Gehmlich K. The Utilisation of Hydrogels for iPSC-Cardiomyocyte Research. Int J Mol Sci 2023; 24:9995. [PMID: 37373141 PMCID: PMC10298477 DOI: 10.3390/ijms24129995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts' (FBs) and cardiomyocytes' (CMs) behaviour and morphology are influenced by their environment such as remodelling of the myocardium, thus highlighting the importance of biomaterial substrates in cell culture. Biomaterials have emerged as important tools for the development of physiological models, due to the range of adaptable properties of these materials, such as degradability and biocompatibility. Biomaterial hydrogels can act as alternative substrates for cellular studies, which have been particularly key to the progression of the cardiovascular field. This review will focus on the role of hydrogels in cardiac research, specifically the use of natural and synthetic biomaterials such as hyaluronic acid, polydimethylsiloxane and polyethylene glycol for culturing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The ability to fine-tune mechanical properties such as stiffness and the versatility of biomaterials is assessed, alongside applications of hydrogels with iPSC-CMs. Natural hydrogels often display higher biocompatibility with iPSC-CMs but often degrade quicker, whereas synthetic hydrogels can be modified to facilitate cell attachment and decrease degradation rates. iPSC-CM structure and electrophysiology can be assessed on natural and synthetic hydrogels, often resolving issues such as immaturity of iPSC-CMs. Biomaterial hydrogels can thus provide a more physiological model of the cardiac extracellular matrix compared to traditional 2D models, with the cardiac field expansively utilising hydrogels to recapitulate disease conditions such as stiffness, encourage alignment of iPSC-CMs and facilitate further model development such as engineered heart tissues (EHTs).
Collapse
Affiliation(s)
- Leena Patel
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Joshua C. Worch
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Katja Gehmlich
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
7
|
Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based Approaches for Cardiac Regeneration. Korean Circ J 2021; 51:943-960. [PMID: 34854577 PMCID: PMC8636758 DOI: 10.4070/kcj.2021.0291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is a prevalent cause of mortality and morbidity, largely due to the limited ability of cardiomyocytes to proliferate. Existing therapies for cardiac regeneration include cell-based therapies and bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having significant clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in improving cardiac function, promoting angiogenesis, and reducing adverse immune response in both human clinical trials and animal studies. These advances in therapeutic delivery via extracellular vesicles, cardiac patches, and hydrogels have the potential to enable clinical impact of cardiac regeneration therapies. The limited ability of cardiomyocytes to proliferate is a major cause of mortality and morbidity in cardiovascular diseases. There exist therapies for cardiac regeneration that are cell-based as well as that involve bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in clinical trials and animal studies in improving cardiac function, promoting angiogenesis, and reducing adverse immune response. This review will focus on current clinical studies of three contemporary biomaterials-based approaches for cardiac regeneration (extracellular vesicles, injectable hydrogels, and cardiac patches), remaining challenges and shortcomings to be overcome, and future directions for the use of biomaterials to promote cardiac regeneration.
Collapse
Affiliation(s)
- Samhita Vasu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Johnston
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Poorna MR, Jayakumar R, Chen JP, Mony U. Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids Surf B Biointerfaces 2021; 207:111991. [PMID: 34333302 DOI: 10.1016/j.colsurfb.2021.111991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be used to generate desired types of cells that belong to the three germ layers (i.e., ectoderm, endoderm and mesoderm). These cells possess great potential in regenerative medicine. Before iPSCs are used in various biomedical applications, the existing xenogeneic culture methods must be improved to meet the technical standards of safety, cost effectiveness, and ease of handling. In addition to commonly used 2D substrates, a culture system that mimics the native cellular environment in tissues will be a good choice when culturing iPS cells and differentiating them into different lineages. Hydrogels are potential candidates that recapitulate the native complex three-dimensional microenvironment. They possess mechanical properties similar to those of many soft tissues. Moreover, hydrogels support iPSC adhesion, proliferation and differentiation to various cell types. They are xeno-free and cost-effective. In addition to other substrates, such as mouse embryonic fibroblast (MEF), Matrigel, and vitronectin, the use of hydrogel-based substrates for iPSC culture and differentiation may help generate large numbers of clinical-grade cells that can be used in potential clinical applications. This review mainly focuses on the use of hydrogels for the culture and differentiation of iPSCs into various cell types and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan, ROC; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan, ROC.
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
9
|
Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021; 18:2104-2136. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
The use of bioactive scaffolds in conjunction with stem cell therapies for cardiac repair after a myocardial infarction shows significant promise for clinical translation. We performed a systematic review and meta-analysis of preclinical trials that investigated the use of bioactive scaffolds to support stem cell-aided cardiac regeneration, in comparison to stem cell treatment alone. Cochrane Library, Medline, Embase, PubMed, Scopus, Web of Science, and grey literature were searched through April 23, 2020 and 60 articles were included in the final analysis. The overall effect size observed in scaffold and stem cell-treated small animals compared to stem cell-treated controls for ejection fraction (EF) was 7.98 [95% confidence interval (CI): 6.36, 9.59] and for fractional shortening (FS) was 5.50 [95% CI: 4.35, 6.65] in small animal models. The largest improvements in EF and FS were observed when hydrogels were used (MD = 8.45 [95% CI: 6.46, 10.45] and MD = 5.76 [95% CI: 4.46, 7.05], respectively). Subgroup analysis revealed that cardiac progenitor cells had the largest effect size for FS, and was significant from pluripotent, mesenchymal and endothelial stem cell types. In large animal studies, the overall improvement of EF favoured the use of stem cell-embedded scaffolds compared to direct injection of cells (MD = 10.49 [95% CI: 6.30, 14.67]). Significant publication bias was present in the small animal trials for EF and FS. This study supports the use of bioactive scaffolds to aid in stem cell-based cardiac regeneration. Hydrogels should be further investigated in larger animal models for clinical translation.
Collapse
|
10
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
11
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000776. [PMID: 33071711 PMCID: PMC7567402 DOI: 10.1002/adfm.202000776] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X. Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [PMID: 33071711 DOI: 10.1002/adfm.201909539] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
15
|
Thomas J, Sharma A, Panwar V, Chopra V, Ghosh D. Polysaccharide-Based Hybrid Self-Healing Hydrogel Supports the Paracrine Response of Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:2013-2027. [DOI: 10.1021/acsabm.9b00074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jijo Thomas
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Anjana Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Vineeta Panwar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Deepa Ghosh
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
16
|
Li T, Liang W, Xiao X, Qian Y. Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int J Nanomedicine 2018; 13:7349-7362. [PMID: 30519019 PMCID: PMC6233477 DOI: 10.2147/ijn.s179678] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes of mortality and affecting the health status of patients. At the same time, CVDs cause a huge health and economic burden to the whole world. Although a variety of therapeutic drugs and measures have been produced to delay the progress of the disease and improve the quality of life of patients, most of the traditional therapeutic strategies can only cure the symptoms and cannot repair or regenerate the damaged ischemic myocardium. In addition, they may bring some unpleasant side effects. Therefore, it is vital to find and explore new technologies and drugs to solve the shortcomings of conventional treatments. Nanotechnology is a new way of using and manipulating the matter at the molecular scale, whose functional organization is measured in nanometers. Because nanoscale phenomena play an important role in cell signal transduction, enzyme action and cell cycle, nanotechnology is closely related to medical research. The application of nanotechnology in the field of medicine provides an alternative and novel direction for the treatment of CVDs, and shows excellent performance in the field of targeted drug therapy and the development of biomaterials. This review will briefly introduce the latest applications of nanotechnology in the diagnosis and treatment of common CVDs.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Weitao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Xijun Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Yongjun Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
17
|
The use of hydrogels for cell-based treatment of chronic kidney disease. Clin Sci (Lond) 2018; 132:1977-1994. [PMID: 30220651 DOI: 10.1042/cs20180434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage. Bioengineered hydrogels may provide a route of cell delivery to enhance treatment efficacy and optimise the targeting effectiveness while minimising any loss of cell function. In this review, we highlight the advances in stem cell therapy targeting kidney disease and discuss the emerging role of hydrogel delivery systems to fully realise the potential of adult stem cells as a regenerative therapy for CKD in humans. MSCs and EPCs mediate kidney repair through distinct paracrine effects. As a delivery system, hydrogels can prolong these paracrine effects by improving retention at the site of injury and protecting the transplanted cells from the harsh inflammatory microenvironment. We also discuss the features of a hydrogel, which may be tuned to optimise the therapeutic potential of encapsulated stem cells, including cell-adhesive epitopes, material stiffness, nanotopography, modes of gelation and degradation and the inclusion of bioactive molecules. This review concludes with a discussion of the challenges to be met for the widespread clinical use of hydrogel delivery system of stem cell therapy for CKD.
Collapse
|
18
|
Kameli SM, Khorramirouz R, Eftekharzadeh S, Fendereski K, Daryabari SS, Tavangar SM, Kajbafzadeh AM. Application of tissue-engineered pericardial patch in rat models of myocardial infarction. J Biomed Mater Res A 2018; 106:2670-2678. [PMID: 29901284 DOI: 10.1002/jbm.a.36464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/05/2018] [Accepted: 05/22/2018] [Indexed: 11/08/2022]
Abstract
Myocardial infarction (MI) is a major cause of mortality and morbidity in industrialized societies. Myocardial tissue engineering is an alternative and promising approach for substituting injured myocardium through development and seeding of appropriate scaffolds. In this study, we investigated the efficacy of using an acellular pericardium to deliver autologous mesenchymal stem cells (MSCs) to the infarcted site for regeneration of the myocardium. MI was induced in two groups of rats; G1 or MI group, and G2 or patch-implanted group. In G2 group, rats had undergone transplantation of a pericardial patch which was previously seeded with adipose tissue derived MSCs. To evaluate the efficacy of the pericardial patches, biopsies were taken one month after transplantation. In order to evaluate the extent of regeneration, inflammation and fibrosis, histopathological investigations including hematoxylin and eosin (H&E), Sirius Red and trichrome staining were performed. In addition, immunohistochemical investigations by Desmin as well as CD68, CD45 and CD34 antibodies were performed. Furthermore, Tunnel assay was performed to detect the extent of apoptosis. H&E assessments of biopsies from the patch-implanted group confirmed presence of pre-seeded pericardium containing MSCs along with neo-vessels. Immunohistochemical assessments demonstrated higher number of CD34 positive cells and Desmin-positive cells in the patch implanted group (p < 0.05); these findings are suggestive of cardiomyocyte regeneration in G2 rats. This study demonstrates the advantages of application of natural acellular scaffolds as cell delivery devices and it emphasizes neovascularization following this approach. However, further investigations are required to analyze long-term cardiac function in recipients. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2670-2678, 2018.
Collapse
Affiliation(s)
- Seyedeh Maryam Kameli
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Khorramirouz
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Eftekharzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarad Fendereski
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sima Daryabari
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ketabat F, Khorshidi S, Karkhaneh A. Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering. POLYM INT 2018. [DOI: 10.1002/pi.5599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Farinaz Ketabat
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Sajedeh Khorshidi
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
20
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu R, Hu X, Wang J. Concise Review: Optimized Strategies for Stem Cell-Based Therapy in Myocardial Repair: Clinical Translatability and Potential Limitation. Stem Cells 2018; 36:482-500. [PMID: 29330880 DOI: 10.1002/stem.2778] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022]
Abstract
Ischemic heart diseases (IHDs) remain major public health problems with high rates of morbidity and mortality worldwide. Despite significant advances, current therapeutic approaches are unable to rescue the extensive and irreversible loss of cardiomyocytes caused by severe ischemia. Over the past 16 years, stem cell-based therapy has been recognized as an innovative strategy for cardiac repair/regeneration and functional recovery after IHDs. Although substantial preclinical animal studies using a variety of stem/progenitor cells have shown promising results, there is a tremendous degree of skepticism in the clinical community as many stem cell trials do not confer any beneficial effects. How to accelerate stem cell-based therapy toward successful clinical application attracts considerate attention. However, many important issues need to be fully addressed. In this Review, we have described and compared the effects of different types of stem cells with their dose, delivery routes, and timing that have been routinely tested in recent preclinical and clinical findings. We have also discussed the potential mechanisms of action of stem cells, and explored the role and underlying regulatory components of stem cell-derived secretomes/exosomes in myocardial repair. Furthermore, we have critically reviewed the different strategies for optimizing both donor stem cells and the target cardiac microenvironments to enhance the engraftment and efficacy of stem cells, highlighting their clinical translatability and potential limitation. Stem Cells 2018;36:482-500.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Tang J, Cui X, Caranasos TG, Hensley MT, Vandergriff AC, Hartanto Y, Shen D, Zhang H, Zhang J, Cheng K. Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction. ACS NANO 2017; 11:9738-9749. [PMID: 28929735 PMCID: PMC5656981 DOI: 10.1021/acsnano.7b01008] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 05/20/2023]
Abstract
Stem cell transplantation is currently implemented clinically but is limited by low retention and engraftment of transplanted cells and the adverse effects of inflammation and immunoreaction when allogeneic or xenogeneic cells are used. Here, we demonstrate the safety and efficacy of encapsulating human cardiac stem cells (hCSCs) in thermosensitive poly(N-isopropylacrylamine-co-acrylic acid) or P(NIPAM-AA) nanogel in mouse and pig models of myocardial infarction (MI). Unlike xenogeneic hCSCs injected in saline, injection of nanogel-encapsulated hCSCs does not elicit systemic inflammation or local T cell infiltrations in immunocompetent mice. In mice and pigs with acute MI, injection of encapsulated hCSCs preserves cardiac function and reduces scar sizes, whereas injection of hCSCs in saline has an adverse effect on heart healing. In conclusion, thermosensitive nanogels can be used as a stem cell carrier: the porous and convoluted inner structure allows nutrient, oxygen, and secretion diffusion but can prevent the stem cells from being attacked by immune cells.
Collapse
Affiliation(s)
- Junnan Tang
- Department
of Cardiology, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department
of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Department
of Biomedical Engineering, University of
North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Xiaolin Cui
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Thomas G. Caranasos
- Division
of Cardiothoracic Surgery, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - M. Taylor Hensley
- Department
of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Department
of Biomedical Engineering, University of
North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Adam C. Vandergriff
- Department
of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Department
of Biomedical Engineering, University of
North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Yusak Hartanto
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Deliang Shen
- Department
of Cardiology, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hu Zhang
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Jinying Zhang
- Department
of Cardiology, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department
of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Department
of Biomedical Engineering, University of
North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
- Pharmacoengineering
and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Bakaic E, Smeets NMB, Badv M, Dodd M, Barrigar O, Siebers E, Lawlor M, Sheardown H, Hoare T. Injectable and Degradable Poly(Oligoethylene glycol methacrylate) Hydrogels with Tunable Charge Densities as Adhesive Peptide-Free Cell Scaffolds. ACS Biomater Sci Eng 2017; 4:3713-3725. [PMID: 33429602 DOI: 10.1021/acsbiomaterials.7b00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Injectable, dual-responsive, and degradable poly(oligo ethylene glycol methacrylate) (POEGMA) hydrogels are demonstrated to offer potential for cell delivery. Charged groups were incorporated into hydrazide and aldehyde-functionalized thermoresponsive POEGMA gel precursor polymers via the copolymerization of N,N'-dimethylaminoethyl methacrylate (DMAEMA) or acrylic acid (AA) to create dual-temperature/pH-responsive in situ gelling hydrogels that can be injected via narrow gauge needles. The incorporation of charge significantly broadens the swelling, degradation, and rheological profiles achievable with injectable POEGMA hydrogels without significantly increasing nonspecific protein adsorption or chronic inflammatory responses following in vivo subcutaneous injection. However, significantly different cell responses are observed upon charge incorporation, with charged gels significantly improving 3T3 mouse fibroblast cell adhesion in 2D and successfully delivering viable and proliferating ARPE-19 human retinal epithelial cells via an "all-synthetic" matrix that does not require the incorporation of cell-adhesive peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Emily Siebers
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Michael Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | |
Collapse
|
24
|
Evaluating the role of autologous mesenchymal stem cell seeded on decellularized pericardium in the treatment of myocardial infarction: an animal study. Cell Tissue Bank 2017; 18:527-538. [DOI: 10.1007/s10561-017-9629-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
|
25
|
Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 2017; 523:454-475. [DOI: 10.1016/j.ijpharm.2016.10.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023]
|
26
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
27
|
MacArthur JW, Steele AN, Goldstone AB, Cohen JE, Hiesinger W, Woo YJ. Injectable Bioengineered Hydrogel Therapy in the Treatment of Ischemic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:30. [PMID: 28337717 DOI: 10.1007/s11936-017-0530-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OPINION STATEMENT Over the past two decades, the field of cardiovascular medicine has seen the rapid development of multiple different modalities for the treatment of ischemic myocardial disease. Most research efforts have focused on strategies aimed at coronary revascularization, with significant technological advances made in percutaneous coronary interventions as well as coronary artery bypass graft surgery. However, recent research efforts have shifted towards ways to address the downstream effects of myocardial infarction on both cellular and molecular levels. To this end, the broad application of injectable hydrogel therapy after myocardial infarction has stimulated tremendous interest. In this article, we will review what hydrogels are, how they can be bioengineered in unique ways to optimize therapeutic potential, and how they can be used as part of a treatment strategy after myocardial infarction.
Collapse
Affiliation(s)
- John W MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Jeffrey E Cohen
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
| |
Collapse
|
28
|
Foster AA, Marquardt LM, Heilshorn SC. The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation. Curr Opin Chem Eng 2017; 15:15-23. [PMID: 29085771 PMCID: PMC5659597 DOI: 10.1016/j.coche.2016.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell delivery by local injection has tremendous potential as a regenerative therapy but has seen limited clinical success. Several mechanical challenges hinder therapeutic efficacy throughout all stages of cell transplantation, including mechanical forces during injection and loss of mechanical support post-injection. Recent studies have begun exploring the use of biomaterials, in particular hydrogels, to enhance stem cell transplantation by addressing the often-conflicting mechanical requirements associated with each stage of the transplantation process. This review explores recent biomaterial approaches to improve the therapeutic efficacy of stem cells delivered through local injection, with a focus on strategies that specifically address the mechanical challenges that result in cell death and/or limit therapeutic function throughout the stages of transplantation.
Collapse
Affiliation(s)
- Abbygail A Foster
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
29
|
Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction. Nat Commun 2016; 7:13306. [PMID: 27786170 PMCID: PMC5095349 DOI: 10.1038/ncomms13306] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
It is difficult to achieve minimally invasive injectable cell delivery while maintaining high cell retention and animal survival for in vivo stem cell therapy of myocardial infarction. Here we show that pluripotent stem cell aggregates pre-differentiated into the early cardiac lineage and encapsulated in a biocompatible and biodegradable micromatrix, are suitable for injectable delivery. This method significantly improves the survival of the injected cells by more than six-fold compared with the conventional practice of injecting single cells, and effectively prevents teratoma formation. Moreover, this method significantly enhances cardiac function and survival of animals after myocardial infarction, as a result of a localized immunosuppression effect of the micromatrix and the in situ cardiac regeneration by the injected cells. Stem cell therapy of myocardial infarction is hampered by poor survival of injected cells. Here the authors develop injectable aggregates of stem cells differentiated to an early cardiac stage and encapsulated in a biodegradable micromatrix, and show their enhanced therapeutic efficacy in a heart infarction mouse model.
Collapse
|
30
|
Amezcua R, Shirolkar A, Fraze C, Stout DA. Nanomaterials for Cardiac Myocyte Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E133. [PMID: 28335261 PMCID: PMC5224604 DOI: 10.3390/nano6070133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023]
Abstract
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.
Collapse
Affiliation(s)
- Rodolfo Amezcua
- Department of Mechanical and Aerospace Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
| | - Ajay Shirolkar
- Department of Mechanical and Aerospace Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
| | - Carolyn Fraze
- Deparment of Mechanical Engineering, Brigham Young University-Idaho, Rexburg, ID 83460, USA.
| | - David A Stout
- Department of Mechanical and Aerospace Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
- Department of Biomedical Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
- International Research Center for Translational Orthopaedics, Soochow University, Suzhou 215006, China.
| |
Collapse
|
31
|
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34:362-379. [PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
Collapse
|
32
|
Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500122. [PMID: 27668147 PMCID: PMC5033116 DOI: 10.1002/advs.201500122] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/09/2015] [Indexed: 05/17/2023]
Abstract
Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI.
Collapse
Affiliation(s)
- Anwarul Hasan
- Center for Biomedical Engineering Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA; Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA; Biomedical Engineering and Department of Mechanical Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Ahmad Khattab
- Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Mohammad Ariful Islam
- Laboratory of Nanomedicine and Biomaterials Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA; Laboratory for Nanoengineering and Drug Delivery Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Khaled Abou Hweij
- Department of Mechanical Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Joya Zeitouny
- Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Renae Waters
- BioIntel Research Laboratory Department of Chemical and Petroleum Engineering Bioengineering Graduate Program School of Engineering University of Kansas Lawrence KS 66045 USA
| | | | - Md Monowar Hossain
- Department of Medicine Lyell McEwin Hospital University of Adelaide South Australia 5112 Australia
| | - Arghya Paul
- BioIntel Research Laboratory Department of Chemical and Petroleum Engineering Bioengineering Graduate Program School of Engineering University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
33
|
Laiva AL, Venugopal JR, Navaneethan B, Karuppuswamy P, Ramakrishna S. Biomimetic approaches for cell implantation to the restoration of infarcted myocardium. Nanomedicine (Lond) 2015; 10:2907-30. [PMID: 26371367 DOI: 10.2217/nnm.15.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Compelling evidences accumulated over the years have proven stem cells as a promising source for regenerative medicine. However, the inadequacy with the design of delivery modalities has prolonged the research in realizing an ideal cell-based approach for the regeneration of infarcted myocardium. Currently, some modest improvements in cardiac function have been documented in clinical trials with stem cell treatments, although regenerating a fully functional myocardium remains a dream for cardiac surgeons. This review provides an overview on the significance of stem cell therapy, the current attempts to resolve the drawbacks with the cell implantation approach and the various stratagems adopted with electrospun hybrid nanofibers for implementation in myocardial regenerative therapy.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576.,Amity Institute of Nanotechnology, Amity University, Noida, UP, India
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Balchandar Navaneethan
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Priyadharsini Karuppuswamy
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
34
|
Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto M. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015; 203:23-38. [DOI: 10.1016/j.jconrel.2015.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
|
35
|
Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 2015; 84:85-106. [PMID: 25172834 DOI: 10.1016/j.addr.2014.08.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
The spectrum of ischaemic cardiomyopathy, encompassing acute myocardial infarction to congestive heart failure is a significant clinical issue in the modern era. This group of diseases is an enormous source of morbidity and mortality and underlies significant healthcare costs worldwide. Cardiac regenerative therapy, whereby pro-regenerative cells, drugs or growth factors are administered to damaged and ischaemic myocardium has demonstrated significant potential, especially preclinically. While some of these strategies have demonstrated a measure of success in clinical trials, tangible clinical translation has been slow. To date, the majority of clinical studies and a significant number of preclinical studies have utilised relatively simple delivery methods for regenerative therapeutics, such as simple systemic administration or local injection in saline carrier vehicles. Here, we review cardiac regenerative strategies with a particular focus on advanced delivery concepts as a potential means to enhance treatment efficacy and tolerability and ultimately, clinical translation. These include (i) delivery of therapeutic agents in biomaterial carriers, (ii) nanoparticulate encapsulation, (iii) multimodal therapeutic strategies and (iv) localised, minimally invasive delivery via percutaneous transcatheter systems.
Collapse
|
36
|
Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 2015; 15:55-64. [PMID: 25545323 DOI: 10.1016/j.actbio.2014.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022]
Abstract
Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.
Collapse
|
37
|
Ramasamy S, Yu F, Hong Yu Y, Srivats H, Dawe GS, Ahmed S. NogoR1 and PirB signaling stimulates neural stem cell survival and proliferation. Stem Cells 2015; 32:1636-48. [PMID: 24449409 DOI: 10.1002/stem.1645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Institute of Medical Biology, 8A Biomedical Grove, #05-37 Immunos, Singapore
| | | | | | | | | | | |
Collapse
|
38
|
Komeri R, Thankam FG, Muthu J. Influence of matrix and bulk behaviour of an injectable hydrogel on the survival of encapsulated cardiac cells. RSC Adv 2015. [DOI: 10.1039/c4ra16254d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The influence of physicochemical, morphological and mechanical behaviour of an injectable poly(propylene fumarate-co-ethylene glycol)/PEGDA hydrogel on the viability and proliferation of encapsulated cardiac cells was investigated.
Collapse
Affiliation(s)
- Remya Komeri
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram – 695 012
- India
| | - Finosh Gnanaprakasam Thankam
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram – 695 012
- India
| | - Jayabalan Muthu
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram – 695 012
- India
| |
Collapse
|
39
|
Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: a year in review. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:1-16. [PMID: 24410501 DOI: 10.1089/ten.teb.2013.0668] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is an exciting time to be involved in tissue engineering and regenerative medicine (TERM) research. Despite its relative youth, the field is expanding fast and breaking new ground in both the laboratory and clinically. In this "Year in Review," we highlight some of the high-impact advances in the field. Building upon last year's article, we have identified the recent "hot topics" and the key publications pertaining to these themes as well as ideas that have high potential to direct the field. Based on a modified methodology grounded on last year's approach, we have identified and summarized some of the most impactful publications in five main themes: (1) pluripotent stem cells: efforts and hurdles to translation, (2) tissue engineering: complex scaffolds and advanced materials, (3) directing the cell phenotype: growth factor and biomolecule presentation, (4) characterization: imaging and beyond, and (5) translation: preclinical to clinical. We have complemented our review of the research directions highlighted within these trend-setting studies with a discussion of additional articles along the same themes that have recently been published and have yet to surface in citation analyses. We conclude with a discussion of some really interesting studies that provide a glimpse of the high potential for innovation of TERM research.
Collapse
Affiliation(s)
- Rachael H Harrison
- 1 Department of Materials, Imperial College London , London, United Kingdom
| | | | | |
Collapse
|
40
|
Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature. Acta Biomater 2014; 10:2539-50. [PMID: 24561710 DOI: 10.1016/j.actbio.2014.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 11/23/2022]
Abstract
In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid-tyramine (HA-Tyr) during the HRP-mediated crosslinking reaction. Preliminary studies demonstrated that two phenol moieties per molecule resulted in a consistently high degree of conjugation into the HA-Tyr hydrogel network, unlike the one modified with one phenol moiety per molecule. Therefore, an Arg-Gly-Asp (RGD) peptide bearing two phenol moieties (phenol2-poly(ethylene glycol)-RGD) was designed for conjugation to endow the HA-Tyr hydrogel with adhesion signals and enhance its bioactivities. Human umbilical vein endothelial cells (HUVECs) cultured on or within the RGD-modified hydrogels showed significantly different adhesion behavior, from non-adherence on the HA-Tyr hydrogel to strong adhesion on hydrogels modified with phenol2-poly(ethylene glycol)-RGD. This altered cell adhesion behavior led to improved cell proliferation, migration and formation of capillary-like network in the hydrogel in vitro. More importantly, when HUVECs and human fibroblasts (HFF1) were encapsulated together in the RGD-modified HA-Tyr hydrogel, functional vasculature was observed inside the cell-laden gel after 2weeks in the subcutaneous tissue. Taken together, the in situ conjugation of phenol2-poly(ethylene glycol)-RGD into HA-Tyr hydrogel system, coupled with the ease of incorporating cells, offers a simple and effective means to introduce biological signals for preparation of multi-functional injectable hydrogels for tissue engineering application.
Collapse
|
41
|
Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials 2014; 35:3956-74. [PMID: 24560461 DOI: 10.1016/j.biomaterials.2014.01.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.
Collapse
|
42
|
Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 2014; 35:3986-98. [PMID: 24508080 DOI: 10.1016/j.biomaterials.2014.01.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/08/2014] [Indexed: 02/03/2023]
Abstract
The ability to restore heart function by replacement of diseased myocardium is one of the great challenges in biomaterials and regenerative medicine. Brown adipose derived stem cells (BADSCs) present a new source of cardiomyocytes to regenerate the myocardium after infarction. In this study, we explored an injectable tissue engineering strategy to repair damaged myocardium, in which chitosan hydrogels were investigated as a carrier for BADSCs. In vitro, the effect and mechanism of chitosan components on the cardiac differentiation of BADSCs were investigated. In vivo, BADSCs carrying double-fusion reporter gene (firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)) were transplanted into infarcted rat hearts with or without chitosan hydrogel. Multi-techniques were used to assess the effects of treatments. We observed that chitosan components significantly enhanced cardiac differentiation of BADSCs, which was assessed by percentages of cTnT(+) cells and expression of cardiac-specific markers, including GATA-4, Nkx2.5, Myl7, Myh6, cTnI, and Cacna1a. Treatment with collagen synthesis inhibitors, cis-4-hydroxy-D-proline (CIS), significantly inhibited the chitosan-enhanced cardiac differentiation, indicating that the enhanced collagen synthesis by chitosan accounts for its promotive role in cardiac differentiation of BADSCs. Longitudinal in vivo bioluminescence imaging and histological staining revealed that chitosan enhanced the survival of engrafted BADSCs and significantly increased the differentiation rate of BADSCs into cardiomyocytes in vivo. Furthermore, BADSCs delivered by chitosan hydrogel prevented adverse matrix remodeling, increased angiogenesis, and preserved heart function. These results suggested that the injectable cardiac tissue engineering based on chitosan hydrogel and BADSCs is a useful strategy for myocardium regeneration.
Collapse
|
43
|
Page JM, Harmata AJ, Guelcher SA. Design and development of reactive injectable and settable polymeric biomaterials. J Biomed Mater Res A 2013; 101:3630-3645. [PMID: 23661623 DOI: 10.1002/jbm.a.34665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 01/07/2025]
Abstract
Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions.
Collapse
Affiliation(s)
- Jonathan M Page
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
44
|
Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 2013; 19:3429-45. [PMID: 23432679 DOI: 10.2174/13816128113199990350] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/10/2013] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation.
Collapse
Affiliation(s)
- Patrick T Brown
- Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | | | | | | |
Collapse
|
45
|
Don CW, Murry CE. Improving survival and efficacy of pluripotent stem cell-derived cardiac grafts. J Cell Mol Med 2013; 17:1355-62. [PMID: 24118766 PMCID: PMC4049630 DOI: 10.1111/jcmm.12147] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/28/2013] [Indexed: 01/02/2023] Open
Abstract
Human embryonic stem cells (hESCs) can be differentiated into structurally and electrically functional myocardial tissue and have the potential to regenerate large regions of infarcted myocardium. One of the key challenges that needs to be addressed towards full-scale clinical application of hESCs is enhancing survival of the transplanted cells within ischaemic or scarred, avascular host tissue. Shortly after transplantation, most hESCs are lost as a result of multiple mechanical, cellular and host factors, and a large proportion of the remaining cells undergo apoptosis or necrosis shortly thereafter, as a result of loss of adhesion-related signals, ischaemia, inflammation or immunological rejection. Blocking the apoptotic signalling pathways of the cells, using pro-survival cocktails, conditioning hESCs prior to transplant, promoting angiogenesis, immunosuppressing the host and using of bioengineered matrices are among the emerging techniques that have been shown to optimize cell survival. This review presents an overview of the current strategies for optimizing cell and host tissue to improve the survival and efficacy of cardiac cells derived from pluripotent stem cells.
Collapse
Affiliation(s)
- Creighton W Don
- Department of Medicine/Cardiology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
46
|
Yang JJ, Liu ZQ, Zhang JM, Wang HB, Hu SY, Liu JF, Wang CY, Chen YD. Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessels 2013; 28:385-96. [PMID: 22940832 DOI: 10.1007/s00380-012-0275-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 07/20/2012] [Indexed: 01/09/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) has shown promise in the emerging field of regenerative medicine. Many studies have highlighted the importance of coadministering a "scaffold" for increasing intramyocardial retention of stem cells. In this work, an optimized method was developed for efficient transduction of ADSCs with a lentiviral vector carrying a triple-fusion reporter gene that consists of firefly luciferase, monomeric red fluorescence protein, and truncated thymidine kinase (fluc-mrfp-ttk). The transduced ADSCs were assessed on biological performance and transplanted into infarcted heart with fibrin scaffolds. In vivo cell retention was tracked by bioluminescence imaging (BLI) and micro positron emission tomography/computed tomography (PET/CT) imaging. Histological assessment was performed for regeneration potentials. The results showed that lentiviral transduction did not influence cell functions. In vitro imaging analysis showed a robust linear correlation between cell numbers and BLI signals (R (2) = 0.99) as well as between cell numbers and radiotracer uptakes (R (2) = 0.98). Transduced ADSCs were visualized in the heart under both BLI and PET/CT imaging, contributing to cardiomyocyte regeneration and angiogenesis in the implanted areas. Compared with BLI monitoring, PET/CT data provided precise localization for cell retention. Thus, a combination of imaging modalities can assist in reliable and efficient monitoring of transplanted cells, holding great potential for the transplantation of injectable scaffolds encapsulating stem cells in treating heart disease.
Collapse
Affiliation(s)
- Jun-jie Yang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease. Int J Nanomedicine 2012; 7:5969-94. [PMID: 23271906 PMCID: PMC3526148 DOI: 10.2147/ijn.s37575] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slippage, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review summarizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future.
Collapse
Affiliation(s)
- Rajeswari Ravichandran
- Healthcare and Energy Materials Laboratory, National University of Singapore, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Subramanian Sundarrajan
- Healthcare and Energy Materials Laboratory, National University of Singapore, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Shayanti Mukherjee
- Healthcare and Energy Materials Laboratory, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Healthcare and Energy Materials Laboratory, National University of Singapore, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
48
|
Fong EL, Watson BM, Kasper FK, Mikos AG. Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4995-5013. [PMID: 22821772 PMCID: PMC3706713 DOI: 10.1002/adma.201201762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Indexed: 05/22/2023]
Abstract
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Abstract
This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1-35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d.
Collapse
|
50
|
Manole CG, Cismaşiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 2012; 15:2284-96. [PMID: 21895968 PMCID: PMC3822940 DOI: 10.1111/j.1582-4934.2011.01449.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We used rat experimental myocardial infarction to study the ultrastructural recovery, especially neo-angiogenesis in the infarction border zone. We were interested in the possible role(s) of telocytes (TCs), a novel type of interstitial cell very recently discovered in myocardim (see http://www.telocytes.com). Electron microscopy, immunocytochemistry and analysis of several proangiogenic microRNAs provided evidence for TC involvement in neo-angiogenesis after myocardial infarction. Electron microscopy showed the close spatial association of TCs with neoangiogenetic elements. Higher resolution images provided the following information: (a) the intercellular space between the abluminal face of endothelium and its surrounding TCs is frequently less than 50 nm; (b) TCs establish multiple direct nanocontacts with endothelial cells, where the extracellular space seems obliterated; such nanocontacts have a length of 0.4–1.5 μm; (c) the absence of basal membrane on the abluminal face of endothelial cell. Besides the physical contacts (either nanoscopic or microscopic) TCs presumably contribute to neo-angiognesis via paracrine secretion (as shown by immunocytochemistry for VEGF or NOS2). Last but not least, TCs contain measurable quantities of angiogenic microRNAs (e.g. let-7e, 10a, 21, 27b, 100, 126-3p, 130a, 143, 155, 503). Taken together, the direct (physical) contact of TCs with endothelial tubes, as well as the indirect (chemical) positive influence within the ‘angiogenic zones’, suggests an important participation of TCs in neo-angiogenesis during the late stage of myocardial infarction.
Collapse
Affiliation(s)
- C G Manole
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|