1
|
Zhou X, Medina S, Bolt AM, Zhang H, Wan G, Xu H, Lauer FT, Wang SC, Burchiel SW, Liu KJ. Inhibition of red blood cell development by arsenic-induced disruption of GATA-1. Sci Rep 2020; 10:19055. [PMID: 33149232 PMCID: PMC7643154 DOI: 10.1038/s41598-020-76118-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/21/2020] [Indexed: 01/16/2023] Open
Abstract
Anemia is a hematological disorder that adversely affects the health of millions of people worldwide. Although many variables influence the development and exacerbation of anemia, one major contributing factor is the impairment of erythropoiesis. Normal erythropoiesis is highly regulated by the zinc finger transcription factor GATA-1. Disruption of the zinc finger motifs in GATA-1, such as produced by germline mutations, compromises the function of this critical transcription factor and causes dyserythropoietic anemia. Herein, we utilize a combination of in vitro and in vivo studies to provide evidence that arsenic, a widespread environmental toxicant, inhibits erythropoiesis likely through replacing zinc within the zinc fingers of the critical transcription factor GATA-1. We found that arsenic interacts with the N- and C-terminal zinc finger motifs of GATA-1, causing zinc loss and inhibition of DNA and protein binding activities, leading to dyserythropoiesis and an imbalance of hematopoietic differentiation. For the first time, we show that exposures to a prevalent environmental contaminant compromises the function of a key regulatory factor in erythropoiesis, producing effects functionally similar to inherited GATA-1 mutations. These findings highlight a novel molecular mechanism by which arsenic exposure may cause anemia and provide critical insights into potential prevention and intervention for arsenic-related anemias.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, 87701, USA
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Huan Xu
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Shu Chun Wang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Xu P, Zhou D, Yan G, Ouyang J, Chen B. Correlation of miR-181a and three HOXA genes as useful biomarkers in acute myeloid leukemia. Int J Lab Hematol 2019; 42:16-22. [PMID: 31670914 DOI: 10.1111/ijlh.13116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION MiR-181a is a small, noncoding RNA that plays important roles in the pathogenesis and prognosis of acute myeloid leukemia (AML). A group of HOXA genes, including HOXA7, HOXA9, and HOXA11, has been established as an independent predictor for AML prognosis. In this study, we aimed to investigate the association between miR-181a and HOXA7, HOXA9, and HOXA11 and explore their roles in predicting prognosis in AML. PATIENTS AND METHODS Bone marrow samples of 46 untreated AML patients and 9 healthy donors were collected. Mononuclear cells were purified using density-gradient centrifugation in Ficoll, and quantitative real-time PCR was used to detect miR-181a and HOXA gene expression level. RESULTS HOXA7, HOXA9, and HOXA11 were negatively correlated with miR-181a, and their expression levels varied among AML subtypes, karyotypes, and risk status. Higher miR-181a and lower HOXA gene expressions were significantly associated with lower risk status and better response to chemotherapy. CONCLUSION In our study, we found miR-181a expression was negatively correlated with three HOXA genes and they were associated with AML risk status and prognosis in granulocytic AML. It further supported that miR-181a could be a useful marker for AML prognosis and possibly worked by regulating HOXA gene clusters.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Di Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guijun Yan
- Department of Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
3
|
Zhang G, Shi J, Yang X, Zhang X, Zhang L, Zhang J, Yang S, Wang J, Hu K, Ke X, Fu L. High expression of microRNA-500 is associated with poor prognosis in patients with acute myeloid leukemia receiving allogeneic hematopoietic stem cell transplantation. Oncol Lett 2019; 17:5815-5820. [PMID: 31186809 DOI: 10.3892/ol.2019.10250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
MicroRNA-500 (miR-500) is a potential prognostic biomarker in a number of different types of cancer, such as prostate cancer and hepatocellular carcinoma. This study aimed to explore the clinical implications of miR-500 expression status in patients with acute myeloid leukemia (AML) that had received allogeneic hematopoietic stem cell transplantation (allo-HSCT). miR-500 expression status and clinical data were obtained from 74 patients with AML in the The Cancer Genome Atlas database receiving allo-HSCT. Patients with low expression level of miR-500 (miR-500low) were significantly more likely to present with a French-American-British classification M2 subtype (P=0.003), and less likely to have the M5 subtype (P=0.040) compared with patients with high expression levels (miR-500high). miR-500low patients were associated with low-risk AML (P=0.003) and core-binding factor subunit b-myosin heavy chain 11 translocation mutation (P=0.021). There was a significant difference in nucleophosmin 1 (P=0.009), NRAS proto-oncogene GTPase/KRAS proto-oncogene GTPase (P=0.047) and PHD finger protein 6 (P=0.040) expression levels between the two groups. miR-500high patients had a decreased overall survival (OS) time compared with the low expression group (P=0.035). Multivariate analysis revealed that miR-500 expression significantly affected OS time independent of other classical prognostic factors, such as age and common mutations. The analysis of survival curves further substantiated this result. The results obtained in the current study suggested that miR-500 may be a suitable prognostic marker for patients with AML receiving allo-HSCT.
Collapse
Affiliation(s)
- Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China.,Department of Medical Big Data, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Lingxiu Zhang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jilei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
4
|
Wang W, Guo Z, Yu H, Fan L. MiR-216b inhibits osteosarcoma cell proliferation, migration, and invasion by targeting Forkhead Box M1. J Cell Biochem 2018; 120:5435-5443. [PMID: 30302807 DOI: 10.1002/jcb.27822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is considered the most common type of primary malignant bone tumor, which has a high rate of mortality in children and adolescents. However, the current treatment methods for OS are ineffective. Therefore, there is an urgent requirement to identify the critical targets. This study aimed to identify the roles and significance of microRNA-216b (miR-216b) in OS. To explore the cellular and molecular functions of miR-216b and Forkhead Box M1 (FoxM1) in OS, the expression of miR-216b and FoxM1 at the transcriptional level was measured using quantitative real-time PCR (qRT-PCR). Wound healing assay, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay (MTT) assay, flow cytometry, and transwell invasion assay were conducted to study the function of miR-216b and FoxM1 in OS cells. Dual luciferase reporter assay was performed to identify the relationships between miR-216b and FoxM1. qRT-PCR results revealed that miR-216b expression was significantly downregulated, and FoxM1 was observed to be significantly upregulated in human OS cell lines (MG-63) and tissues. MTT data showed that upregulation of miR-216b expression led to cell growth inhibition in MG-63 cells. The results of the invasion assay and wound healing assay illustrated that miR-216b upregulation or FoxM1 downregulation could inhibit the invasion and migration in MG-63 cells. In vivo, the tumor volume was significantly decreased by miR-194 mimic treatment compared with the control group. Furthermore, the results of the luciferase assay indicated that FoxM1 is a direct target of miR-216b. These findings may provide novel insights into the molecular mechanism of miR-216b and FoxM1 in the progression of OS, and suggested that miR-216b may serve as a potential tumor inhibitor of OS by targeting FoxM1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zijun Guo
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Yu
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Fan
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
He C, Luo B, Jiang N, Liang Y, He Y, Zeng J, Liu J, Zheng X. OncomiR or antioncomiR: Role of miRNAs in Acute Myeloid Leukemia. Leuk Lymphoma 2018; 60:284-294. [PMID: 30187809 DOI: 10.1080/10428194.2018.1480769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute Myeloid Leukemia (AML) is a hematopoietic progenitor/stem cell disorder in which neoplastic myeloblasts are stopped at an immature stage of differentiation and lost the normal ability of proliferation and apoptosis. MicroRNAs (miRNAs) are small noncoding, single-stranded RNA molecules that can mediate the expression of target genes. While miRNAs mean to contribute the developments of normal functions, abnormal expression of miRNAs and regulations on their corresponding targets have often been found in the developments of AML and described in recent years. In leukemia, miRNAs may function as regulatory molecules, acting as oncogenes or tumor suppressors. Overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to AML formation. Similarly, miRNAs can down-regulate different proteins with oncogenic activity as tumor suppressors. We herein review the current data on miRNAs, specifically their targets and their biological function based on apoptosis in the development of AML.
Collapse
Affiliation(s)
- Chengcheng He
- a People's Hospital of Zhongjiang , Deyang , Sichuan , P. R. China.,b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Bo Luo
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Nan Jiang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yu Liang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yancheng He
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jingyuan Zeng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jiajia Liu
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Xiaoli Zheng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| |
Collapse
|
6
|
Wang X, Chen H, Bai J, He A. MicroRNA: an important regulator in acute myeloid leukemia. Cell Biol Int 2017; 41:936-945. [PMID: 28370893 DOI: 10.1002/cbin.10770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/26/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a general class of endogenous non-coding RNAs with a length of 22 nucleotides, widely existing in diverse species and playing important roles in malignancies initiation and progression. MiRNAs are essential to many in vivo biological processes such as cell proliferation, apoptosis, immune response, and tumorigenesis. Significant progress till date has been made in understanding the roles of microRNAs in normal hematopoiesis and hematopoietic malignant diseases. In this review, we summarize the particular signatures of microRNAs in acute myeloid leukemia (AML) patients with specific karyotype and the clinical significance of microRNAs in early diagnosis and treatment. MicroRNAs hypermethylation was also proved to correlate with the pathogenesis of AML. However, the target genes and exact pathways of microRNAs participating in these processes are still unknown and more efforts need to be made in the near future.
Collapse
Affiliation(s)
- Xiaman Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Hongli Chen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Ju Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Aili He
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an, P.R. China
| |
Collapse
|
7
|
Arya D, Sachithanandan SP, Ross C, Palakodeti D, Li S, Krishna S. MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia. Cell Death Dis 2017; 8:e2547. [PMID: 28079885 PMCID: PMC5386378 DOI: 10.1038/cddis.2016.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition. In conclusion, we reveal a key role for miRNA182-5p in restricting the myeloid development of leukemic cells. We propose that the Δ182 cell line will be valuable in designing experiments for next-generation pharmacological interventions.
Collapse
Affiliation(s)
- Deepak Arya
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Sasikala P Sachithanandan
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Cecil Ross
- Department of Medicine, St Johns Medical College and Hospitals, Bangalore, India
| | - Dasaradhi Palakodeti
- Stem Cells and Regeneration Group, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Shang Li
- Duke-NUS Graduate Medical School, Singapore
| | - Sudhir Krishna
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
8
|
Shen C, Chen MT, Zhang XH, Yin XL, Ning HM, Su R, Lin HS, Song L, Wang F, Ma YN, Zhao HL, Yu J, Zhang JW. The PU.1-Modulated MicroRNA-22 Is a Regulator of Monocyte/Macrophage Differentiation and Acute Myeloid Leukemia. PLoS Genet 2016; 12:e1006259. [PMID: 27617961 PMCID: PMC5019412 DOI: 10.1371/journal.pgen.1006259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-22 (miR-22) is emerging as a critical regulator in organ development and various cancers. However, its role in normal hematopoiesis and leukaemogenesis remains unclear. Here, we detected its increased expression during monocyte/macrophage differentiation of HL-60, THP1 cells and CD34+ hematopoietic stem/progenitor cells, and confirmed that PU.1, a key transcriptional factor for monocyte/macrophage differentiation, is responsible for transcriptional activation of miR-22 during the differentiation. By gain- and loss-of-function experiments, we demonstrated that miR-22 promoted monocyte/macrophage differentiation, and MECOM (EVI1) mRNA is a direct target of miR-22 and MECOM (EVI1) functions as a negative regulator in the differentiation. The miR-22-mediated MECOM degradation increased c-Jun but decreased GATA2 expression, which results in increased interaction between c-Jun and PU.1 via increasing c-Jun levels and relief of MECOM- and GATA2-mediated interference in the interaction, and thus promoting monocyte/macrophage differentiation. We also observed significantly down-regulation of PU.1 and miR-22 as well as significantly up-regulation of MECOM in acute myeloid leukemia (AML) patients. Reintroduction of miR-22 relieved the differentiation blockage and inhibited the growth of bone marrow blasts of AML patients. Our results revealed new function and mechanism of miR-22 in normal hematopoiesis and AML development and demonstrated its potential value in AML diagnosis and therapy. We found that miR-22 is transcriptionally activated by PU.1 during monocyte/macrophage differentiation and miR-22 promotes the differentiation via targeting MECOM (EVI1) mRNA and further increasing interaction between c-Jun and PU.1. We also show that miR-22 is a tumor repressor and that PU.1-miR-22-MECOM regulation is involved in AML development; moreover, we demonstrate that reintroduction of miR-22 relieves the differentiation blockage and inhibits the growth of AML bone marrow blasts.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Hua Zhang
- Haematology Department, the 303 Hospital, Nanning, China
| | - Xiao-Lin Yin
- Haematology Department, the 303 Hospital, Nanning, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences (the 307 Hospital), Beijing, China
| | - Rui Su
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Shuang Lin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Roden C, Lu J. MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2016; 2:183-196. [PMID: 27547713 PMCID: PMC4988405 DOI: 10.1007/s40778-016-0057-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields.
Collapse
Affiliation(s)
- Christine Roden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, Connecticut, 06520, USA
- Graduate Program in Biological and Biomedical Sciences, Yale University, New Haven, Connecticut 06510, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, Connecticut, 06520, USA
- Yale Center for RNA Science and Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
10
|
Cattaneo M, Pelosi E, Castelli G, Cerio A, D′angiò A, Porretti L, Rebulla P, Pavesi L, Russo G, Giordano A, Turri J, Cicconi L, Lo-Coco F, Testa U, Biunno I. A miRNA Signature in Human Cord Blood Stem and Progenitor Cells as Potential Biomarker of Specific Acute Myeloid Leukemia Subtypes. J Cell Physiol 2015; 230:1770-80. [DOI: 10.1002/jcp.24876] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/07/2014] [Indexed: 02/03/2023]
Affiliation(s)
- M. Cattaneo
- Institute for Genetic and Biomedical Research; National Council of Research; Milan Italy
| | - E. Pelosi
- Department of Hematology; Oncology and Molecular Medicine, Istituto Superiore di Sanita; Rome Italy
| | - G. Castelli
- Department of Hematology; Oncology and Molecular Medicine, Istituto Superiore di Sanita; Rome Italy
| | - A.M. Cerio
- Department of Hematology; Oncology and Molecular Medicine, Istituto Superiore di Sanita; Rome Italy
| | - A. D′angiò
- Department of Hematology; Oncology and Molecular Medicine, Istituto Superiore di Sanita; Rome Italy
| | - L. Porretti
- Department of Regenerative Medicine; IRCCS Ca' Granda Maggiore Policlinico Hospital Foundation; Milan Italy
| | - P. Rebulla
- Department of Regenerative Medicine; IRCCS Ca' Granda Maggiore Policlinico Hospital Foundation; Milan Italy
| | - L. Pavesi
- Institute for Genetic and Biomedical Research; National Council of Research; Milan Italy
| | - G. Russo
- Sbarro Institute for Cancer Research and Molecular Medicine; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| | - A. Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- INT-CROM; “Pascale Foundation” National Cancer Institute-Cancer Research Center; Mercogliano (AV) Italy
- Department of Medical and Surgical Sciences and Neuroscience; University of Siena; Siena Italy
| | - J. Turri
- Institute for Genetic and Biomedical Research; National Council of Research; Milan Italy
| | - L. Cicconi
- Department of Biomedicine and Prevention; University Tor Vergata; Rome Italy
| | - F. Lo-Coco
- Department of Biomedicine and Prevention; University Tor Vergata; Rome Italy
| | - U. Testa
- Department of Hematology; Oncology and Molecular Medicine, Istituto Superiore di Sanita; Rome Italy
| | - Ida Biunno
- Institute for Genetic and Biomedical Research; National Council of Research; Milan Italy
- IRCCS Multimedica; Milan Italy
| |
Collapse
|
11
|
Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol 2014; 53:818-834. [PMID: 25502465 PMCID: PMC4752585 DOI: 10.1007/s12035-014-9054-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.
Collapse
Affiliation(s)
- Arian Aryani
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, Sun X, Li W, Guo M, Huang Z. miR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem 2014; 290:1818-28. [PMID: 25451924 DOI: 10.1074/jbc.m114.599191] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs have been extensively studied as regulators of hematopoiesis and leukemogenesis. We identified miR-638 as a novel regulator in myeloid differentiation and proliferation of leukemic cells. We found that miR-638 was developmentally up-regulated in cells of myeloid but not lymphoid lineage. Furthermore, significant miR-638 down-regulation was observed in primary acute myeloid leukemia (AML) blasts, whereas miR-638 expression was dramatically up-regulated in primary AML blasts and leukemic cell lines undergoing forced myeloid differentiation. These observations suggest that miR-638 might play a role in myeloid differentiation, and its dysregulation may contribute to leukemogenesis. Indeed, ectopic expression of miR-638 promoted phorbol 12-myristate 13-acetate- or all-trans-retinoic acid-induced differentiation of leukemic cell lines and primary AML blasts, whereas miR-638 inhibition caused an opposite phenotype. Consistently, miR-638 overexpression induced G1 cell cycle arrest and reduced colony formation in soft agar. Cyclin-dependent kinase 2 (CDK2) was found to be a target gene of miR-638. CDK2 inhibition phenotypically mimicked the overexpression of miR-638. Moreover, forced expression of CDK2 restored the proliferation and the colony-forming ability inhibited by miR-638. Our data suggest that miR-638 regulates proliferation and myeloid differentiation by targeting CDK2 and may serve as a novel target for leukemia therapy or marker for AML diagnosis and prognosis.
Collapse
Affiliation(s)
- Yi Lin
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Dengju Li
- the Department of Hematology, Tongji Hospital of Huazhong Technology University, Wuhan, Hubei, China, 430030
| | - Qing Liang
- the Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China, 430071, and
| | - Shangqing Liu
- the Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China, 430071, and
| | - Xuelan Zuo
- the Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China, 430071, and
| | - Lin Li
- the Department of Hematology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China, 210029
| | - Xuemei Sun
- the Department of Hematology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China, 210029
| | - Wenxin Li
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Mingxiong Guo
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072,
| | - Zan Huang
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072,
| |
Collapse
|
13
|
Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V, Ma DDF. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia. Mol Cancer 2014; 13:79. [PMID: 24708856 PMCID: PMC4021368 DOI: 10.1186/1476-4598-13-79] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/27/2014] [Indexed: 12/17/2022] Open
Abstract
Background Acute myeloid leukaemia (AML) is characterised by the halt in maturation of myeloid progenitor cells, combined with uncontrolled proliferation and abnormal survival, leading to the accumulation of immature blasts. In many subtypes of AML the underlying causative genetic insults are not fully described. MicroRNAs are known to be dysregulated during oncogenesis. Overexpression of miR-155 is associated with some cancers, including haematological malignancies, and it has been postulated that miR-155 has an oncogenic role. This study investigated the effects of modulating miR-155 expression in human AML cells, and its mechanism of action. Results Analysis of miR-155 expression patterns in AML patients found that Fms-like tyrosine kinase 3 (FLT3)-wildtype AML has the same expression level as normal bone marrow, with increased expression restricted to AML with the FLT3-ITD mutation. Induction of apoptosis by cytarabine arabinoside or myelomonocytic differentiation by 1,23-dihydroxyvitaminD3 in FLT3-wildtype AML cells led to upregulated miR-155 expression. Knockdown of miR-155 by locked nucleic acid antisense oligonucleotides in the FLT3-wildtype AML cells conferred resistance to cytarabine arabinoside induced apoptosis and suppressed the ability of cells to differentiate. Ectopic expression of miR-155 in FLT3-wildtype AML cells led to a significant gain of myelomonocytic markers (CD11b, CD14 and CD15), increase in apoptosis (AnnexinV binding), decrease in cell growth and clonogenic capacity. In silico target prediction identified a number of putative miR-155 target genes, and the expression changes of key transcription regulators of myeloid differentiation and apoptosis (MEIS1, GF1, cMYC, JARID2, cJUN, FOS, CTNNB1 and TRIB2) were confirmed by PCR. Assessment of expression of apoptosis-related proteins demonstrated a marked increase in cleaved caspase-3 expression confirming activation of the apoptosis cascade. Conclusions This study provides evidence for an anti-leukaemic role for miR-155 in human FLT3-wildtype AML, by inducing cell apoptosis and myelomonocytic differentiation, which is in contrast to its previously hypothesized role as an oncogene. This highlights the complexity of gene regulation by microRNAs that may have tumour repressor or oncogenic effects depending on disease context or tissue type.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David D F Ma
- Blood, Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia.
| |
Collapse
|
14
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
15
|
Lü MH, Hu CJ, Chen L, Peng X, Chen J, Hu JY, Teng M, Liang GP. miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One 2013; 8:e68972. [PMID: 23894385 PMCID: PMC3718818 DOI: 10.1371/journal.pone.0068972] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/22/2013] [Indexed: 01/09/2023] Open
Abstract
Background Interactions between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 are crucial for the recruitment of mesenchymal stem cells (MSCs) from bone marrow (BM) reservoirs to damaged tissues for repair during alarm situations. MicroRNAs are differentially expressed in stem cell niches, suggesting a specialized role in stem cell regulation. Here, we gain insight into the molecular mechanisms involved in regulating SDF-1α. Methods MSCs from green fluorescent protein transgenic male mice were transfused to irradiated recipient female C57BL/6 mice, and skin burn model of bone marrow-chimeric mice were constructed. Six miRNAs with differential expression in burned murine skin tissue compared to normal skin tissue were identified using microarrays and bioinformatics. The expression of miR-27b and SDF-1α was examined in burned murine skin tissue using quantitative real-time PCR (qPCR) and immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA). The Correlation of miR-27b and SDF-1α expression was analyzed by Pearson analysis Correlation. miRNAs suppressed SDF-1α protein expression by binding directly to its 3′UTR using western blot and luciferase reporter assay. The importance of miRNAs in MSCs chemotaxis was further estimated by decreasing SDF-1α in vivo and in vitro. Results miR-23a, miR-27a and miR-27b expression was significantly lower in the burned skin than in the normal skin (p<0.05). We also found that several miRNAs suppressed SDF-1α protein expression, while just miR-27a and miR-27b directly bound to the SDF-1α 3′UTR. Moreover, the forced over-expression of miR-27a and miR-27b significantly reduced the directional migration of mMSCs in vitro. However, only miR-27b in burn wound margins significantly inhibited the mobilization of MSCs to the epidermis. Conclusion miR-27b may be a unique signature of the stem cell niche in burned mouse skin and can suppress the directional migration of mMSCs by targeting SDF-1α by binding directly to its 3′UTR.
Collapse
Affiliation(s)
- Mu-Han Lü
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Chang-Jiang Hu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ling Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Jian Chen
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- * E-mail: (JC); (G-PL)
| | - Jiong-Yu Hu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Miao Teng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Guang-Ping Liang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- * E-mail: (JC); (G-PL)
| |
Collapse
|
16
|
Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 2012; 120:2307-16. [PMID: 22855601 DOI: 10.1182/blood-2012-02-408252] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophage (MΦ) activation must be tightly controlled to preclude overzealous responses that cause self-damage. MicroRNAs promote classical MΦ activation by blocking antiinflammatory signals and transcription factors but also can prevent excessive TLR signaling. In contrast, the microRNA profile associated with alternatively activated MΦ and their role in regulating wound healing or antihelminthic responses has not been described. By using an in vivo model of alternative activation in which adult Brugia malayi nematodes are implanted surgically in the peritoneal cavity of mice, we identified differential expression of miR-125b-5p, miR-146a-5p, miR-199b-5p, and miR-378-3p in helminth-induced MΦ. In vitro experiments demonstrated that miR-378-3p was specifically induced by IL-4 and revealed the IL-4-receptor/PI3K/Akt-signaling pathway as a target. Chemical inhibition of this pathway showed that intact Akt signaling is an important enhancement factor for alternative activation in vitro and in vivo and is essential for IL-4-driven MΦ proliferation in vivo. Thus, identification of miR-378-3p as an IL-4Rα-induced microRNA led to the discovery that Akt regulates the newly discovered mechanism of IL-4-driven macrophage proliferation. Together, the data suggest that negative regulation of Akt signaling via microRNAs might play a central role in limiting MΦ expansion and alternative activation during type 2 inflammatory settings.
Collapse
|
17
|
miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Mol Cancer 2012; 11:8. [PMID: 22348345 PMCID: PMC3306826 DOI: 10.1186/1476-4598-11-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/20/2012] [Indexed: 02/08/2023] Open
Abstract
Background Acute myeloid leukaemia (AML) with nucleophosmin-1 (NPM1) mutation is a major subtype of AML. The NPM1 mutation induces a myeloproliferative disorder, but evidence indicates that other insults are necessary for the development of AML. We utilised microRNA microarrays and functional assays to determine if microRNA dysregulation could be involved in the pathogenesis of in NPM1 mutated (NPM1mut)-AML. Results We used a stringent locked nucleic acid (LNA) based microRNA microarray platform to profile bone marrow samples of patients with normal karyotype AML. A panel of five microRNAs dichotomised AML patients according to their NPM1 mutational status. miR-10a, let-7b and let-7c were significantly over-expressed, while miR-130a and miR-335 were under-expressed in NPM1mut-AML when compared to NPM1wildtype-AML. Of these, miR-10a is the most differentially expressed in NPM1mut-AML versus NPM1wildtype-AML (> 10 fold higher as confirmed by qRT-PCR). To investigate the functions of miR-10a, the OCI-AML3 cell line was utilised, which is the only commercially available cell line bearing NPM1mut. OCI-AML3 cells were firstly demonstrated to have a similarly high miR-10a expression to primary NPM1mut-AML patient samples. Inhibition of miR-10a expression by miRCURY LNA Inhibitors (Exiqon) in these cells resulted in increased cell death as assessed by MTS, cell cycle and Annexin-V assays and reduced clonogenic capacity, indicative of an involvement in leukaemic cell survival. In silico filtering of bioinformatically predicted targets of miR-10a identified a number of potential mRNA targets with annotated functions in haematopoiesis, cell growth and apoptosis. Lucferase reporter assays confirmed a number of these putative tumorogenic genes that are miR-10a suppressible including KLF4 and RB1CC1. This provides a potential mechanism for the pathogenic role of miR-10a in NPM1mut-AML. Conclusions This study provides, for the first time, in vitro evidence of a pro-survival role of miR-10a in NPM1mut-AML, that it may contribute to the pathogenesis of NPM1mut-AML and identifies putative tumorogenic targets.
Collapse
|